Environmentally Friendly Technologies for Wastewater Treatment in Food Processing Plants: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Annual Scientific Production: Classification by Subject Area and Document Type
3.2. Main Authors
3.3. Main Countries
3.4. Main Institutions
3.5. Main Journals
3.6. Main Documents and Keywords
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Water Crisis. Available online: https://water.org/our-impact/water-crisis/ (accessed on 14 September 2022).
- UNICEF Over 300,000 Children under Five Died from Diarrhoeal Diseases Linked to Limited Access to Safe Water, Sanitation and Hygiene in 2015—UNICEF. Available online: https://www.unicef.org/turkiye/en/node/2296 (accessed on 14 September 2022).
- The Organisation for Economic Co-operation and Development. Water: The Environmental Outlook to 2050. Available online: https://www.oecd.org/env/resources/49006778.pdf (accessed on 14 September 2022).
- Piesse, M. Global Water Supply and Demand Trends Point Towards Rising Water Insecurity. Available online: https://apo.org.au/sites/default/files/resource-files/2020-02/apo-nid276976.pdf (accessed on 14 September 2022).
- Barbera, M.; Gurnari, G. Wastewater Treatment and Reuse in the Food Industry, 1st ed.; Springer: Cham, Switzerland, 2018; ISBN 9783319684413. [Google Scholar]
- Asgharnejad, H.; Khorshidi Nazloo, E.; Madani Larijani, M.; Hajinajaf, N.; Rashidi, H. Comprehensive Review of Water Management and Wastewater Treatment in Food Processing Industries in the Framework of Water-Food-Environment Nexus. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4779–4815. [Google Scholar] [CrossRef]
- Dutta, D.; Arya, S.; Kumar, S. Industrial Wastewater Treatment: Current Trends, Bottlenecks, and Best Practices. Chemosphere 2021, 285, 131245. [Google Scholar] [CrossRef] [PubMed]
- Noukeu, N.A.; Gouado, I.; Priso, R.J.; Ndongo, D.; Taffouo, V.D.; Dibong, S.D.; Ekodeck, G.E. Characterization of Effluent from Food Processing Industries and Stillage Treatment Trial with Eichhornia crassipes (Mart.) and Panicum maximum (Jacq.). Water Resour. Ind. 2016, 16, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Croates, D.; Connor, R. Nature-Based Solutions and Water, The United Nations World Water Development Report 2018. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000261605 (accessed on 24 October 2020).
- Nemati-Amirkolaii, K.; Romdhana, H.; Lameloise, M.-L. Pinch Methods for Efficient Use of Water in Food Industry: A Survey Review. Sustainability 2019, 11, 4492. [Google Scholar] [CrossRef] [Green Version]
- Klemeš, J.J.; Varbanov, P.S.; Lam, H.L. Water Footprint, Water Recycling and Food-Industry Supply Chains. In Handbook of Waste Management and Co-Product Recovery in Food Processing; Waldron, K., Ed.; Woodhead Publishing Limited: Sawston, UK, 2009; Volume 2, pp. 134–168. ISBN 9781845697051. [Google Scholar]
- Balla, W.H.; Rabah, A.A.; Abdallah, B.K. Pinch Analysis of Sugarcane Refinery Water Integration. Sugar Tech 2018, 20, 122–134. [Google Scholar] [CrossRef]
- Klemes, J.J.; Lam, H.; Foo, D. Water Recycling and Recovery in Food and Drink Processing. In Total Food-Sustainability of the Aagri-Food Chain; Waldron, K.W., Moates, G.K., Faulds, C.B., Eds.; RCS Publishing: Milan, Italy, 2010; ISBN 9781847557506/9781849730785. [Google Scholar]
- Majozi, T.; Foo, D.C.Y. Water Minimization in the Soft Drinks Industry. In Handbook of Water and Energy Management in Food Processing; Klemeš, J., Smith, R., Kim, J.-K., Eds.; Woodhead Publishing Limited: Sawston, UK, 2008; pp. 904–928. [Google Scholar]
- Thevendiraraj, S.; Klemeš, J.; Paz, D.; Aso, G.; Cardenas, G.J. Water and Wastewater Minimisation Study of a Citrus Plant. Resour. Conserv. Recycl. 2003, 37, 227–250. [Google Scholar] [CrossRef]
- Tokos, H.; Novak Pintarič, Z. Synthesis of Batch Water Network for a Brewery Plant. J. Clean. Prod. 2009, 17, 1465–1479. [Google Scholar] [CrossRef]
- Bavar, M.; Sarrafzadeh, M.-H.; Asgharnejad, H.; Norouzi-Firouz, H. Water Management Methods in Food Industry: Corn Refinery as a Case Study. J. Food Eng. 2018, 238, 78–84. [Google Scholar] [CrossRef]
- Nayyar, D.; Nawaz, T.; Noore, S.A.; Singh, P. Pollution Control Technologies. In Pollution Control Technologies. Current Status and Future Prospects; Singh, S.P., Rathinam, P., Gupta, T.A., Agarwal, K., Eds.; Springer: Singapore, 2021; pp. 177–208. ISBN 9789811608575. [Google Scholar]
- Hood, W.W.; Wilson, C.S. The Literature of Bibliometrics, Scientometrics, and Informetrics. Scientometrics 2001, 52, 291–314. [Google Scholar] [CrossRef]
- Mao, G.; Hu, H.; Liu, X.; Crittenden, J.; Huang, N. A Bibliometric Analysis of Industrial Wastewater Treatments from 1998 to 2019. Environ. Pollut. 2021, 275, 115785. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, M.; Zhuang, D. Wastewater Treatment and Emerging Contaminants: Bibliometric Analysis. Chemosphere 2022, 297, 133932. [Google Scholar] [CrossRef]
- Ding, M.; Zeng, H. A Bibliometric Analysis of Research Progress in Sulfate-Rich Wastewater Pollution Control Technology. Ecotoxicol. Environ. Saf. 2022, 238, 113626. [Google Scholar] [CrossRef]
- Durán-Sánchez, A.; Álvarez-García, J.; González-Vázquez, E.; Río-Rama, M.D.L.C.D. Wastewater Management: Bibliometric Analysis of Scientific Literature. Water 2020, 12, 2963. [Google Scholar] [CrossRef]
- Gallego-Valero, L.; Moral-Parajes, E.; Román-Sánchez, I.M. Wastewater Treatment Costs: A Research Overview through Bibliometric Analysis. Sustainability 2021, 13, 5066. [Google Scholar] [CrossRef]
- Marcal, J.; Bishop, T.; Hofman, J.; Shen, J. From Pollutant Removal to Resource Recovery: A Bibliometric Analysis of Municipal Wastewater Research in Europe. Chemosphere 2021, 284, 131267. [Google Scholar] [CrossRef] [PubMed]
- Patyal, V.; Jaspal, D.; Khare, K. Wastewater Treatment Technologies: A Bibliometric Analysis. Sci. Technol. Libr. 2020, 39, 383–394. [Google Scholar] [CrossRef]
- Zheng, T.; Wang, J.; Wang, Q.; Nie, C.; Smale, N.; Shi, Z.; Wang, X. A Bibliometric Analysis of Industrial Wastewater Research: Current Trends and Future Prospects. Scientometrics 2015, 105, 863–882. [Google Scholar] [CrossRef]
- Zheng, T.; Wang, J.; Wang, Q.; Meng, H.; Wang, L. Research Trends in Electrochemical Technology for Water and Wastewater Treatment. Appl. Water Sci. 2017, 7, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Macías-Quiroga, I.F.; Henao-Aguirre, P.A.; Marín-Flórez, A.; Arredondo-López, S.M.; Sanabria-González, N.R. Bibliometric Analysis of Advanced Oxidation Processes (AOPs) in Wastewater Treatment: Global and Ibero-American Research Trends. Environ. Sci. Pollut. Res. 2021, 28, 23791–23811. [Google Scholar] [CrossRef]
- Ismail, S.A.; Ang, W.L.; Mohammad, A.W. Electro-Fenton Technology for Wastewater Treatment: A Bibliometric Analysis of Current Research Trends, Future Perspectives and Energy Consumption Analysis. J. Water Process. Eng. 2021, 40, 101952. [Google Scholar] [CrossRef]
- Raji, M.; Mirbagheri, S.A. A Global Trend of Fenton-Based AOPs Focused on Wastewater Treatment: A Bibliometric and Visualization Analysis. Water Pract. Technol. 2021, 16, 19–34. [Google Scholar] [CrossRef]
- Simões, A.J.A.; Macêdo-Júnior, R.O.; Santos, B.L.P.; Silva, D.P.; Ruzene, D.S. A Bibliometric Study on the Application of Advanced Oxidation Processes for Produced Water Treatment. Water Air Soil Pollut. 2021, 232, 297. [Google Scholar] [CrossRef]
- Usman, M.; Ho, Y.-S. A Bibliometric Study of the Fenton Oxidation for Soil and Water Remediation. J. Environ. Manag. 2020, 270, 110886. [Google Scholar] [CrossRef]
- Fang, Y.; Zheng, T.; Wu, Y.-N.; Wang, Y.; Li, F. Global Trends of Coagulation for Water and Wastewater Treatment by Utilizing Bibliometrics Analysis. Desalination Water Treat. 2019, 151, 93–105. [Google Scholar] [CrossRef]
- Ang, W.L.; Wahab Mohammad, A.; Johnson, D.; Hilal, N. Forward Osmosis Research Trends in Desalination and Wastewater Treatment: A Review of Research Trends over the Past Decade. J. Water Process. Eng. 2019, 31, 100886. [Google Scholar] [CrossRef]
- Niknejad, N.; Nazari, B.; Foroutani, S.; Hussin, A.R.B.C. A Bibliometric Analysis of Green Technologies Applied to Water and Wastewater Treatment. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Jain, M.; Khan, S.A.; Sharma, K.; Jadhao, P.R.; Pant, K.K.; Ziora, Z.M.; Blaskovich, M.A.T. Current Perspective of Innovative Strategies for Bioremediation of Organic Pollutants from Wastewater. Bioresour. Technol. 2022, 344, 126305. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Sun, X.; Ren, H.; Huang, H. Hotspots and Trends of Biological Water Treatment Based on Bibliometric Review and Patents Analysis. J. Environ. Sci. 2023, 125, 774–785. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, L. The Scientometric Analysis of the Research on Microalgae-Based Wastewater Treatment. Environ. Sci. Pollut. Res. 2021, 28, 25339–25348. [Google Scholar] [CrossRef]
- Loh, Z.Z.; Zaidi, N.S.; Yong, E.L.; Syafiuddin, A.; Boopathy, R.; Kadier, A. Current Status and Future Research Trends of Biofiltration in Wastewater Treatment: A Bibliometric Review. Curr. Pollut. Rep. 2022, 8, 234–248. [Google Scholar] [CrossRef]
- Melo, J.M.; Ribeiro, M.R.; Telles, T.S.; Amaral, H.F.; Andrade, D.S. Microalgae Cultivation in Wastewater from Agricultural Industries to Benefit next Generation of Bioremediation: A Bibliometric Analysis. Environ. Sci. Pollut. Res. 2022, 29, 22708–22720. [Google Scholar] [CrossRef] [PubMed]
- Okaiyeto, K.; Ekundayo, T.C.; Okoh, A.I. Global Research Trends on Bioflocculant Potentials in Wastewater Remediation from 1990 to 2019 Using a Bibliometric Approach. Lett. Appl. Microbiol. 2020, 71, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Chen, X.; Hu, Z.; Song, C.; Cui, Y. Bibliometric Analysis of Algal-Bacterial Symbiosis in Wastewater Treatment. Int. J. Environ. Res. Public Health 2019, 16, 1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tirado-Kulieva, V.A.; Gutiérrez-Valverde, K.S.; Villegas-Yarlequé, M.; Camacho-Orbegoso, E.W.; Villegas-Aguilar, G.F. Research Trends on Mango By-Products: A Literature Review with Bibliometric Analysis. J. Food Meas. Charact. 2022, 16, 2760–2771. [Google Scholar] [CrossRef]
- López-Serrano, M.J.; Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Román-Sánchez, I.M. Sustainable Use of Wastewater in Agriculture: A Bibliometric Analysis of Worldwide Research. Sustainability 2020, 12, 8948. [Google Scholar] [CrossRef]
- Durieux, V.; Gevenois, P.A. Bibliometric Indicators: Quality Measurements of Scientific Publication. Radiology 2010, 255, 342–351. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- United Nations. Goal 6: Ensure Access to Water and Sanitation for All. Available online: https://www.un.org/sustainabledevelopment/water-and-sanitation/ (accessed on 14 September 2022).
- Obaideen, K.; Shehata, N.; Sayed, E.T.; Abdelkareem, M.A.; Mahmoud, M.S.; Olabi, A.G. The Role of Wastewater Treatment in Achieving Sustainable Development Goals (SDGs) and Sustainability Guideline. Energy Nexus 2022, 7, 100112. [Google Scholar] [CrossRef]
- Price, D.J.S. The Exponential Curve of Science. Discovery 1956, 17, 240–243. [Google Scholar]
- Trianni, A.; Negri, M.; Cagno, E. What Factors Affect the Selection of Industrial Wastewater Treatment Configuration? J. Environ. Manag. 2021, 285, 112099. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.; Odum, H.T.; Brown, M.T.; Alling, A. “Living off the Land”: Resource Efficiency of Wetland Wastewater Treatment. Adv. Space Res. 2001, 27, 1547–1556. [Google Scholar] [CrossRef]
- Abdolali, A.; Guo, W.S.; Ngo, H.H.; Chen, S.S.; Nguyen, N.C.; Tung, K.L. Typical Lignocellulosic Wastes and By-Products for Biosorption Process in Water and Wastewater Treatment: A Critical Review. Bioresour. Technol. 2014, 160, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, H.; Daigger, G.T.; Huang, J.; Song, G. Material Biosynthesis, Mechanism Regulation and Resource Recycling of Biomass and High-Value Substances from Wastewater Treatment by Photosynthetic Bacteria: A Review. Sci. Total Environ. 2022, 820, 153200. [Google Scholar] [CrossRef]
- Younas, F.; Niazi, N.K.; Bibi, I.; Afzal, M.; Hussain, K.; Shahid, M.; Aslam, Z.; Bashir, S.; Hussain, M.M.; Bundschuh, J. Constructed Wetlands as a Sustainable Technology for Wastewater Treatment with Emphasis on Chromium-Rich Tannery Wastewater. J. Hazard. Mater. 2022, 422, 126926. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.R.; Ponce, P.; Yu, Z.; Golpîra, H.; Mathew, M. Environmental Technology and Wastewater Treatment: Strategies to Achieve Environmental Sustainability. Chemosphere 2022, 286, 131532. [Google Scholar] [CrossRef] [PubMed]
- IndexMundi Comparación de Países > Producto Interno Bruto (PIB). Available online: https://www.indexmundi.com/g/r.aspx?v=65&l=es (accessed on 14 September 2022).
- UNESCO. The United Nations World Water Development Report 2017: Wastewater: The Untapped Resource; Facts and Figures. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000247553 (accessed on 14 September 2022).
- The World Bank World Bank Country and Lending Groups. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (accessed on 14 September 2022).
- Tuninetti, M.; Ridolfi, L.; Laio, F. Charting out the Future Agricultural Trade and Its Impact on Water Resources. Sci. Total Environ. 2020, 714, 136626. [Google Scholar] [CrossRef] [PubMed]
- World Trade Organization Trade Maps. Available online: https://www.wto.org/english/res_e/statis_e/statis_maps_e.htm (accessed on 14 September 2022).
- Gao, Y.; Li, M.; Sun, C.; Zhang, X. Microbubble-Enhanced Water Activation by Cold Plasma. Chem. Eng. J. 2022, 446, 137318. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, C.; Gao, B.; Ma, S.; Zhong, Q.; Wang, L.; Cui, S. Life Cycle Assessment and Society Willingness to Pay Indexes of Food Waste-to-Energy Strategies. J. Environ. Manag. 2022, 305, 114364. [Google Scholar] [CrossRef] [PubMed]
- Brennan, L.; Owende, P. Biofuels from Microalgae-A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T. Microalgae Biofuels: A Critical Review of Issues, Problems and the Way Forward. Biotechnol. Adv. 2012, 30, 673–690. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, O.; Moletta, R. Treatment of Organic Pollution in Industrial Saline Wastewater: A Literature Review. Water Res. 2006, 40, 3671–3682. [Google Scholar] [CrossRef] [PubMed]
- Brenner, K.; You, L.; Arnold, F.H. Engineering Microbial Consortia: A New Frontier in Synthetic Biology. Trends Biotechnol. 2008, 26, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Mitch, W.A.; Sharp, J.O.; Trussell, R.R.; Valentine, R.L.; Alvarez-Cohen, L.; Sedlak, D.L. N-Nitrosodimethylamine (NDMA) as a Drinking Water Contaminant: A Review. Environ. Eng. Sci. 2003, 20, 389–404. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.S.; Khoo, K.S.; Chew, K.W.; Ling, T.C.; Show, P.L. Recent Advances Biodegradation and Biosorption of Organic Compounds from Wastewater: Microalgae-Bacteria Consortium—A Review. Bioresour. Technol. 2022, 344, 126159. [Google Scholar] [CrossRef] [PubMed]
- Derco, J.; Vrana, B. Introductory Chapter: Biosorption. In Biosorption; Derco, J., Vrana, B., Eds.; IntechOpen: London, UK, 2018; pp. 1–19. ISBN 0000957720. [Google Scholar]
- Mathew, S.; Soans, J.C.; Rachitha, R.; Shilpalekha, M.S.; Gowda, S.G.S.; Juvvi, P.; Chakka, A.K. Green Technology Approach for Heavy Metal Adsorption by Agricultural and Food Industry Solid Wastes as Bio-Adsorbents: A Review. J. Food Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Romera, E.; González, F.; Ballester, A.; Blázquez, M.L.; Muñoz, J.A. Biosorption with Algae: A Statistical Review. Crit. Rev. Biotechnol. 2006, 26, 223–235. [Google Scholar] [CrossRef]
- Ayangbenro, A.S.; Babalola, O.O. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- de Souza, C.E.; Sydney, A.C.N.; Hashimoto, E.H.; Soccol, C.R.; Sydney, E.B. Microbial Bioresources for Biofuels Production: Fundamentals and Applications. In Biofuels Production—Sustainability and Advances in Microbial Bioresources; Yadav, A.N., Rastegari, A.A., Yadav, N., Gaur, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–18. ISBN 9783030539320. [Google Scholar]
- Gudiukaite, R.; Nadda, A.K.; Gricajeva, A.; Shanmugam, S.; Nguyen, D.D.; Lam, S.S. Bioprocesses for the Recovery of Bioenergy and Value-Added Products from Wastewater: A Review. J. Environ. Manag. 2021, 300, 113831. [Google Scholar] [CrossRef]
- Peter, A.P.; Khoo, K.S.; Chew, K.W.; Ling, T.C.; Ho, S.-H.; Chang, J.-S.; Show, P.L. Microalgae for Biofuels, Wastewater Treatment and Environmental Monitoring. Environ. Chem. Lett. 2021, 19, 2891–2904. [Google Scholar] [CrossRef]
- Hu, Z.; Qi, Y.; Zhao, L.; Chen, G. Interactions Between Microalgae and Microorganisms for Wastewater Remediation and Biofuel Production. Waste Biomass Valorization 2019, 10, 3907–3919. [Google Scholar] [CrossRef]
- Su, Y. Revisiting Carbon, Nitrogen, and Phosphorus Metabolisms in Microalgae for Wastewater Treatment. Sci. Total Environ. 2021, 762, 144590. [Google Scholar] [CrossRef]
- Karri, R.R.; Sahu, J.N.; Chimmiri, V. Critical Review of Abatement of Ammonia from Wastewater. J. Mol. Liq. 2018, 261, 21–31. [Google Scholar] [CrossRef]
- Pan, Z.; Song, C.; Li, L.; Wang, H.; Pan, Y.; Wang, C.; Li, J.; Wang, T.; Feng, X. Membrane Technology Coupled with Electrochemical Advanced Oxidation Processes for Organic Wastewater Treatment: Recent Advances and Future Prospects. Chem. Eng. J. 2019, 376, 120909. [Google Scholar] [CrossRef]
- Chmiel, H.; Kaschek, M.; Blöcher, C.; Noronha, M.; Mavrov, V. Concepts for the Treatment of Spent Process Water in the Food and Beverage Industries. Desalination 2003, 152, 307–314. [Google Scholar] [CrossRef]
- Zielińska, M.; Galik, M. Use of Ceramic Membranes in a Membrane Filtration Supported by Coagulation for the Treatment of Dairy Wastewater. Water Air Soil Pollut. 2017, 228, 173. [Google Scholar] [CrossRef] [Green Version]
- Goswami, L.; Kumar, R.V.; Pakshirajan, K.; Pugazhenthi, G. A Novel Integrated Biodegradation—Microfiltration System for Sustainable Wastewater Treatment and Energy Recovery. J. Hazard. Mater. 2019, 365, 707–715. [Google Scholar] [CrossRef]
- Muhamad Ng, S.N.; Idrus, S.; Ahsan, A.; Tuan Mohd Marzuki, T.N.; Mahat, S.B. Treatment of Wastewater from a Food and Beverage Industry Using Conventional Wastewater Treatment Integrated with Membrane Bioreactor System: A Pilot-Scale Case Study. Membranes 2021, 11, 456. [Google Scholar] [CrossRef]
- Lozada, G.S.L.; López, A.I.G.; Martínez-Férez, A.; Ochando-Pulido, J.M. On the Modeling and Optimization of Two-Phase Olive-Oil Washing Wastewater Treatment and Polyphenols Recovery by Ceramic Tubular Microfiltration Membranes. J. Environ. Manag. 2022, 316, 115227. [Google Scholar] [CrossRef]
- He, Y.; Xu, P.; Li, C.; Zhang, B. High-Concentration Food Wastewater Treatment by an Anaerobic Membrane Bioreactor. Water Res. 2005, 39, 4110–4118. [Google Scholar] [CrossRef] [PubMed]
- Hernández, K.; Muro, C.; Ortega, R.E.; Velazquez, S.; Riera, F. Water Recovery by Treatment of Food Industry Wastewater Using Membrane Processes. Environ. Technol. 2021, 42, 775–788. [Google Scholar] [CrossRef] [PubMed]
- Galib, M.; Elbeshbishy, E.; Reid, R.; Hussain, A.; Lee, H.-S. Energy-Positive Food Wastewater Treatment Using an Anaerobic Membrane Bioreactor (AnMBR). J. Environ. Manag. 2016, 182, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Quek, P.J.; Wang, Z.; Ng, H.Y. Alkali-Assisted Membrane Cleaning for Fouling Control of Anaerobic Ceramic Membrane Bioreactor. Bioresour. Technol. 2017, 240, 25–32. [Google Scholar] [CrossRef]
- Galambos, I.; Molina, J.M.; Járay, P.; Vatai, G.; Bekássy-Molnár, E. High Organic Content Industrial Wastewater Treatment by Membrane Filtration. Desalination 2004, 162, 117–120. [Google Scholar] [CrossRef]
- Hafez, A.; Khedr, M.; Gadallah, H. Wastewater Treatment and Water Reuse of Food Processing Industries. Part II: Techno-Economic Study of a Membrane Separation Technique. Desalination 2007, 214, 261–272. [Google Scholar] [CrossRef]
- Luo, J.; Ding, L.; Wan, Y.; Paullier, P.; Jaffrin, M.Y. Fouling Behavior of Dairy Wastewater Treatment by Nanofiltration under Shear-Enhanced Extreme Hydraulic Conditions. Sep. Purif. Technol. 2012, 88, 79–86. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, J.; Hang, X.; Wan, Y. Physicochemical Characterization of Tight Nanofiltration Membranes for Dairy Wastewater Treatment. J. Membr. Sci. 2018, 547, 51–63. [Google Scholar] [CrossRef]
- Marszałek, A.; Puszczało, E. Effect of Photooxidation on Nanofiltration Membrane Fouling During Wastewater Treatment from the Confectionery Industry. Water 2020, 12, 793. [Google Scholar] [CrossRef] [Green Version]
- Vourch, M.; Balannec, B.; Chaufer, B.; Dorange, G. Treatment of Dairy Industry Wastewater by Reverse Osmosis for Water Reuse. Desalination 2008, 219, 190–202. [Google Scholar] [CrossRef]
- Ochando-Pulido, J.M.; Rodriguez-Vives, S.; Hodaifa, G.; Martinez-Ferez, A. Impacts of Operating Conditions on Reverse Osmosis Performance of Pretreated Olive Mill Wastewater. Water Res. 2012, 46, 4621–4632. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, L.A.; Michael, C.; Vakondios, N.; Drosou, K.; Xekoukoulotakis, N.P.; Diamadopoulos, E.; Fatta-Kassinos, D. Winery Wastewater Purification by Reverse Osmosis and Oxidation of the Concentrate by Solar Photo-Fenton. Sep. Purif. Technol. 2013, 118, 659–669. [Google Scholar] [CrossRef]
- Kanaujiya, D.K.; Paul, T.; Sinharoy, A.; Pakshirajan, K. Biological Treatment Processes for the Removal of Organic Micropollutants from Wastewater: A Review. Curr. Pollut. Rep. 2019, 5, 112–128. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Alagawany, M.; Taha, A.E.; Noreldin, A.; El-Tarabily, K.A.; Abd El-Hack, M.E. Nutritional Applications of Species of Spirulina and Chlorella in Farmed Fish: A Review. Aquaculture 2021, 542, 736841. [Google Scholar] [CrossRef]
- Coronado-Reyes, J.A.; Salazar-Torres, J.A.; Juárez-Campos, B.; González-Hernández, J.C. Chlorella Vulgaris, a Microalgae Important to Be Used in Biotechnology: A Review. Food Sci. Technol. 2022, 42, e37320. [Google Scholar] [CrossRef]
- Van Leeuwen, J.H.; Hu, Z.; Yi, T.; Pometto, A.L.; Jin, B. Kinetic Model for Selective Cultivation of Microfungi in a Microscreen Process for Food Processing Wastewater Treatment and Biomass Production. Acta Biotechnol. 2003, 23, 289–300. [Google Scholar] [CrossRef]
- Nimje, V.R.; Chen, C.-Y.; Chen, H.-R.; Chen, C.-C.; Huang, Y.M.; Tseng, M.-J.; Cheng, K.-C.; Chang, Y.-F. Comparative Bioelectricity Production from Various Wastewaters in Microbial Fuel Cells Using Mixed Cultures and a Pure Strain of Shewanella Oneidensis. Bioresour. Technol. 2012, 104, 315–323. [Google Scholar] [CrossRef]
- Boas, J.V.; Oliveira, V.B.; Marcon, L.R.C.; Pinto, D.P.; Simões, M.; Pinto, A.M.F.R. Effect of Operating and Design Parameters on the Performance of a Microbial Fuel Cell with Lactobacillus Pentosus. Biochem. Eng. J. 2015, 104, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Mansoorian, H.J.; Mahvi, A.H.; Jafari, A.J.; Khanjani, N. Evaluation of Dairy Industry Wastewater Treatment and Simultaneous Bioelectricity Generation in a Catalyst-Less and Mediator-Less Membrane Microbial Fuel Cell. J. Saudi Chem. Soc. 2016, 20, 88–100. [Google Scholar] [CrossRef] [Green Version]
- Cecconet, D.; Molognoni, D.; Callegari, A.; Capodaglio, A.G. Agro-Food Industry Wastewater Treatment with Microbial Fuel Cells: Energetic Recovery Issues. Int. J. Hydrogen Energy 2018, 43, 500–511. [Google Scholar] [CrossRef]
- Firdous, S.; Jin, W.; Shahid, N.; Bhatti, Z.A.; Iqbal, A.; Abbasi, U.; Mahmood, Q.; Ali, A. The Performance of Microbial Fuel Cells Treating Vegetable Oil Industrial Wastewater. Environ. Technol. Innov. 2018, 10, 143–151. [Google Scholar] [CrossRef]
- Daneshvar, E.; Zarrinmehr, M.J.; Hashtjin, A.M.; Farhadian, O.; Bhatnagar, A. Versatile Applications of Freshwater and Marine Water Microalgae in Dairy Wastewater Treatment, Lipid Extraction and Tetracycline Biosorption; Elsevier: Amsterdam, The Netherlands, 2018; Volume 268, ISBN 8415683111. [Google Scholar]
- Gupta, S.; Pawar, S.B. An Integrated Approach for Microalgae Cultivation Using Raw and Anaerobic Digested Wastewaters from Food Processing Industry. Bioresour. Technol. 2018, 269, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Purwanti, I.F.; Titah, H.S.; Tangahu, B.V.; Kurniawan, S.B. Design and Application of Wastewater Treatment Plant for “Pempek” Food Industry, Surabaya, Indonesia. Int. J. Civ. Eng. Technol. 2018, 9, 1751–1765. [Google Scholar]
- Zahmatkesh, M.; Spanjers, H.; van Lier, J.B. A Novel Approach for Application of White Rot Fungi in Wastewater Treatment under Non-Sterile Conditions: Immobilization of Fungi on Sorghum. Environ. Technol. 2018, 39, 2030–2040. [Google Scholar] [CrossRef] [Green Version]
- Hemalatha, M.; Sravan, J.S.; Min, B.; Venkata Mohan, S. Microalgae-Biorefinery with Cascading Resource Recovery Design Associated to Dairy Wastewater Treatment. Bioresour. Technol. 2019, 284, 424–429. [Google Scholar] [CrossRef]
- Hu, X.; Meneses, Y.E.; Stratton, J.; Wang, B. Acclimation of Consortium of Micro-Algae Help Removal of Organic Pollutants from Meat Processing Wastewater. J. Clean. Prod. 2019, 214, 95–102. [Google Scholar] [CrossRef]
- Hultberg, M.; Bodin, H. Fungi-Based Treatment of Real Brewery Waste Streams and Its Effects on Water Quality. Bioprocess. Biosyst. Eng. 2019, 42, 1317–1324. [Google Scholar] [CrossRef] [Green Version]
- Spennati, E.; Casazza, A.A.; Converti, A. Winery Wastewater Treatment by Microalgae to Produce Low-Cost Biomass for Energy Production Purposes. Energies 2020, 13, 2490. [Google Scholar] [CrossRef]
- Hu, X.; Meneses, Y.E.; Hassan, A.A.; Stratton, J.; Huo, S. Application of Alginate Immobilized Microalgae in Treating Real Food Industrial Wastewater and Design of Annular Photobioreactor: A Proof-of-Concept Study. Algal Res. 2021, 60, 102524. [Google Scholar] [CrossRef]
- Zkeri, E.; Iliopoulou, A.; Katsara, A.; Korda, A.; Aloupi, M.; Gatidou, G.; Fountoulakis, M.S.; Stasinakis, A.S. Comparing the Use of a Two-Stage MBBR System with a Methanogenic MBBR Coupled with a Microalgae Reactor for Medium-Strength Dairy Wastewater Treatment. Bioresour. Technol. 2021, 323, 124629. [Google Scholar] [CrossRef] [PubMed]
- Amenorfenyo, D.K.; Li, F.; Zhang, Y.; Li, C.; Zhang, N.; Huang, X. Effects of Microalgae Grown in Membrane Treated Distillery Wastewater as Diet on Growth and Survival Rate of Juvenile Pearl Oyster (Pinctada fucata Martensii). Water 2022, 14, 2702. [Google Scholar] [CrossRef]
- Kusmayadi, A.; Lu, P.-H.; Huang, C.-Y.; Leong, Y.K.; Yen, H.-W.; Chang, J.-S. Integrating Anaerobic Digestion and Microalgae Cultivation for Dairy Wastewater Treatment and Potential Biochemicals Production from the Harvested Microalgal Biomass. Chemosphere 2022, 291, 133057. [Google Scholar] [CrossRef] [PubMed]
Ranking | Name | TD 1 | F 2 (%) | TC 3 | TC/TD |
---|---|---|---|---|---|
Authors | |||||
1 | Nelson, M. | 5 | 0.825 | 127 | 25.400 |
2 | Alling, A. | 4 | 0.660 | 112 | 28.000 |
3 | Ngo, H.H. | 4 | 0.660 | 705 | 176.250 |
4 | Trabold, T.A. | 4 | 0.660 | 30 | 7.500 |
5 | Anon | 3 | 0.495 | 0 | 0.000 |
6 | Chang, S.W. | 3 | 0.495 | 346 | 115.333 |
7 | Chen, W.T. | 3 | 0.495 | 0 | 0.000 |
8 | Dempster, W.F. | 3 | 0.495 | 29 | 9.667 |
9 | Fatta-Kassinos, D. | 3 | 0.495 | 325 | 108.333 |
10 | Guo, W. | 3 | 0.795 | 400 | 133.333 |
Countries | |||||
1 | United States | 104 | 17.162 | 4992 | 48.000 |
2 | India | 76 | 12.541 | 1496 | 19.684 |
3 | China | 70 | 11.551 | 2131 | 30.443 |
4 | United Kingdom | 39 | 6.436 | 1101 | 28.231 |
5 | Italy | 35 | 5.776 | 1231 | 35.174 |
6 | Spain | 31 | 5.116 | 1102 | 35.548 |
7 | Malaysia | 28 | 4.620 | 1186 | 42.357 |
8 | Australia | 26 | 4.290 | 1920 | 73.846 |
9 | Canada | 23 | 3.795 | 710 | 30.870 |
10 | Germany | 20 | 3.300 | 1390 | 69.500 |
Institutions | |||||
1 | Ministry of Education China | 8 | 1.320 | 267 | 33.375 |
2 | Chinese Academy of Sciences | 8 | 1.320 | 101 | 12.625 |
3 | University of Technology Sydney | 7 | 1.155 | 794 | 113.429 |
4 | University of Chinese Academy of Sciences | 7 | 1.155 | 102 | 14.571 |
5 | Council of Scientific and Industrial Research India | 6 | 0.990 | 63 | 10.500 |
6 | Institute of Ecotechnics | 5 | 0.825 | 127 | 25.400 |
7 | University of Galway | 5 | 0.825 | 76 | 15.200 |
8 | Università della Calabria | 5 | 0.825 | 126 | 25.200 |
9 | Consiglio Nazionale delle Ricerche | 5 | 0.825 | 266 | 53.200 |
10 | Universidad de Granada | 5 | 0.825 | 162 | 32.400 |
Ranking | Journal | Country | Publisher | Q | TD 1 | F (%) 2 | TC 3 | TC/TD | JIF 4 | SJR 5 |
---|---|---|---|---|---|---|---|---|---|---|
1 | Science of the Total Environment | Netherlands | Elsevier | Q1 | 21 | 3.465 | 930 | 44.286 | 10.753 | 1.81 |
2 | Bioresource Technology | United Kingdom | Elsevier | Q1 | 18 | 2.970 | 1574 | 87.444 | 11.889 | 2.35 |
3 | Water Science and Technology | United Kingdom | IWA Publishing | Q2 | 18 | 2.970 | 237 | 13.167 | 2.430 | 0.45 |
4 | Journal of Environmental Management | United States | Academic Press | Q1 | 17 | 2.805 | 1141 | 67.118 | 8.910 | 1.48 |
5 | Environmental Science and Pollution Research | Germany | Springer | Q1 | 14 | 2.310 | 442 | 31.571 | 5.190 | 0.83 |
Water Research | United Kingdom | Elsevier | Q1 | 14 | 2.310 | 1950 | 139.286 | 13.400 | 2.81 |
Ranking | References | Number of Authors | Year of Publication | Document | Journal | Document Type | TC 1 | TC/Y 2 |
---|---|---|---|---|---|---|---|---|
1 | Brennan and Owende [66] | 2 | 2010 | Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products | Renewable and Sustainable Energy Reviews | Review | 3227 | 268.917 |
2 | Lefebvre and Moletta [68] | 2 | 2006 | Treatment of organic pollution in industrial saline wastewater: A literature review | Water research | Review | 899 | 56.188 |
3 | Lam and Lee [67] | 2 | 2012 | Microalgae biofuels: A critical review of issues, problems and the way forward | Biotechnology Advances | Review | 657 | 65.700 |
4 | Brenner et al. [69] | 3 | 2008 | Engineering microbial consortia: a new frontier in synthetic biology | Trends in Biotechnology | Review | 601 | 42.929 |
5 | Mitch et al. [70] | 6 | 2003 | N-nitrosodimethylamine (NDMA) as a drinking water contaminant: A review | Environmental Engineering Science | Review | 579 | 30.474 |
Ranking | Keyword 1 | Occurrence | Ranking | Keyword | Occurrence |
---|---|---|---|---|---|
1 | wastewater treatment | 432 | 11 | anaerobic digestion | 61 |
2 | wastewater | 161 | 12 | water quality | 60 |
3 | wastewater management | 124 | 13 | bioremediation | 59 |
4 | sewage | 97 | 14 | biomass | 59 |
5 | effluents | 92 | 15 | water purification | 57 |
6 | sustainable development | 74 | 16 | bioreactors | 56 |
7 | food industry | 67 | 17 | food processing | 56 |
8 | waste disposal | 62 | 18 | agriculture | 53 |
9 | water pollution | 62 | 19 | chemical oxygen demand | 49 |
10 | environmental technology | 62 | 20 | environmental protection | 49 |
What Substances Do They Retain? 1 | Microfiltration | Ultrafiltration | Nanofiltration | Reverse Osmosis |
---|---|---|---|---|
Water | − | − | − | − |
Monovalent ions | − | − | − | + |
Multivalent ions | − | − | + | + |
Surfactants | − | + | + | + |
Oil and grease | + | + | + | + |
Suspended solids | + | + | + | + |
Technology | References | Process 1 |
---|---|---|
Microfiltration | [83] | Margarine |
[84] | Dairy | |
[85] | Dairy | |
[86] | N.S. | |
[87] | Olive oil | |
Ultrafiltration | [88] | Meat, vegetables and rice |
[89] | Animal proteins | |
[90] | Meat | |
[91] | N.S. | |
[84] | Dairy | |
Nanofiltration | [83] | Fruit juice |
[92] | Oil | |
[93] | Dairy and fruit juice | |
[94] | Dairy | |
[95] | Dairy | |
[96] | Confectionery | |
Reverse osmosis | [92] | Oil |
[97] | Dairy | |
[98] | Olives | |
[99] | Wine | |
[89] | Animal proteins |
References | Process | Biological Agent 1 |
---|---|---|
[104] | Corn | Rhizopus oligosporus |
[105] | Dairy | Shewanella oneidensis |
[106] | Dairy | Lactobacillus pentosus |
[107] | Dairy | Microorganisms (N.S.) |
[108] | Dairy | Microorganisms (N.S.) |
[109] | Vegetable oil | Microorganisms (N.S.) |
[110] | Dairy | Scenedesmus quadricauda and Tetraselmis suecica |
[111] | Snacks of potatoes, nuts, legumes, wheat flour, milk and soya | Chlorella sorokiniana, Scenedesmus obliquus and Scenedesmus abundans |
[112] | Mackerel | Scirpus grossus and Thypa angustifolia |
[113] | N.S. | Trametes versicolor |
[114] | Dairy | Microalgae (N.S.) |
[115] | Meat | Chlorella sp. UTEX LB2068, C. protothecoides UTEX B25, C. zofingiensis UTEX B32, C. vulgaris UTEX 259, C. protothecoides SAG 211, C. sorokiniana, Chlamydomonas reinhardtii UTEX C-4333, and Scenedesmus obliquus UTEX B2630 |
[116] | Beer | Pleurotus ostreatus M2140, Agaricus bisporus M7215, Trichoderma harzianum CBS 226.95, Trametes versicolor M9912, and Lentinula edodes M3782, |
[117] | Wine | Chlorella vulgaris and Arthrospira platensis |
[118] | Meat | Microalgae (N.S.) |
[119] | Dairy | Chlorella sorokiniana |
[120] | Distillery | Haematococcus pluvialis, Spirulina platensis and Chlorella vulgaris |
[121] | Dairy | Chlorella sorokiniana SU-1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapata-Mendoza, P.C.O.; Berrios-Tauccaya, O.J.; Tirado-Kulieva, V.A.; Gonzales-Malca, J.A.; Ricse-Reyes, D.R.; Berrios-Zevallos, A.A.; Seminario-Sanz, R.S. Environmentally Friendly Technologies for Wastewater Treatment in Food Processing Plants: A Bibliometric Analysis. Sustainability 2022, 14, 14698. https://doi.org/10.3390/su142214698
Zapata-Mendoza PCO, Berrios-Tauccaya OJ, Tirado-Kulieva VA, Gonzales-Malca JA, Ricse-Reyes DR, Berrios-Zevallos AA, Seminario-Sanz RS. Environmentally Friendly Technologies for Wastewater Treatment in Food Processing Plants: A Bibliometric Analysis. Sustainability. 2022; 14(22):14698. https://doi.org/10.3390/su142214698
Chicago/Turabian StyleZapata-Mendoza, Prospero Cristhian Onofre, Oscar Julian Berrios-Tauccaya, Vicente Amirpasha Tirado-Kulieva, Jhony Alberto Gonzales-Malca, David Roberto Ricse-Reyes, Andres Amador Berrios-Zevallos, and Roberto Simón Seminario-Sanz. 2022. "Environmentally Friendly Technologies for Wastewater Treatment in Food Processing Plants: A Bibliometric Analysis" Sustainability 14, no. 22: 14698. https://doi.org/10.3390/su142214698