Mapping Agricultural Soil in Greenhouse Using an Autonomous Low-Cost Robot and Precise Monitoring
Abstract
:1. Introduction
- (1)
- Development of an autonomous robot for real-time crop monitoring in open agricultural fields and greenhouses
- (2)
- A case study on a closed greenhouse based on tomatoes plant
- (3)
- An implementation on low-cost embedded architecture based on the Cuda language
- (4)
- In addition, an optimization based on the Hardware/Software Co-design approach has been proposed to decrease the processing time and memory consumption for real-time applications
2. Materials and Methods Study
2.1. Area Study
2.2. System Modelling
2.2.1. Mechanical Study
2.2.2. Electrical Study
2.2.3. Algorithm Study
Algorithm 1: Front-End |
Algorithm 2: Back-End |
- (a)
- We convert the indices image to HSV (hue, saturation, value).
- (b)
- We create the CV_8U version of our HSV image, then we look for the contours present in the HSV image.
- (c)
- We trace the contours on the original image, this tracing step is divided into two steps:
- a.
- Tracing the markers of the foreground;
- b.
- Tracing the background markers in white;
- c.
- The final image is a superposition of the two tracings a and b.
- (d)
- We perform the segmentation using the OpenCV function “Watershed”; afterwards, we fill the labeled objects with randomly generated colors.
3. Results and Discussion
3.1. Test and Implementation
3.2. Experimental Result
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.; Chen, B.; Zhang, Z.; Li, H.; Zhang, M. Applications of machine vision in agricultural robot navigation: A review. Comput. Electron. Agric. 2022, 198, 107085. [Google Scholar] [CrossRef]
- Chebrolu, N.; Lottes, P.; Schaefer, A.; Winterhalter, W.; Burgard, W.; Stachniss, C. Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields. Int. J. Robot. Res. 2017, 36, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Abualkishik, A.Z.; Almajed, R.; Thompson, W. Evaluating Smart Agricultural Production Efficiency using Fuzzy MARCOS method. J. Neutrosophic Fuzzy Syst. 2022, 3, 8–18. [Google Scholar] [CrossRef]
- Tofigh, M.A.; Mu, Z. Intelligent Web Information Extraction Model for Agricultural Product Quality and Safety System. J. Intell. Syst. Internet Things 2021, 4, 99–110. [Google Scholar] [CrossRef]
- Saddik, A.; Latif, R.; El Ouardi, A.; Alghamdi, M.I.; Elhoseny, M. Improving Sustainable Vegetation Indices Processing on Low-Cost Architectures. Sustainability 2022, 14, 2521. [Google Scholar] [CrossRef]
- Saddik, A.; Latif, R.; el Ouardi, A.; Elhoseny, M.; Khelifi, A. Computer development based embedded systems in precision agriculture: Tools and application. Acta Agric. Scand. Sect. B Soil Plant Sci. 2022, 72, 589–611. [Google Scholar] [CrossRef]
- Amine, S.; Latif, R.; El Ouardi, A. Low-Power FPGA Architecture Based Monitoring Applications in Precision Agriculture. J. Low Power Electron. Appl. 2021, 11, 39. [Google Scholar] [CrossRef]
- Abualkishik, A.Z.; Almajed, R.; Thompson, W. Multi-attribute decision-making method for prioritizing autonomous vehicles in real-time traffic management: Towards active sustainable transport. Int. J. Wirel. Ad Hoc Commun. 2021, 3, 91–101. [Google Scholar] [CrossRef]
- Devanna, R.P.; Milella, A.; Marani, R.; Garofalo, S.P.; Vivaldi, G.A.; Pascuzzi, S.; Galati, R.; Reina, G. In-Field Automatic Identification of Pomegranates Using a Farmer Robot. Sensors 2022, 22, 5821. [Google Scholar] [CrossRef]
- Skoczeń, M.; Ochman, M.; Spyra, K.; Nikodem, M.; Krata, D.; Panek, M.; Pawłowski, A. Obstacle Detection System for Agricultural Mobile Robot Application Using RGB-D Cameras. Sensors 2021, 21, 5292. [Google Scholar] [CrossRef]
- Kamandar, M.R.; Massah, J.; Jamzad, M. Design and evaluation of hedge trimmer robot. Comput. Electron. Agric. 2022, 199, 107065. [Google Scholar] [CrossRef]
- Zheng, W.; Guo, N.; Zhang, B.; Zhou, J.; Tian, G.; Xiong, Y. Human Grasp Mechanism Understanding, Human-Inspired Grasp Control and Robotic Grasping Planning for Agricultural Robots. Sensors 2022, 22, 5240. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Huo, Y.; Liu, Y.; Shi, Y.; He, Z.; Cui, Y. Design of a lightweight robotic arm for kiwifruit pollination. Comput. Electron. Agric. 2022, 198, 107114. [Google Scholar] [CrossRef]
- Cho, B.-H.; Kim, Y.-H.; Lee, K.-B.; Hong, Y.-K.; Kim, K.-C. Potential of Snapshot-Type Hyperspectral Imagery Using Support Vector Classifier for the Classification of Tomatoes Maturity. Sensors 2022, 22, 4378. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ni, J.; Li, Y.; Wen, J.; Chen, D. The Intelligent Path Planning System of Agricultural Robot via Reinforcement Learning. Sensors 2022, 22, 4316. [Google Scholar] [CrossRef]
- Gao, P.; Lee, H.; Jeon, C.-W.; Yun, C.; Kim, H.-J.; Wang, W.; Liang, G.; Chen, Y.; Zhang, Z.; Han, X. Improved Position Estimation Algorithm of Agricultural Mobile Robots Based on Multisensor Fusion and Autoencoder Neural Network. Sensors 2022, 22, 1522. [Google Scholar] [CrossRef]
- Yang, T.; Ye, J.; Zhou, S.; Xu, A.; Yin, J. 3D reconstruction method for tree seedlings based on point cloud self-registration. Comput. Electron. Agric. 2022, 200, 107210. [Google Scholar] [CrossRef]
- Duan, M.; Song, X.; Liu, X.; Cui, D.; Zhang, X. Mapping the soil types combining multi-temporal remote sensing data with texture features. Comput. Electron. Agric. 2022, 200, 107230. [Google Scholar] [CrossRef]
- Chghaf, M.; Rodriguez, S.; Ouardi, A.E. Camera, LiDAR and Multi-modal SLAM Systems for Autonomous Ground Vehicles: A Survey. J. Intell. Robot Syst. 2022, 105, 2. [Google Scholar] [CrossRef]
- Nguyen, D.D.; El Ouardi, A.; Rodriguez, S.; Bouaziz, S. FPGA implementation of HOOFR bucketing extractor-based real-time embedded SLAM applications. J. Real-Time Image Proc. 2021, 18, 525–538. [Google Scholar] [CrossRef]
- Ericson, S.K.; Åstrand, B.S. Analysis of two visual odometry systems for use in an agricultural field environment. Biosyst. Eng. 2018, 166, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Weiss, U.; Biber, P. Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robot. Auton. Syst. 2011, 59, 265–273. [Google Scholar] [CrossRef]
- Ali, I.; Durmush, A.; Suominen, O.; Yli-Hietanen, J.; Peltonen, S.; Atanas, J.; Finn, G. Forest dataset: A forest landscape for visual SLAM. Robot. Auton. Syst. 2020, 132, 103610. [Google Scholar] [CrossRef]
- Aguiar, A.S.; dos Santos, F.N.; Sobreira, H.; Cunha, J.B.; Sousa, A.J. Particle filter refinement based on clustering procedures for high-dimensional localization and mapping systems. Robot. Auton. Syst. 2021, 137, 103725. [Google Scholar] [CrossRef]
- Saddik, A.; Latif, R.; Elhoseny, M.; El Ouardi, A. Real-time evaluation of different indexes in precision agriculture using a heterogeneous embedded system. Sustain. Comput. Inform. Syst. 2021, 30, 100506. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
Device type | Laptop | Nvidia Jetson Nano |
Processor type | Intel CORE | ARMv8 |
CPU name | i7-10510U | ARM A57 |
Base frequency | 1.80 GHz | 1.43 GHz |
Number of cores | 4 (8 threads) | 4 |
GPU | GeForce MX250 | Tegra X1 |
GPU Architecture | Pascal | Maxwell |
Base frequency | 1519 MHz | 643 MHz |
Number of cores | 384 | 128 |
Memory | 16 GB DDR4{XE “CDDR” \t “: Double Data Rate ”} | 4 GB LPDDR4{ XE “LPDDR4” \t “: Low Power Double Data Rate ” } |
C/C++ (s) | CUDA (s) | Acceleration | |
---|---|---|---|
Laptop | |||
Pre-processing | 0.3878 | 0.0039 | 99.43 |
Indices processing | 0.0149 | 0.0015 | 9.93 |
Counting | 0.2021 | 0.0036 | 56.13 |
Jetson Nano | |||
Pre-processing | 0.8334 | 0.0064 | 130.21 |
Indices processing | 0.4321 | 0.0124 | 34.84 |
Counting | 0.6783 | 0.0175 | 38.76 |
GPU Activity (%) | Data Workload | |||
---|---|---|---|---|
GeForce MX250 | Jetson | GeForce MX250(GB/s) | Jetson (MB/s) | |
CUDA memcpy H_to_D | 34.78 | 30.35 | 2.4829 | 761.1025 |
CUDA memcpy D_to_H | 18.46 | 15.62 | 2.7274 | 803.36 |
Total | 53.24 | 45.97 | 5.21 | 1564 |
Nomenclature for Table | |||
---|---|---|---|
- | <0.2 | ||
+ | 0.2–0.4 | ||
++ | 0.4–0.6 | ||
+++ | <0.6 | ||
Zones | Value | ||
NDVI | NDWI | NDRE | |
1 | + | + | - |
2 | + | + | + |
3 | ++ | + | + |
4 | ++ | + | ++ |
5 | ++ | ++ | +++ |
6 | - | - | - |
7 | +++ | ++ | ++ |
8 | +++ | + | + |
9 | +++ | ++ | ++ |
10 | - | - | - |
11 | +++ | ++ | + |
12 | +++ | ++ | ++ |
13 | ++ | + | ++ |
14 | +++ | ++ | ++ |
15 | ++ | + | + |
16 | +++ | ++ | ++ |
17 | ++ | + | + |
18 | ++ | ++ | + |
19 | ++ | + | + |
20 | ++ | ++ | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saddik, A.; Latif, R.; Taher, F.; El Ouardi, A.; Elhoseny, M. Mapping Agricultural Soil in Greenhouse Using an Autonomous Low-Cost Robot and Precise Monitoring. Sustainability 2022, 14, 15539. https://doi.org/10.3390/su142315539
Saddik A, Latif R, Taher F, El Ouardi A, Elhoseny M. Mapping Agricultural Soil in Greenhouse Using an Autonomous Low-Cost Robot and Precise Monitoring. Sustainability. 2022; 14(23):15539. https://doi.org/10.3390/su142315539
Chicago/Turabian StyleSaddik, Amine, Rachid Latif, Fatma Taher, Abdelhafid El Ouardi, and Mohamed Elhoseny. 2022. "Mapping Agricultural Soil in Greenhouse Using an Autonomous Low-Cost Robot and Precise Monitoring" Sustainability 14, no. 23: 15539. https://doi.org/10.3390/su142315539
APA StyleSaddik, A., Latif, R., Taher, F., El Ouardi, A., & Elhoseny, M. (2022). Mapping Agricultural Soil in Greenhouse Using an Autonomous Low-Cost Robot and Precise Monitoring. Sustainability, 14(23), 15539. https://doi.org/10.3390/su142315539