Productive and Nutritional Characteristics of Native Grasses from the Floodplain Banks Ecosystem in the Colombian Orinoquia
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Site
2.2. Evaluated Species
2.3. Experimental Design
2.4. Statistical Analysis
3. Results
3.1. Forage Yield
3.2. Chemical Composition
3.3. Fiber Composition and Digestibility
3.4. Association between Nutritional Composition Variables
4. Discussion
4.1. Forage Yield and Composition
4.2. Correlations and Regression Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boval, M.; Dixon, R.M. The importance of grasslands for animal production and other functions: A review on management and methodological progress in the tropics. Animal 2012, 6, 748–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaurena, M.; Durante, M.; Devincenzi, T.; Savian, J.V.; Bendersky, D.; Moojen, F.G.; Pereira, M.; Soca, P.; Quadros, F.L.F.; Pizzio, R.; et al. Native Grasslands at the Core: A New Paradigm of Intensification for the Campos of Southern South America to Increase Economic and Environmental Sustainability. Front. Sustain. Food Syst. 2021, 5, 547834. [Google Scholar] [CrossRef]
- Mora-Fernández, C.; Peñuela-Recio, L.; Castro-Lima, F. Estado del conocimiento de los ecosistemas de las sabanas inundables en la Orinoquia Colombiana. Orinoquia 2015, 19, 253–271. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Guerra, C.; Eusse-González, D.; Arango, C. Distribución, abundancia y reproducción de las aves acuáticas de las sabanas inundables de Meta y Casanare (Colombia) y sitios prioritarios para la conservación. Biota Colomb. 2014, 15, 137–160. [Google Scholar]
- Mercado, O.A.; Batista, M.M.F.; Mora, C.P.; García, L.A.P.; Miranda, C.L.M.; Avilan, A.R.C.; Vallejo, S.E.V.; Garzón, C.N.B.; Luna, M.V.; Trjillo, F.; et al. Las sabanas inundables de la Orinoquia. In XIII Aplicación de Criterios Bioecológicos Para la Identidicación, Caracterización y Establecimiento de Límites Funcionales en Humedales de las Sabanas Inundables de la Orinoquía; Osorio-Peláez, C., Lasso, C.A., Trujillo, F., Eds.; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2015; pp. 1–432. [Google Scholar]
- Peñuela, L.; Fernández, A.P.; Castro, F.; Ocampo, A. Uso y Manejo de Forrajes Nativos en la Sabana Inundable de la Orinoquia; Convenio de Cooperación Interinstitucional; The Nature Conservancy, Fundación Horizonte Verde, Fundación Biodiversidad de España, Corporación Autónoma Regional de la Orinoquia; Universidad de los Llanos: Villavicencio, Colombia, 2011. [Google Scholar]
- Pérez, B.R.A.; Vargas, C.O.M. Características de la Sabana Nativa y su Potencial de Producción Bovina en la Llanura Inundable de Arauca, Boleín Técnico N° 25; Programa Regional de Investigación Pecuaria, Corpoica: Arauca, Colombia, 2001. [Google Scholar]
- Chicco, C.F.; Godoy de León, S. Deficiencias de minerales y condiciones asociadas en la ganadería de carne de las sabanas de Venezuela. In Proceedings of the Primer Curso Internacional Sobre Avances en la Nutrición de los Rumiantes, Lara, Venezuela, 26–30 September 2005. [Google Scholar]
- Peñuela, L.; Fernández, A. La ganadería ligada a procesos de conservación en la sabana inundable de la Orinoquia. Orinoquia 2010, 14, 5–17. [Google Scholar]
- Domínguez, T.G.; Ramírez, R.G.; Estrada, A.E.; Scott, L.M.; González, R.H.; Alvarado, M.d.S. Importancia nutrimental en plantas forrajeras del matorral espinoso tamaulipeco. Cienc. UANL 2012, 15, 77–93. [Google Scholar]
- Blanco, L.J.; Durante, M.; Ferrante, D.; Quiroga, R.E.; Demaria, M.R.; Di Bella, C.M. Red nacional de monitoreo de pastizales naturales de Argentina: Productividad forrajera de la vegetación extrapampeana. Rev. Investig. Agropec. 2019, 45, 89–108. [Google Scholar]
- Contreras, U. Elementos para una Ganadería Sostenible a Partir de las Normas de la Red de Agricultura Sostenible (RAS); Serie No 3; Grupo Colombiano Interinstitucional de Herramientas de Conservación Privada, Asociación Red Colombiana de Reservas Naturales de la Sociedad Civil, Fundación Natura, World Wildlife Fund, The Nature Conservancy, Parques Nacionales de Colombia: Bogotá, Colombia, 2014. [Google Scholar]
- Enriquez, J.F.; Esqueda, V.A.; Martínez, M.D. Rehabilitación de praderas degradadas en el trópico de México. Rev. Mex. Cienc. Pecu. 2021, 12, 243–260. [Google Scholar] [CrossRef]
- Evitayani, W.L.; Fariani, A.; Ichinohe, T.; Fujihara, T. Study on Nutritive Value of Tropical Forages in North Sumatra, Indonesia. Asian-Aust. J. Anim. Sci. 2004, 17, 1518–1523. [Google Scholar]
- Reiné, R.; Ascaso, J.; Barrantes, O. Nutritional quality of plant species in pyrenean hay Meadows of high diversity. Agronomy 2020, 10, 883. [Google Scholar] [CrossRef]
- Amiri, F.; Mohamed-Sharif, A.R. Comparison of nutritive values of grasses and legume species using forage quality index. Songklanakarin J. Sci. Technol. 2012, 34, 577–586. [Google Scholar]
- Avellaneda, C.J.; Cabezas, G.F.; Quintana, Z.Q.; Luna, M.R.; Montañez, V.O.; Espinoza, G.I.; Zambrano, M.S.; Romero, G.D.; Vanegas, R.J.; Pinargote, M.E. Comportamiento agronómico y composición química de tres variedades de Brachiaria en diferentes edades de cosecha. Cienc. Tecnol. 2008, 1, 87–94. [Google Scholar] [CrossRef]
- Reihardt, M.S.; Foote, A.P.; Lambert, B.D.; Muir, J.P. Effects of protein or energy supplementation on in situ disappearance of low- and high-quality Coastal Bermudagrass hay in goats. Texas J. Agric. Nat. Res. 2011, 24, 97–105. [Google Scholar]
- Ariza-Nieto, C.M.O.L.; Mojica, B.; Parra, D.; Afanador-Tellez, G. Use of LOCAL algorithm with near infrared spectroscopy in forage resources for grazing systems in Colombia. J. Near Infrared. Spectr. 2018, 26, 44–52. [Google Scholar] [CrossRef]
- Workman, J.; Weyer, L. Practical Guide to Interpretive near Infrared Spectroscopy; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Scheffer-Basso, S.M.; Gallo, M.M. Aspectos morfofisiológicos e bromatológicos de Paspalum plicatulum. Rev. Bras. Zootec. 2008, 37, 1758–1762. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, T.; Orskov, E.; Lamela, L.; Pedraza, R.; López, O. Valor nutritivo de los componentes forrajeros de una asociación d gramíneas mejoradas y Leucaena leucocephala. Pastos Forrajes 2008, 31, 271–281. [Google Scholar]
- Uzcátegui-Varela, J.P.; Chompre, K.; Castillo, D.; Rangel, S.; Briceño-Rangel, A.; Piña, A. Nutritional assessment of tropical pastures as a sustainability strategy in dual-purpose cattle ranching in the South of Lake Maracaibo, Venezuela. J. Saudi Soc. Agric. Sci. 2021, 21, 432–439. [Google Scholar] [CrossRef]
- Silveira, P.L.d.; Maire, V.; Schellberg, J.; Louault, F. Grass strategies and grassland community responses to environmental drivers: A review. Agron. Sustain. Dev. 2015, 35, 1297–1318. [Google Scholar] [CrossRef]
- Ramirez, R.G. Forrajes nativos. Una alternativa sustentable en la alimentación de rumiantes. Cienc. UANL 2009, 12, 4–5. [Google Scholar]
- Vélez, O.M. Estrategias tecnológicas para la intensificación de la productividad ganadera en condiciones de sabanas inundables en la Orinoquía colombiana. Trop. Subtrop. Agroecos. 2019, 22, 257–266. [Google Scholar]
- Holdridge, L.R. Ecología Basada en Zonas de Vida; IICA: San Jose, CA, USA, 1987; p. 216. [Google Scholar]
- NTC-5264; Norma Técnica Colombiana. Calidad del Suelo. Determinación del pH. Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia, 26 March 2008.
- NTC-5889; Norma Técnica Colombiana. Análisis de Suelos. Determinación del Nitrógeno Total. Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia, 30 November 2011.
- NTC-5403; Norma Técnica Colombiana. Calidad de Suelo. Determinación del Carbono Orgánico. Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia, 17 July 2013.
- NTC-5349; Norma Técnica Colombiana. Calidad de Suelo. Determinación de las Bases Cambiables: Método del Acetato Amonio 1M, PH 7.0. Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia, 29 September 2016.
- NTC-5526; Norma Técnica Colombiana. Calidad de Suelo. Determinación de Micronutrientes Disponibles: Cobre, Zinc, Hierro y Manganeso. Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia, 26 September 2007.
- NTC-5350; Norma Técnica Colombiana. Calidad del Suelo. Determinación de Fósforo Disponible. Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia, 15 June 2016.
- NTC-5404; Norma Técnica Colombiana. Calidad del Suelo. Determinación de Boro. Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia, 13 July 2011.
- NTC-5268; Norma Técnica Colombiana. Calidad de Suelo. Determinación de la Capacidad de Intercambio Catiónico. Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia, 29 January 2014.
- NTC-5263; Norma Técnica Colombiana. Calidad del Suelo. Determinación de la Acidez, Aluminio e Hidrogeno Intercambiables. Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia, 21 June 2017.
- Instituto Geográfico Agustín Codazzi. Métodos Analíticos del Laboratorio de Suelos, 6th ed.; Instituto Geográfico Agustín Codazzi: Bogotá, Colombia, 2006; p. 648. [Google Scholar]
- Universidad Nacional de Colombia, Orinoquia. Guía para el Usuario de los Servicios del Laboratorio de Suelos, Aguas y Foliares. Arauca, Colombia. 2021. Available online: https://bit.ly/2XaFvYJ (accessed on 14 September 2021).
- Cerdas, R. Programa de fertilización de forrajes. Desarrollo de un módulo práctico para técnicos y estudiantes de ganadería de Guanacaste, Costa Rica. InterSedes 2011, 12, 109–128. [Google Scholar]
- Littell, R.; Milliken, G.; Stroup, W.; Wolfinger, R.; Schabenberger, O. SAS for Mixed Models, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2007. [Google Scholar]
- InfoStat. InfoStat; versión 2020; Manual del Usuario; Universidad Nacional de Córdoba: Córdoba, Argentina, 2020. [Google Scholar]
- Leng, R.A. Evaluation of Tropical Feed Resources for Ruminant Livestock; Tropical Feeds and Feeding Systems; FAO: Rome, Italy, 1995; Available online: https://www.fao.org/ag/aga/agap/frg/econf95/pdf/evalu.pdf (accessed on 2 December 2021).
- Cuadrado, H.; Torregroza, L.; Garcés, J. Producción de Carne con Machos de Ceba en Pastoreo de Pasto Híbrido Mulato y Brachiaria decumbens en el Valle del Sinú. MVZ-Córdoba 2005, 10, 573–580. [Google Scholar]
- Cruz-Hernández, A.; Hernández-Garay, A.; Aranda-Ibañez, E.; Chay-Canul, A.; Márquez-Quiroz, C.; Rojas-Garcia, A.L.; Gómez-Vázquez, A. Nutritive value of Mulato grass under dierent grazing strategies. Esosist. Recur. Agropec. 2017, 4, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Aguirre, C.A.; Lemus-Flores, C.; Bugarín-Prado, J.O.; Alejo-Santiago, G.; Ramos-Quirarte, A.; Grageola-Núñez, O.; Bonilla-Cárdenas, J.A. Características agronómicas, composición bromatológica, digestibilidad y consumo animal en cuatro especies de pastos de los generos Brachiaria y Panicum. Trop. Subtrop. Agroecos. 2015, 18, 291–301. [Google Scholar]
- Argel, P.J.; Miles, J.W.; Guiot, J.D.; Lascano, C.E. Cultivar Mulato (Brachiaria Híbrido CIAT 36061): Gramínea de Alta Producción y Calidad Forrajera Para los Trópicos; Centro Internacional de Agricultura Tropical: Cali, Colombia, 2005. [Google Scholar]
- Canchila, E.R.; Soca, M.; Ojeda, F.; Machado, R. Evaluación de la composición bromatológica de 24 accesiones de Brachiaria spp. Pastos Forrajes 2009, 32, 1–9. [Google Scholar]
- Mutimura, M.; Ebong, C.; Rao, I.; Nsahlai, I. Effects of supplementation of Brachiaria brizantha cv. Piatá and Napier grass with Desmodium distortum on feed intake, digesta kinetics and milk production in crossbred dairy cows. Anim. Nutr. 2018, 4, 222–227. [Google Scholar] [CrossRef]
- Velasco, Z.M.E.; Hernández, G.A.; González, H.V.A.; Pérez, P.J.; Vaquera, H.H.; Galvis, S.A. Curva de crecimiento y acumulación estacional del pasto Ovillo (Dactylis glomerata L.). Técn. Pec. Méx. 2001, 39, 1–14. [Google Scholar]
- Lounglawan, P.; Lounglawan, W.; Suksombat, W. Effect of cutting interval and cutting height on yield and chemical composition of King Napier Grass (Pennisetum Purpureum × Pennnisetum Americanum). APCBEE Procedia 2014, 8, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Pérez, J.J.; Méndez-Martínez, Y.; Verdecia, D.M.; Luna-Murillo, R.A.; Hernández Montiel, L.G.; Herrera, R.S. Components of the yield and bromatological composition of three Brachiaria varieties in El Empalme area, Ecuador. Cuba J. Agric. Sci. 2018, 52, 35–445. [Google Scholar]
- Mlay, P.S.; Pereka, A.; Phiri, E.; Balthazary, S.; Igusti, J.; Hvelplund, T.; Weisbjerg, M.R.; Madsen, J. Feed value of selected tropical grasses, legumes and concentrates. Vet. Arh. 2006, 76, 53–63. [Google Scholar]
- Lee, M.A. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 2018, 131, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Salah, N.; Sauvant, D.; Archimède, H. Nutritional requirements of sheep, goats and cattle in warm climates: A meta-analysis. Animal 2014, 8, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, P.G.; Emerenciano, N.J.V.; Dos Santos, D.G.; Cortes, A.C.; De Oliveira, L.P.; Da Silva Santos, R. Production and quality of tropical grasses at different regrowth intervals in the Brazilian semiarid. Acta Sci. Anim. Sci. 2021, 43, e52842. [Google Scholar]
- Gupta, A.R.; Bandyopadhyay, S.; Sultana, F.; Swarup, D. Heavy metal poisoning and its impact on livestock health and production system. Indian J. Anim. Health 2021, 60, 1–23. [Google Scholar] [CrossRef]
- Muñoz-González, J.C.; Huerta-Bravo, M.; Lara, B.A.; Rangel, S.R.; De la Rosa, A.J.L. Production and nutritional quality of forages in conditions Humid Tropics of Mexico. Rev. Mex. Cienc. Agríc. Public Esp. 2016, 16, 3315–3327. [Google Scholar]
- White, P.J.; Brown, P.H. Plant nutrition for sustainable development and global health. Ann. Bot. 2010, 105, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- National Research Council (NRC). Nutrient Requirements of Beef Cattle, 7th ed.; National Academic Science: Washington, DC, USA, 2000. [Google Scholar]
- González-Ronquillo, M.; Aparicio, R.; Torres, R.; Domínguez, V.I.A. Producción de biomasa, composición química y producción de gas in vitro de la vegetación de una sabana estacional modulada. Zootec. Trop. 2009, 27, 407–417. [Google Scholar]
- Vazquez-Mendoza, P.; Castelán-Ortega, O.A.; Estrada-Flores, J.G.; García-Martínez, A.; Avilés-Nova, F. Nutritional blocks employed as supplement for sheep in the dry tropics of the highlands of central Mexico. Trop. Subtrop. Agroecos. 2012, 15, 87–96. [Google Scholar]
- Melo, C.D.; Maduro, D.C.S.A.M.; Wallon, S.; Borba, A.E.S.; Madruga, J.; Borges, P.A.V.; Ferreira, M.T.; Elias, R.B. Influence of climate variability and soil fertility on the forage quality and productivity in Azorean pastures. Agriculture 2022, 12, 358. [Google Scholar] [CrossRef]
- De Pinho, C.K.A.; Da Costa, S.E.; André, u.; Soares, E.P.; Guerra Da Silva, A.; Fonseca, C.R.R.; Barbosa, S.C.; Rodrigues, C.R. Nutritional characteristics of Brachiaria brizantha cultivars subjected to different intensities cutting. Am. J. Plant Sci. 2014, 5, 1961–1972. [Google Scholar]
- Ramos, L.; Apráez, J.; Cortes, K.; Apráez, J. Nutritional, antinutritional and phenological characterization of promising forage species for animal feeding in a cold tropical zone. Rev. Cienc. Agríc. 2021, 38, 86–96. [Google Scholar] [CrossRef]
- Linn, J.G.; Martin, N.P. Forage Quality Tests and Interpretation—AG-F0-2637. Minnesota Extension Service; University of Minnesota Agriculture: St. Paul, MN, USA, 1989; pp. 1–5. [Google Scholar]
- Indah, A.S.; Permana, I.G.; Despal, D. Determination dry matter digestibility of tropical forage using nutrient compisition. IOP Conf. Ser. Earth Environ. Sci. 2020, 484, 012113. [Google Scholar] [CrossRef]
- Cortiana, T.A.A.; Regiani, S.M.; Cardoso, J.G.; Carvalho, F.J.L.; Henz, É.L.; Pedro, J.P. Production and chemical composition of grasses and legumes cultivated in pure form, mixed or in consortium. Acta Sci. Anim. Sci. 2017, 235–241. [Google Scholar]
- Rao, I.; Peters, M.; Castro, A.; Schultze-Kraft, R.; White, D.; Fisher, M.; Miles, J.; Lascano, C.; Blummel, M.; Bungenstab, D.; et al. LivestockPlus-The sustainable intensification of forage-based agricultural systems to improve livelihoods and ecosystem services in the tropics. Trop. Grassl. 2015, 3, 59–82. [Google Scholar] [CrossRef]
- Silva, P.A.; Garay, R.S.; Gómez, I.A.S. Impact of Alnus acuminata Kunth on N2O fluxes and quality of Pennisetum clandestinum Hochst grass. Ex Chiov. Colomb. For. 2018, 21, 47–57. [Google Scholar] [CrossRef]
g/kg | meq/100 g | mg/kg | % | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | OC | TN | Ca | Mg | K | Al + H | CEC | Na | P | Cu | Fe | Zn | Mn | B | Lime | Sand | Clay |
5.03 ± 0.46 | 7.68 ± 2.0 | 0.66 ± 0.17 | 1.47 ± 0.56 | 0.95 ± 0.35 | 0.12 ± 0.06 | 0.78 ± 0.43 | 8.59 ± 2.40 | <0.13 | 3.86 ± 2.42 | 1.48 ± 0.44 | 217.3 ± 51.31 | 3.85 ± 1.12 | 26.28 ± 5.46 | 1.02 ± 0.35 | 32.97 ± 5.40 | 52.18 ± 9.63 | 14.61 ± 3.64 |
Species (Scientific Name) | Common Name | Growth Habit | Characteristic |
---|---|---|---|
Paspalum plicatulum (Michx.) Kuntze (1898) | Black grass | Bunch | Native |
Axonopus compresus (Sw.) P. Beauv (1912) | Gegei grass | Stoloniferous | Native |
Axonopus purpussi (Mez) Chase (1927) | Guaratara | Stoloniferous | Native |
Paspalum sp. (L.) L. (1762) | Native grass | Rhizomatous | Native |
Brachiaria hybrid cv Mulato I (control) | Mulato grass | Bunch | Introduced |
Species | Cutting Age (Days) | Height (cm) | GF (tons/ha) | DM (tons/ha) | DM (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SEM | Mean | SEM | Mean | SEM | Mean | SEM | ||
A. compresus | 30 | 32.0 f | 2.2 | 2.9 | 0.56 | 0.9 f | 150.7 | 30.0 bc | 0.8 |
A. purpussi | 18.9 h | 1.8 | 4.0 | 0.56 | 1.0 ef | 150.7 | 25.5 ef | 0.8 | |
Mulato (control) | 100.0 ab | 4.6 | 6.8 | 0.56 | 1.6 bc | 150.7 | 23.2 fg | 0.8 | |
Paspalum sp. | 14.0 i | 1.5 | 3.3 | 0.56 | 1.0 ef | 150.7 | 30.9 abc | 0.8 | |
P. plicatulum | 76.6 c | 2.3 | 5.7 | 0.56 | 1.1 def | 150.7 | 20.0 h | 0.8 | |
A. compresus | 40 | 32.0 f | 2.1 | 4.2 | 0.56 | 1.3 cde | 150.7 | 32.0 ab | 0.8 |
A. purpussi | 37.8 e | 1.8 | 6.2 | 0.56 | 1.5 bcd | 150.7 | 24.5 f | 0.8 | |
Mulato (control) | 104.4 a | 4.6 | 7.5 | 0.56 | 1.6 bc | 150.7 | 21.6 gh | 0.8 | |
Paspalum sp. | 26.0 g | 1.5 | 5.5 | 0.56 | 1.6 bcd | 150.7 | 28.1 cd | 0.8 | |
P. plicatulum | 80.4 c | 2.3 | 7.9 | 0.56 | 1.9 b | 150.7 | 23.6 fg | 0.8 | |
A. compresus | 50 | 33.6 ef | 2.2 | 4.4 | 0.56 | 1.5 bcd | 150.7 | 34.0 a | 0.8 |
A. purpussi | 44.2 d | 1.8 | 5.7 | 0.56 | 1.5 bcd | 150.7 | 27.1 de | 0.8 | |
Mulato (control) | 107.4 a | 4.6 | 7.9 | 0.56 | 2.5 a | 150.7 | 31.3 ab | 0.8 | |
Paspalum sp. | 31.6 f | 1.5 | 5.4 | 0.56 | 1.6 bc | 150.7 | 29.8 bc | 0.8 | |
P. plicatulum | 93.6 b | 2.3 | 8.5 | 0.56 | 2.4 a | 150.7 | 28.2 cd | 0.8 | |
Interaction (p-value) | <0.0001 | NS | 0.0126 | <0.0001 |
Species | Cutting Age (Days) | CP (%) | Ash (%) | Ca (%) | P (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SEM | Mean | SEM | Mean | SEM | Mean | SEM | ||
A. compresus | 30 | 5.1 fgh | 0.5 | 6.2 cd | 0.5 | 0.34 cde | 0.04 | 0.28 ab | 0.02 |
A. purpussi | 10.2 a | 0.5 | 5.7 d | 0.5 | 0.40 bcd | 0.04 | 0.25 bcd | 0.02 | |
Mulato (control) | 5.8 efgh | 0.5 | 6.8 bcd | 0.5 | 0.40 bcd | 0.04 | 0.25 abcd | 0.02 | |
Paspalum sp. | 9.8 ab | 0.5 | 6.6 bcd | 0.5 | 0.37 bcde | 0.04 | 0.22 bcde | 0.02 | |
P. plicatulum | 8.2 bc | 0.5 | 8.0 ab | 0.5 | 0.66 a | 0.04 | 0.26 abc | 0.02 | |
A. compresus | 40 | 6.0 edf | 0.5 | 5.6 d | 0.5 | 0.33 cde | 0.04 | 0.29 a | 0.02 |
A. purpussi | 6.6 def | 0.5 | 7.3 bc | 0.5 | 0.40 bcd | 0.04 | 0.25 abcd | 0.02 | |
Mulato (control) | 4.4 gh | 0.5 | 6.1 cd | 0.5 | 0.32 de | 0.04 | 0.26 ab | 0.02 | |
Paspalum sp. | 5.8 efg | 0.5 | 8.7 a | 0.5 | 0.44 bc | 0.04 | 0.21 de | 0.02 | |
P. plicatulum | 9.3 ab | 0.5 | 8.5 ab | 0.5 | 0.47 b | 0.04 | 0.20 e | 0.02 | |
A. compresus | 50 | 9.9 a | 0.5 | 3.2 e | 0.5 | 0.35 cde | 0.04 | 0.21 cde | 0.02 |
A. purpussi | 7.4 cd | 0.5 | 6.5 cd | 0.5 | 0.38 bcd | 0.04 | 0.27 ab | 0.02 | |
Mulato (control) | 6.0 def | 0.5 | 3.8 e | 0.5 | 0.14 f | 0.04 | 0.23 bcde | 0.02 | |
Paspalum sp. | 7.0 cde | 0.5 | 8.3 ab | 0.5 | 0.38 bcd | 0.04 | 0.26 abc | 0.02 | |
P. plicatulum | 4.3 h | 0.5 | 5.7 d | 0.5 | 0.25 ef | 0.04 | 0.22 bcde | 0.02 | |
Interaction (p-value) | <0.0001 | 0.0046 | <0.0001 | 0.0045 |
Species | Cutting Age (Days) | NDF (%) | ADF (%) | Lignin (%) | DMD (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SEM | Mean | SEM | Mean | SEM | Mean | SEM | ||
A. compresus | 30 | 65.8 def | 1.2 | 35.1 cd | 1.2 | 9.3 cdef | 0.4 | 52.5 defg | 0.5 |
A. purpussi | 63.1 fg | 1.2 | 36.7 c | 1.2 | 8.3 fg | 0.4 | 56.0 a | 0.5 | |
Mulato (control) | 64.9 ef | 1.2 | 30.7 e | 1.2 | 7.8 g | 0.4 | 54.4 bc | 0.5 | |
Paspalum sp. | 68.5 bcde | 1.2 | 39.3 abc | 1.2 | 8.9 cdefg | 0.4 | 55.0 abc | 0.5 | |
P. plicatulum | 63.2 fg | 1.2 | 34.9 cd | 1.2 | 8.0 g | 0.4 | 55.1 ab | 0.5 | |
A. compresus | 40 | 70.0 bc | 1.2 | 38.8 bc | 1.2 | 9.7 abcd | 0.4 | 52.1 efgh | 0.5 |
A. purpussi | 69.1 bcd | 1.2 | 35.9 c | 1.2 | 9.5 cdef | 0.4 | 53.5 cd | 0.5 | |
Mulato (control) | 67.9 cde | 1.2 | 32.4 de | 1.2 | 8.6 defg | 0.4 | 52.8 def | 0.5 | |
Paspalum sp. | 69.4 bcd | 1.2 | 36.6 c | 1.2 | 9.7 bcde | 0.4 | 52.6 defg | 0.5 | |
P. plicatulum | 64.4 efg | 1.2 | 36.2 c | 1.2 | 8.5 efg | 0.4 | 55.6 ab | 0.5 | |
A. compresus | 50 | 61.0 gg | 1.2 | 35.4 cd | 1.2 | 8.4 fg | 0.4 | 56.3 a | 0.5 |
A. purpussi | 71.1 abc | 1.2 | 38.7 bc | 1.2 | 9.3 cdef | 0.4 | 53.2 cde | 0.5 | |
Mulato (control) | 71.1 abc | 1.2 | 40.3 ab | 1.2 | 10.4 abc | 0.4 | 51.6 gh | 0.5 | |
Paspalum sp. | 72.3 ab | 1.2 | 42.6 a | 1.2 | 10.9 a | 0.4 | 51.7 fgh | 0.5 | |
P. plicatulum | 73.9 a | 1.2 | 38.6 bc | 1.2 | 10.8 ab | 0.4 | 50.8 h | 0.5 | |
Interaction (p-value) | 0.0001 | 0.0039 | 0.0027 | <0.0001 |
Age | DM | CP | NDF | ADF | Lignin | DMD | Ash | Ca | P | Height | |
---|---|---|---|---|---|---|---|---|---|---|---|
Age | 0.3590 | 0.9535 | 0.3088 | 0.5646 | 0.1931 | 0.8428 | 0.5809 | 0.5062 | 0.6920 | 0.5000 | |
DM | 0.29 | 0.4628 | 0.5012 | 0.0461 | 0.1020 | 0.6262 | 0.0996 | 0.1152 | 0.9565 | 0.0100 | |
CP | 0.02 | 0.23 | 0.1205 | 0.1335 | 0.2402 | 0.0009 | 0.6482 | 0.2816 | 0.1373 | 0.2200 | |
NDF | 0.32 | 0.20 | −0.47 | 0.1202 | 0.0012 | 0.0094 | 0.5937 | 0.4266 | 0.2073 | 0.7000 | |
ADF | 0.19 | 0.60 | 0.46 | 0.47 | 0.0764 | 0.7986 | 0.7106 | 0.8278 | 0.9132 | 0.0100 | |
Lignin | 0.40 | 0.49 | −0.37 | 0.82 | 0.53 | 0.0059 | 0.8881 | 0.3195 | 0.4606 | 0.2000 | |
DMD | −0.06 | −0.15 | 0.83 | −0.78 | −0.08 | −0.74 | 0.963 | 0.1485 | 0.0284 | 0.9100 | |
Ash | −0.18 | −0.50 | −0.15 | 0.16 | −0.11 | 0.05 | −0.01 | 0.0023 | 0.1899 | 0.5600 | |
Ca | −0.21 | −0.48 | 0.34 | −0.25 | −0.07 | −0.31 | 0.44 | 0.79 | 0.1021 | 0.7900 | |
P | −0.13 | −0.02 | −0.45 | 0.39 | −0.04 | 0.24 | −0.63 | −0.41 | −0.49 | 0.8000 | |
Height | 0.22 | −0.71 | −0.38 | −0.12 | −0.71 | −0.40 | 0.04 | 0.19 | 0.09 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salamanca-Carreño, A.; Vélez-Terranova, M.; Vargas-Corzo, O.M.; Parés-Casanova, P.M.; Bentez-Molano, J. Productive and Nutritional Characteristics of Native Grasses from the Floodplain Banks Ecosystem in the Colombian Orinoquia. Sustainability 2022, 14, 15151. https://doi.org/10.3390/su142215151
Salamanca-Carreño A, Vélez-Terranova M, Vargas-Corzo OM, Parés-Casanova PM, Bentez-Molano J. Productive and Nutritional Characteristics of Native Grasses from the Floodplain Banks Ecosystem in the Colombian Orinoquia. Sustainability. 2022; 14(22):15151. https://doi.org/10.3390/su142215151
Chicago/Turabian StyleSalamanca-Carreño, Arcesio, Mauricio Vélez-Terranova, Oscar M. Vargas-Corzo, Pere M. Parés-Casanova, and Jannet Bentez-Molano. 2022. "Productive and Nutritional Characteristics of Native Grasses from the Floodplain Banks Ecosystem in the Colombian Orinoquia" Sustainability 14, no. 22: 15151. https://doi.org/10.3390/su142215151
APA StyleSalamanca-Carreño, A., Vélez-Terranova, M., Vargas-Corzo, O. M., Parés-Casanova, P. M., & Bentez-Molano, J. (2022). Productive and Nutritional Characteristics of Native Grasses from the Floodplain Banks Ecosystem in the Colombian Orinoquia. Sustainability, 14(22), 15151. https://doi.org/10.3390/su142215151