Spatiotemporal Dynamics of Aboveground Biomass and Its Influencing Factors in Xinjiang’s Desert Grasslands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Inversion of Grassland Biomass
2.3. Data Sources
2.3.1. Field Sampling Data
2.3.2. Remote Sensing and Climate Dataset
2.4. Data Analysis
2.4.1. Model Establishment and Verification
2.4.2. Grassland Change Rate
2.4.3. Effects of Climatic Factors on Aboveground Biomass
2.4.4. Mann–Kendall Mutation Test
3. Results
3.1. Model Development and Validation of Aboveground Biomass Estimation in Desert Grasslands
3.2. Characteristics of NDVI Changes in Desert Grasslands in Xinjiang
3.3. Spatiotemporal Dynamics of AGB in Xinjiang’s Desert Grasslands
3.4. Relationship between AGB and Climatic Factors
4. Discussion
4.1. Comparison with Previous Findings
4.2. Impact of Climatic Factors on Biomass
4.3. Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, G.X.; Lu, Q.; Meng, Z.Y.; Li, Z.; Chen, H.X.; Kong, J.; Ji, Z.X.; Qin, A.N. Spatial-temporal dynamics of grassland NDVI and its response to climate change in northern China from 1982 to 2015. Res. Soil Water Conserv. 2021, 28, 101–108+117. [Google Scholar] [CrossRef]
- Zhan, F.; Zhao, T.Q.; Qiao, J.; Zhao, M.L.; Zhang, X.Y.; Wu, J.X. Effects of stubble height on productivity and sustainable utilization in the Stipa grandis steppe. Acta Agrestia Sin. 2021, 29, 1491–1498. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, X.J.; Wang, W.Q.; Wang, C.J.; Lu, W.H.; Sun, S.Z.; Gao, J. Estimation of grassland aboveground biomass using Landsat 8 OLI satellite image in the northern Hillside of Tianshan mountain. Remote Sens. Technol. Appl. 2017, 32, 1012–1021. [Google Scholar] [CrossRef]
- Scurlock, J.M.O.; Hall, D.O. The global carbon sink: A grassland perspective. Glob. Chang. Biol. 1998, 4, 229–233. [Google Scholar] [CrossRef] [Green Version]
- Mao, P.S. The present situation and control countermeasures of grassland crown environment in China. Sci. Soc. 2022, 3, 37–40. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=KXSY200203007 (accessed on 19 September 2022).
- Xie, G.D.; Zhang, Y.L.; Lu, C.X.; Zheng, D.; Cheng, C.K. Ecosystem service value of natural grassland in China. J. Nat. Resour. 2001, 1, 47–53. [Google Scholar] [CrossRef]
- Zhao, T.Q.; Ou, Z.Y.; Jia, L.Q.; Zheng, H. Ecosystem services and their valuation of China grassland. Acta Ecol. Sin. 2004, 6, 1101–1110. [Google Scholar] [CrossRef]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Li, C.C. Valuation of ecological assets on the Tibetan Plateau. J. Nat. Resour. 2003, 2, 189–196. [Google Scholar] [CrossRef]
- Huang, J.X.; Wu, J.; Li, C.B.; Qin, G.X.; Qian, J.B.; Li, H.H. Remote sensing retrieval of grassland above-ground biomass in Tianzhu county based on Sentinel-2 and Landsat 8 data. Acta Agrestia Sin. 2021, 29, 2023–2030. [Google Scholar] [CrossRef]
- Jiao, C.C.; Yu, G.R.; Chen, Z.; He, Y.P. A dataset of grassland aboveground biomass in the northern temperate region and the Tibetan Plateau of China based on field investigation and remote sensing inversion (1982–2015). China Sci. Data 2019, 4, 35–49. [Google Scholar] [CrossRef]
- Liu, H.X.; Dong, Y.Q.; Cui, Y.X.; Liu, X.H.; He, P.X.; Sun, Q.; Sun, Z.J. Environmental factors influencing soil organic carbon and its characteristics in desert grassland in Altay, Xinjiang. Acta Pratac. Sin. 2021, 30, 41–52. [Google Scholar] [CrossRef]
- Zhang, R.P.; Guo, J.; Zhang, Y.L. Spatial distribution pattern of NPP of Xinjiang grassland and its response to climatic changes. Acta Ecol. Sin. 2020, 40, 5318–5326. [Google Scholar] [CrossRef]
- Kawamura, T.; Akiyama, T.; Yokota, H.; Tsutsumi, M.; Yasuda, T.; Watanabe, O.; Wang, G.; Wang, S. Monitoring of forage conditions with MODIS imagery in the Xilingol steppe, Inner Mongolia. Int. J. Remote Sens. 2005, 26, 1423–1436. [Google Scholar] [CrossRef]
- Zhao, W.Z.; Liu, H. Recent advances in desert vegetation response to groundwater table changes. Acta Ecol. Sin. 2006, 26, 2703–2708. [Google Scholar] [CrossRef]
- Zhao, W.Z.; Chang, X.L.; Li, Q.X.; He, Z.B. Relationship between structural component biomass of reed population and ground water depth in desert oasis. Acta Ecol. Sin. 2003, 26, 1138–1146. [Google Scholar] [CrossRef]
- Zhang, Q.; Cao, X.Y.; Wei, G.A.; Huang, R.H. Observation and study of land surface parameters over Gobi in typical arid region. Adv. Atmos. Sci. 2002, 19, 121–135. [Google Scholar] [CrossRef]
- Yang, X.H.; Yang, X.L. Aridity characteristics in East Gansu’s loess plateau area based on Z index analysis. Agric. Res. Arid. Areas 2010, 28, 248–253. [Google Scholar]
- Evans, R.D.; Koyama, A.; Sonderegger, D.L.; Newingham, B.A.; Fenstermaker, L.F.; Harlow, B.; Jin, V.L.; Ogle, V.L.; Smith, S.D.; Nowak, R.S. Greater ecosystem carbon in the Mojave desert after ten years exposure to elevated CO2. Nat. Clim. Chang. 2014, 4, 394–397. [Google Scholar] [CrossRef]
- Xin, X.P.; Xu, D.W.; He, X.L.; Li, Z.W.; Ding, L.; Chen, B.B.; Mao, P.P. Progress in remote sensing of the grassland carbon cycle. China Agric. Inform. 2018, 30, 3–18. [Google Scholar] [CrossRef]
- Barrachina, M.; Cristobal, J.; Tulla, A.F. Estimating above-ground biomass on mountain meadows and pastures through remote sensing. Int. J. Appl. Earth Obs. 2015, 38, 184–192. [Google Scholar] [CrossRef]
- Pang, H.Y.; Zhang, A.W.; Kang, X.Y.; He, N.P.; Dong, G. Estimation of the grassland aboveground biomass of the Inner Mongolia Plateau using the simulated spectra of Sentinel-2 images. Remote Sens. 2020, 12, 4155. [Google Scholar] [CrossRef]
- Anwar, M.M.T.; Yang, Y.H.; Guo, Z.D.; Fang, J.Y. Grassland aboveground biomass in Xinjiang. Acta Sci. Nat. Univ. Pekin. 2006, 4, 521–526. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; He, J.S.; Xiao, Y. Spatial distribution of grassland biomass in China. Chin. J. Plant Ecol. 2004, 4, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Prince, S.D.; Tucker, C.J. Satellite remote sensing of rangelands in Botswana II. NOAA AVHRR and herbaceous vegetation. Int. J. Remote Sens. 1986, 7, 1555–1570. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Epstein, H.E.; Lauenroth, W.K.; Burke, I. ANPP estimates from NDVI for the central grassland region of the United States. Ecology 1997, 78, 953–958. [Google Scholar] [CrossRef]
- Moreau, S.; Toan, T.L. Biomass quantification of Andean wetland forages using ERS satellite SAR data for optimizing livestock management. Remote Sens. Environ. 2003, 84, 477–492. [Google Scholar] [CrossRef]
- Xun, Q.L.; Dong, Y.Q.; An, S.Z.; Yan, K. Monitoring of grassland herbage accumulation by remote sensing using MODIS09GA data in Xinjiang. Acta Pratac. Sin. 2018, 27, 447–492. [Google Scholar] [CrossRef]
- Ge, J.; Hou, M.J.; Liang, T.G.; Feng, Q.S.; Meng, X.Y.; Liu, J.; Bao, X.Y.; Gao, H.Y. Spatiotemporal dynamics of grassland aboveground biomass and its driving factors in North China over the past 20 years. Sci. Total Environ. 2022, 826, 154226. [Google Scholar] [CrossRef]
- Ding, L.; Li, Z.W.; Shen, B.B.; Wang, X.; Xu, D.W.; Yan, R.R.; Yan, Y.C.; Xin, X.P.; Xiao, J.F.; Li, M.; et al. Spatial patterns and driving factors of aboveground and belowground biomass over the eastern Eurasian steppe. Sci. Total Environ. 2022, 803, 149700. [Google Scholar] [CrossRef]
- Dai, Y.T.; Yan, Z.J.; Wu, H.X.; Jie, X.H.; Hou, X.X.; Gao, L. Diurnal variation of soil respirations of vegetations and the affecting factors in HoBq sand. Chin. J. Grassland. 2018, 40, 102–108. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Fan, J.W.; Cao, W.; Zhang, H.Y. Spatial and temporal dynamics of grassland yield and its response to precipitation in the Three River Headwater Region from 2006 to 2013. Acta Pratac. Sin. 2017, 26, 10–19. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhou, G.H. Responses of temporal dynamics of aboveground net primary productivity of Leymus chinensis community to precipitation fluctuation in Inner Mongolia. Acta Ecol. Sin. 2004, 26, 1140–1145. [Google Scholar] [CrossRef]
- Kato, T.; Tang, Y.; Gu, S.; Hirota, M.; Du, M.; Li, Y.; Zhao, X. Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Glob. Chang. Biol. 2010, 12, 1285–1298. [Google Scholar] [CrossRef]
- Xu, C.F.; Liu, C.A.; Liao, G.X.; Zhang, Y.; Chen, P.F.; Chou, L.S.; Xu, D.Y. A biomass estimation by regression method for herbaceous plant Spartina alterniflora in coastal wetlands. J. Appl. Oceanogr. 2022, 41, 149–155. [Google Scholar] [CrossRef]
- Jin, Y.X.; Yang, X.C.; Qiu, J.J.; Li, J.Y.; Gao, T.; Wu, Q.; Zhao, F.; Ma, H.L.; Yu, H.D.; Xu, B. Remote Sensing-Based Biomass Estimation and Its Spatio-Temporal Variations in Temperate Grassland, Northern China. Remote Sens. 2014, 6, 1496–1513. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.W.; Zhong, H.P.; Harris, W.; Yu, G.R.; Wang, S.Q.; Hu, Z.M.; Yue, Y.Z. Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass. Clim. Chang. 2008, 86, 375–396. [Google Scholar] [CrossRef]
- Zhao, D.X.; Wang, J.; Zhao, X.Y.; Triantafilis, J. Clay content mapping and uncertainty estimation using weighted model averaging. Catena 2022, 209, 105791. [Google Scholar] [CrossRef]
- Zhao, D.X.; Li, N.; Zare, E.; Wang, J.; Triantafilis, J. Mapping cation exchange capacity using a quasi-3d joint inversion of EM38 and EM31 data. Soil Till. Res. 2020, 200, 104618. [Google Scholar] [CrossRef]
- Lin, L.I.-K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- Zhao, D.X.; Zhao, X.Y.; Khongnawang, T.; Arshad, M.; Triantafilis, J. A Vis-NIR spectral library to predict clay in Australian cotton growing soil. Soil Sci. Soc. Am. J. 2018, 82, 1347–1357. [Google Scholar] [CrossRef]
- Rossel, R.V.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Demattê, J.A.M.; Shepherd, K.D.; Shi, Z. A global spectral library to characterize the world’s soil. Earth-Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef] [Green Version]
- Rossel, R.V.; McGlynn, R.N.; McBratney, A.B. Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance spectroscopy. Geoderma 2006, 137, 70–82. [Google Scholar] [CrossRef]
- Yang, S.X.; Zhang, W.J.; Feng, Q.S.; Meng, B.P.; Gao, J.L.; Liang, T.G. Monitoring of grassland herbage accumulation by remote sensing using MODIS daily surface reflectance data in the Qingnan Region. Acta Pratac. Sin. 2016, 25, 14–26. [Google Scholar] [CrossRef]
- Fang, J.Y.; Liu, G.H.; Xu, S.L. Carbon Storage in Terrestrial Ecosystem of China; China Environmental Science Press: Beijing, China, 1996. [Google Scholar]
- Ni, J. Forage yield-based carbon storage in grasslands of China. Climatic Chang. 2004, 67, 237–246. [Google Scholar] [CrossRef]
- Hu, F.L.; Yan, Y.; Yu, D.D.; Lu, X.Q.; Liu, L.; Liu, Z.M. Above-and below-ground biomass carbon allocation pattern in temperate desert steppe of Inner Mongolia. J. Ecol. Rural Environ. 2020, 36, 220–226. [Google Scholar] [CrossRef]
- Ma, W.H.; Yang, Y.H.; He, J.S.; Zeng, H.; Fang, J.Y. Biomass of Temperate Grassland and Its Relationship with Environmental Factors in Inner Mongolia. Sci. Sin. (Vitae) 2008, 1, 84–92. [Google Scholar] [CrossRef]
- Wang, X.M.; Dong, J.J.; Baoyin, T.; Bao, Y.H. Estimation and climate factor contribution of aboveground biomass in Inner Mongolia’s typical/desert steppes. Sustainability 2019, 11, 6559. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, Q.; He, J.M.; Sun, B. Estimation and analysis of grass biomass in desert by remote sensing. Acta Ecol. Sin. 2007, 6, 2294–2301. [Google Scholar] [CrossRef]
- Ma, A.N.; Yu, G.R.; He, N.P.; Wang, Q.F.; Peng, S.L. Above- and below-ground biomass relationships in China’s grassland vegetation. Quat. Sci. 2014, 34, 769–776. [Google Scholar] [CrossRef]
- Weltzin, J.F.; Loik, M.E.; Schwinning, S.; Williams, D.G.; Fay, P.A.; Haddad, B.M.; Harte, J.; Huxman, T.E.; Knapp, A.K.; Lin, G.; et al. Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 2003, 53, 941–952. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Ren, H.Y.; Zhang, Z.Y.; Zhang, W.; Zhang, Z.X.; Basang, C.; Wang, Y.B.; Wen, Z.M. Temporal and spatial dynamic pattern of grassland coverage and its influencing factors in China. Res. Soil Water Conserv. 2022, 29, 221–230. [Google Scholar] [CrossRef]
- Hsu, J.S.; Powell, J.; Adler, P.B. Sensitivity of mean annual primary production to precipitation. Glob. Chang. Biol. 2012, 18, 2246–2255. [Google Scholar] [CrossRef]
- Guo, Q.; Hu, Z.M.; Li, S.G.; Li, X.R.; Sun, X.M.; Yu, G.R. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: Effects of mean annual precipitation and its seasonal distribution. Glob. Chang. Biol. 2012, 18, 3624–3631. [Google Scholar] [CrossRef]
- Bai, Y.F.; Wu, J.G.; Xing, Q.; Pan, Q.M.; Huang, J.H.; Yang, D.L.; Han, X.G. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 2008, 89, 2140–2153. [Google Scholar] [CrossRef]
- Yang, Y.H.; Fang, J.Y.; Pan, Y.D.; Ji, C.J. Aboveground biomass in Tibetan grasslands. J. Arid Environ. 2009, 73, 91–95. [Google Scholar] [CrossRef]
- Golodets, C.; Sternberg, M.; Kigel, J.; Boeken, B.; Henkin, Z.; Seligman, N.G.; Ungar, E.D. From desert to Mediterranean rangelands: Will increasing drought and inter-annual rainfall variability affect herbaceous annual primary productivity? Clim. Chang. 2013, 119, 785–798. [Google Scholar] [CrossRef]
- Irisarri, J.G.N.; Oesterheld, M.; Paruelo, J.M.; Texeira, M.A. Patterns and controls of above-ground net primary production in meadows of Patagonia. A remote sensing approach. J. Veg. Sci. 2012, 23, 114–126. [Google Scholar] [CrossRef]
- Ni, J. Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecol. 2004, 174, 217–234. [Google Scholar] [CrossRef]
- Chen, C.; Jing, C.Q.; Xing, W.X.; Deng, X.J.; Fu, H.Y.; Guo, W.Z. Desert grassland dynamics in the last 20 years and its response to climate change in Xinjiang. Acta Pratac. Sin. 2021, 30, 1–14. [Google Scholar] [CrossRef]
- Yang, J.; Guo, N.; Huang, L.N.; Jia, J.H. Ananlyses on MODIS-NDVI Index saturation in Northwest China. Plateau Meteorol. 2008, 4, 896–903. [Google Scholar]
Data | Year | Spatial Resolution | The Data Source |
---|---|---|---|
MODIS-NDVI | 2000–2019 | 250 m | http://ladsweb.modaps.eosdis.nasa.gov/ (8 December 2021) |
MODIS-EVI | 2019 | 250 m | http://ladsweb.modaps.eosdis.nasa.gov/ (8 December 2021) |
SPOT-NDVI | 2019 | 1 km | https://www.resdc.cn/ (3 July 2021) |
NOAA-CDR-NDVI | 2019 | 5 km | http://www.geodata.cn/ (3 July 2021) |
Grassland data | 1995 | / | http://www.geodata.cn/ (8 September 2021) |
Land use data | 2018 | 1 km | http://www.resdc.cn/ (20 September 2021) |
Temperature Precipitation | 2000–2019 | 1 km | http://data.tpdc.ac.cn/zh-hans/ (8 June 2021) |
2000–2019 | 1 km | http://data.tpdc.ac.cn/zh-hans/ (8 June 2021) |
Vegetation Index | Model | Formula | R2 | RMSE (g·m−2) | NSE | LCCC | RPD |
---|---|---|---|---|---|---|---|
MODIS-EVI | Linear | y = 415.96x + 16.43 | 0.54 | 30.42 | 0.35 | 0.62 | 1.23 |
Logarithmic | y = 47.53ln(x) + 173.34 | 0.41 | 28.98 | 0.41 | 0.58 | 1.29 | |
Power | y = 225.48x0.61 | 0.50 | 28.26 | 0.44 | 0.56 | 1.33 | |
Exponential | y = 30.78e5.23x | 0.54 | 26.60 | 0.50 | 0.69 | 1.41 | |
MODIS-NDVI | Linear | y = 424.21x + 9.50 | 0.62 | 30.00 | 0.37 | 0.66 | 1.25 |
Logarithmic | y = 66.99ln(x) + 186.97 | 0.50 | 26.64 | 0.50 | 0.66 | 1.41 | |
Power | y = 306.68x0.93 | 0.61 | 25.01 | 0.56 | 0.67 | 1.50 | |
Exponential | y = 20.95e5.66x | 0.68 | 21.73 | 0.67 | 0.78 | 1.72 | |
SPOT-NDVI | Linear | y = 410.24x + 6.37 | 0.52 | 26.22 | 0.52 | 0.67 | 1.43 |
Logarithmic | y = 61.23ln(x) + 189.45 | 0.46 | 27.63 | 0.46 | 0.63 | 1.36 | |
Power | y = 321.07x0.85 | 0.51 | 27.03 | 0.49 | 0.63 | 1.39 | |
Exponential | y = 25.70e5.52x | 0.48 | 27.76 | 0.46 | 0.66 | 1.35 | |
NOAA CDR NDVI | Linear | y = 334.02x + 22.19 | 0.41 | 29.09 | 0.40 | 0.57 | 1.29 |
Logarithmic | y = 26.63ln(x) + 125.49 | 0.22 | 33.20 | 0.22 | 0.36 | 1.13 | |
Power | y = 124.34x0.35 | 0.31 | 33.46 | 0.21 | 0.31 | 1.12 | |
Exponential | y = 32.56e4.32x | 0.41 | 29.62 | 0.38 | 0.55 | 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Jing, C.; Dong, P.; Qin, B.; Cheng, Y. Spatiotemporal Dynamics of Aboveground Biomass and Its Influencing Factors in Xinjiang’s Desert Grasslands. Sustainability 2022, 14, 14884. https://doi.org/10.3390/su142214884
Wang G, Jing C, Dong P, Qin B, Cheng Y. Spatiotemporal Dynamics of Aboveground Biomass and Its Influencing Factors in Xinjiang’s Desert Grasslands. Sustainability. 2022; 14(22):14884. https://doi.org/10.3390/su142214884
Chicago/Turabian StyleWang, Gongxin, Changqing Jing, Ping Dong, Baoya Qin, and Yang Cheng. 2022. "Spatiotemporal Dynamics of Aboveground Biomass and Its Influencing Factors in Xinjiang’s Desert Grasslands" Sustainability 14, no. 22: 14884. https://doi.org/10.3390/su142214884
APA StyleWang, G., Jing, C., Dong, P., Qin, B., & Cheng, Y. (2022). Spatiotemporal Dynamics of Aboveground Biomass and Its Influencing Factors in Xinjiang’s Desert Grasslands. Sustainability, 14(22), 14884. https://doi.org/10.3390/su142214884