The Tourism Eco-Efficiency Measurement and Its Influencing Factors in the Yellow River Basin
Abstract
:1. Introduction
2. Methods
2.1. Global Malmquist-Luenberger (GML) Index
2.2. Panel Tobit Regression Analysis
3. Indicators and Data Resources
3.1. Eco-Effienciency Indicators
3.2. The Panel Tobit Regression Model Indicators
3.3. Data Sources
4. Results
4.1. The Overall Evolution of Tourism Eco-Efficiency in the Yellow River Basin
4.2. Analysis of the Internal Driving Forces of Tourism Eco-Efficiency
4.3. Analysis of External Influences on Tourism Eco-Efficiency
5. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuhlman, T.; Farrington, J. What is sustainability? Sustainability 2010, 2, 3436–3448. [Google Scholar] [CrossRef] [Green Version]
- Dornier, R.; Mauri, C. Overview: Tourism sustainability in the Alpine region: The major trends and challenges. Worldw. Hosp. Tour. Themes 2018, 10, 136–139. [Google Scholar] [CrossRef]
- Njoroge, J.M. An enhanced framework for regional tourism sustainable adaptation to climate change. Tour. Manag. Perspect. 2014, 12, 23–30. [Google Scholar] [CrossRef]
- Rozenberg, A. Modelling Management of Recreation and Tourist Resources (Samara Oblast Tourism Development Strategy). In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 818, p. 012039. [Google Scholar]
- Perch-Nielsen, S.; Sesartic, A.; Stucki, M. The greenhouse gas intensity of the tourism sector: The case of Switzerland. Environ. Sci. Policy 2010, 13, 131–140. [Google Scholar] [CrossRef]
- Gössling, S.; Hansson, C.B.; Hörstmeier, O.; Saggel, S. Ecological footprint analysis as a tool to assess tourism sustainability. Ecol. Econ. 2002, 43, 199–211. [Google Scholar] [CrossRef]
- Kelly, J.; Haider, W.; Williams, P.W.; Englund, K. Stated preferences of tourists for eco-efficient destination planning options. Tour. Manag. 2007, 28, 377–390. [Google Scholar] [CrossRef]
- Ayres, R.U. Toward Zero Emissions: Is There a Feasible Path? INSEAD: Fontainebleau, France, 1997. [Google Scholar]
- Melanen, M.; Seppälä, J.; Myllymaa, T.; Mickwitz, P.; Rosenström, U.; Koskela, S.; Tenhunen, J.; Mäenpää, I.; Hering, F.; Estlander, A. Measuring Regional Eco-Efficiency–Case Kymenlaakso. Key Results of the ECOREG Project; Finnish Environment Institute: Helsinki, Finland, 2004. [Google Scholar]
- Weaver, D.; Lawton, L. Attitude and Behaviour of Ecolodge Patrons in Lamingtong National Park; Cooperative Research Centre for Sustainable Tourism: Gold Coast, Australia, 2001. [Google Scholar]
- Mickwitz, P.; Melanen, M.; Rosenström, U.; Seppälä, J. Regional eco-efficiency indicators–a participatory approach. J. Clean. Prod. 2006, 14, 1603–1611. [Google Scholar] [CrossRef]
- TIES Announces Ecotourism Principles Revision. Available online: https://ecotourism.org/news/ties-announces-ecotourism-principles-revision (accessed on 5 April 2021).
- Sirakaya, E.; Sasidharan, V.; Sönmez, S. Redefining ecotourism: The need for a supply-side view. J. Travel Res. 1999, 38, 168–172. [Google Scholar] [CrossRef]
- Schmidheiny, S.; Business Council for Sustainable Development. Changing Course: A Global Business Perspective in Development and the Environment; The MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Huang, Y.; Coelho, V.R. Sustainability performance assessment focusing on coral reef protection by the tourism industry in the Coral Triangle region. Tour. Manag. 2017, 59, 510–527. [Google Scholar] [CrossRef]
- Kytzia, S.; Walz, A.; Wegmann, M. How can tourism use land more efficiently? A model-based approach to land-use efficiency for tourist destinations. Tour. Manag. 2011, 32, 629–640. [Google Scholar] [CrossRef]
- Fuentes Medina, L.; Gonzalez Gomez, I.; Morini Marrero, S. Measuring efficiency of sun & beach tourism destinations. Ann. Tour. Res. 2012, 39, 1248–1251. [Google Scholar]
- Gössling, S.; Peeters, P.; Ceron, J.-P.; Dubois, G.; Patterson, T.; Richardson, R.B. The eco-efficiency of tourism. Ecol. Econ. 2005, 54, 417–434. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, G.; Huang, Z.; Zhong, Y. Spatial-temporal differences and influencing factors of tourism eco-efficiency in China’s three major urban agglomerations based on the Super-EBM model. Sustainability 2020, 12, 4156. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Fu, Z. Tourism eco-efficiency of Chinese coastal cities–Analysis based on the DEA-Tobit model. Ocean Coast. Manag. 2017, 148, 164–170. [Google Scholar] [CrossRef]
- Surugiu, C.; Surugiu, M.R.; Breda, Z.; Dinca, A.-I. An input-output approach of CO2 emissions in tourism sector in post-communist Romania. Procedia Econ. Financ. 2012, 3, 987–992. [Google Scholar] [CrossRef]
- Juvan, E.; Dolnicar, S. Can tourists easily choose a low carbon footprint vacation? J. Sustain. Tour. 2014, 22, 175–194. [Google Scholar] [CrossRef]
- Qiu, X.; Fang, Y.; Yang, X.; Zhu, F. Tourism eco-efficiency measurement, characteristics, and its influence factors in China. Sustainability 2017, 9, 1634. [Google Scholar] [CrossRef] [Green Version]
- Zha, J.; Yuan, W.; Dai, J.; Tan, T.; He, L. Eco-efficiency, eco-productivity and tourism growth in China: A non-convex metafrontier DEA-based decomposition model. J. Sustain. Tour. 2020, 28, 663–685. [Google Scholar] [CrossRef]
- Seppäläa, J.; Melanen, M.; Mäenpää, I.; Koskela, S.; Tenhunen, J.; Hiltunen, M.R. How can the eco-efficiency of a region be measured and monitored? J. Ind. Ecol. 2005, 9, 117–130. [Google Scholar] [CrossRef]
- Liu, Y. Study on the Tourism Eco-efficiency in Central China. In Proceedings of the 2020 2nd International Conference on Big Data and Artificial Intelligence, Johannesburg, South Africa, 28–30 April 2020; pp. 232–238. [Google Scholar]
- Guo, L.; Li, P.; Zhang, J.; Xiao, X.; Peng, H. Do socio-economic factors matter? A comprehensive evaluation of tourism eco-efficiency determinants in China based on the Geographical Detector Model. J. Environ. Manag. 2022, 320, 115812. [Google Scholar] [CrossRef]
- Wang, C.; Xu, L.; Huang, M.; Su, X.; Lai, R.; Xu, A. Research on the evolution of spatial network structure of tourism eco-efficiency and its influencing factors in China’s provinces based on carbon emission accounting. PLoS ONE 2022, 17, e0272667. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Jiang, H.T.; Yang, L.; Liu, Z.H. Progress on Tourism Eco-Efficiency and its Implications. Adv. Mater. Res. 2014, 670–675. [Google Scholar] [CrossRef]
- Liu, J.; Wen, D.; Wang, Y. Measuring of tourism eco-efficiency and its comparative research based on carbon emissions. Acta Ecol. Sin. 2019, 39, 1979–1992. [Google Scholar]
- Du, J.; Liang, L.; Zhu, J. A slacks-based measure of super-efficiency in data envelopment analysis: A comment. Eur. J. Oper. Res. 2010, 204, 694–697. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 2009, 197, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Oh, D.-h. A global Malmquist-Luenberger productivity index. J. Product. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Rosselló-Batle, B.; Moià, A.; Cladera, A.; Martínez, V. Energy use, CO2 emissions and waste throughout the life cycle of a sample of hotels in the Balearic Islands. Energy Build. 2010, 42, 547–558. [Google Scholar] [CrossRef]
- Shiming, D.; Burnett, J. Energy use and management in hotels in Hong Kong. Int. J. Hosp. Manag. 2002, 21, 371–380. [Google Scholar] [CrossRef]
- Becken, S.; Frampton, C.; Simmons, D. Energy consumption patterns in the accommodation sector—The New Zealand case. Ecol. Econ. 2001, 39, 371–386. [Google Scholar] [CrossRef]
- Dwyer, L.; Forsyth, P.; Spurr, R.; Hoque, S. Estimating the carbon footprint of Australian tourism. J. Sustain. Tour. 2010, 18, 355–376. [Google Scholar] [CrossRef]
- Howitt, O.J.; Revol, V.G.; Smith, I.J.; Rodger, C.J. Carbon emissions from international cruise ship passengers’ travel to and from New Zealand. Energy Policy 2010, 38, 2552–2560. [Google Scholar] [CrossRef]
- Lenzen, M.; Sun, Y.-Y.; Faturay, F.; Ting, Y.-P.; Geschke, A.; Malik, A. The carbon footprint of global tourism. Nat. Clim. Chang. 2018, 8, 522–528. [Google Scholar] [CrossRef]
- Zhao, M.; Dong, S.; Xia, B.; Li, Y.; Li, Z.; Chen, W. Effective and Sustainable Managed Protected Areas: Evaluation and Driving Factors of Eco-Efficiency of China’s Forest Parks. Forests 2022, 13, 1406. [Google Scholar] [CrossRef]
- Li, S.; Ren, T.; Jia, B.; Zhong, Y. The Spatial Pattern and Spillover Effect of the Eco-Efficiency of Regional Tourism from the Perspective of Green Development: An Empirical Study in China. Forests 2022, 13, 1324. [Google Scholar] [CrossRef]
- Li, D.; Zhai, Y.; Tian, G.; Mendako, R.K. Tourism Eco-Efficiency and Influence Factors of Chinese Forest Parks under Carbon Peaking and Carbon Neutrality Target. Sustainability 2022, 14, 13979. [Google Scholar] [CrossRef]
- Zhao, P.-j.; Zeng, L.-e.; Lu, H.-y.; Zhou, Y.; Hu, H.-y.; Wei, X.-Y. Green economic efficiency and its influencing factors in China from 2008 to 2017: Based on the super-SBM model with undesirable outputs and spatial Dubin model. Sci. Total Environ. 2020, 741, 140026. [Google Scholar] [CrossRef]
- An, C.; Muhtar, P.; Xiao, Z. Spatiotemporal Evolution of Tourism Eco-Efficiency in Major Tourist Cities in China. Sustainability 2022, 14, 13158. [Google Scholar] [CrossRef]
- Feng, T.; Sun, L.; Zhang, Y. The relationship between energy consumption structure, economic structure and energy intensity in China. Energy Policy 2009, 37, 5475–5483. [Google Scholar] [CrossRef]
- Ceballos-Lascurain, H. The future of ecotourism. Mex. J. 1987, 1, 13–14. [Google Scholar]
Indicator Type | Indicators Name | Indicator Characterization |
---|---|---|
Input indicators | Labor | Number of employees in the tourism industry |
Resources | Tourism Resource Endowment | |
Capital | Investment in fixed assets in tourism | |
Energy | Provincial energy consumption in the tourism sector | |
Output indicators | Desired output indicators | Total Tourism Revenue |
Non-desired outputs indicators | Tourism Carbon Emissions |
Indicators | Indicator Characterization | Calculation Method | Data Resource |
---|---|---|---|
Labor | Number of employees in the tourism industry | / | China Tourism Statistical Yearbook |
Resources | Tourism Resource Endowment | Sum of A-level scenic spots and world heritage sites | China Tourism Statistical Yearbook, the United Nations Educational, Scientific, the Cultural Organization (UNESCO) official website |
Capital | Tourism industry fixed asset investment | Investment in fixed assets × (Total Tourism Revenue/Tertiary industry output × 100%) | China Statistical Yearbook, China Tourism Statistical Yearbook |
Energy | Tourism provincial energy consumption | C = Ctrans + Cacco + Cactivities Ctrans = ∑(Qi × wi × αi) Cacco = q × s × T × β Cactivities = ∑(Pk × γk) | China Tourism Statistical Yearbook |
Desirable output indicators | Total Tourism Revenue | / | China Tourism Statistical Yearbook |
Undesirable output indicators | Tourism Carbon Emissions | Bottom-up approach: E = Etrans + Eacco + Eactivities Etrans = ∑(Qi × wi × pi) Eacco = q × s × T × m Eactivities = ∑(Pk × nk) | China Tourism Statistical Yearbook |
(1) OLS | (2) FE | (3) RE | (4) Tobit | |
---|---|---|---|---|
Variables | y | y | y | y |
X1 | −0.91 *** | −0.85 | −0.93 *** | −0.43 *** |
(−4.99) | (−1.49) | (−3.94) | (−3.51) | |
X2 | 3.24 *** | 2.66 * | 3.17 *** | 1.55 *** |
(4.42) | (1.71) | (3.54) | (3.44) | |
X3 | 0.38 *** | 0.48 *** | 0.39 *** | 0.15 ** |
(3.54) | (2.90) | (3.06) | (2.38) | |
X4 | 0.48 ** | 0.73 | 0.70 ** | 0.43 *** |
(2.17) | (0.91) | (2.44) | (2.66) | |
X5 | 0.10 * | 0.27 ** | 0.11 | 0.06 |
(1.81) | (2.18) | (1.56) | (1.59) | |
Constant | −0.91 *** | −0.85 | −0.93 *** | −0.43 *** |
(−4.99) | (−1.49) | (−3.94) | (−3.51) | |
F test (p-value) | 2.99 (0.01) | |||
LM test (p-value) | 3.30 (0.03) | |||
Hausman (p-value) | 7.66 (0.26) | |||
LR test (p-value) | 8.64 (0.00) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhan, Y.; Yin, R.; Yuan, X. The Tourism Eco-Efficiency Measurement and Its Influencing Factors in the Yellow River Basin. Sustainability 2022, 14, 15654. https://doi.org/10.3390/su142315654
Zhang W, Zhan Y, Yin R, Yuan X. The Tourism Eco-Efficiency Measurement and Its Influencing Factors in the Yellow River Basin. Sustainability. 2022; 14(23):15654. https://doi.org/10.3390/su142315654
Chicago/Turabian StyleZhang, Wei, Ying Zhan, Ruiyang Yin, and Xunbo Yuan. 2022. "The Tourism Eco-Efficiency Measurement and Its Influencing Factors in the Yellow River Basin" Sustainability 14, no. 23: 15654. https://doi.org/10.3390/su142315654
APA StyleZhang, W., Zhan, Y., Yin, R., & Yuan, X. (2022). The Tourism Eco-Efficiency Measurement and Its Influencing Factors in the Yellow River Basin. Sustainability, 14(23), 15654. https://doi.org/10.3390/su142315654