An Empirical Study on the Relationship between Scientific Collaboration and Knowledge Production of the Countries along the Belt and Road
Abstract
:1. Introduction
2. Data and Variables
2.1. Data Sources
2.2. Variable
3. Methodology
4. Correlation Analysis
5. Empirical Results
5.1. Regression Analysis of the Influence of Scientific Cooperation on Knowledge Production
5.2. Regression Analysis of the Influence of Knowledge Production on Scientific Cooperation
5.3. Summary
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodrigues, M.L.; Leonardo, N.; Cordero, R. The benefits of scientific mobility and international collaboration. FEMS Microbiol. Lett. 2016, 363, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meliciani, V.; Di, C.D.; Fabrizi, A.; Marini, M. Knowledge networks in joint research projects, innovation and economic growth across European regions. Ann. Reg. Sci. 2022, 68, 549–586. [Google Scholar] [CrossRef]
- Katz, J.S.; Hicks, D. How much is a collaboration worth? a calibrated bibliometric model. Scientometrics 1997, 40, 541–554. [Google Scholar] [CrossRef]
- Sebestyen, T.; Varga, A. Research productivity and the quality of interregional knowledge networks. Ann. Reg. Sci. 2013, 51, 155–189. [Google Scholar] [CrossRef]
- Abramo, G.; D’Angelo, A.C.; Murgia, G. The relationship among research productivity, research collaboration, and their determinants. J. Informetr. 2018, 11, 1016–1030. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Guo, A.; Chen, Y.; Chen, J. Original Innovation through Inter-Organizational Collaboration: Empirical Evidence from University-Focused Alliance Portfolio in China. Sustainability 2022, 14, 6162. [Google Scholar] [CrossRef]
- Nomaler, N.; Frenken, K.; Heimeriks, G. Do more distant collaborations have more citation impact? J. Informetr. 2013, 7, 966–971. [Google Scholar] [CrossRef] [Green Version]
- Reagans, R.; Zuckerman, E.W. Networks, diversity, and productivity: The social capital of corporate r&d teams. Organ. Sci. 2001, 12, 502–517. [Google Scholar]
- Glänzel, W. National characteristics in international scientific co-authorship relations. Scientometrics 2001, 51, 69–115. [Google Scholar] [CrossRef]
- Lee, S.; Bozeman, B. The impact of research collaboration on scientific productivity. Soc. Stud. Sci. 2005, 35, 673–702. [Google Scholar] [CrossRef]
- Scarazzati, S.; Wang, L. The effect of collaborations on scientific research output: The case of nanoscience in Chinese regions. Scientometrics 2019, 121, 839–868. [Google Scholar] [CrossRef]
- Meyer, M.; Persson, O. Nanotechnology—Interdisciplinarity, patterns of collaboration and differences in application. Scientometrics 1998, 42, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Hazir, C.S.; Autant-Bernard, C. Determinants of cross-regional r&d collaboration: Some empirical evidence from Europe in biotechnology. Ann. Reg. Sci. 2014, 53, 369–393. [Google Scholar]
- Liu, F.; Lin, A.; Wang, H.; Peng, Y.; Hong, S. Global research trends of geographical information system from 1961 to 2010: A bibliometric analysis. Scientometrics 2016, 106, 751–768. [Google Scholar] [CrossRef]
- He, T. International scientific collaboration of china with the g7 countries. Scientometrics 2009, 80, 571–582. [Google Scholar] [CrossRef]
- Montobbio, F.; Sterzi, V. The globalisation of technology in emerging markets: A gravity model on the determinants of international patent collaborations. World Dev. 2013, 44, 281–299. [Google Scholar] [CrossRef] [Green Version]
- Zhen, S. Research on the Mode of International Science and Technology Cooperation under the Belt and Road Strategy. J. Int. Econ. Coop. 2016, 47, 26–27. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2016&filename=GJJH201604005&uniplatform=NZKPT&v=venoe7-VqRq3shw51bklK-CV4sISCe7csJyJnlB1RK2425aJneyQFcBuVtX7WXY0 (accessed on 19 September 2022).
- Fang, W. Research on mechanisms of scientific and technological cooperation and collaborative innovation among Belt and Road countries. Chongqing Soc. Sci. 2020, 38, 45–58. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2021&filename=CQSK202012005&uniplatform=NZKPT&v=qAoIOPtAS9KHusb19Pq9lcNs-XeJkYC7vn_p_PgcX024HruGxB9TvMqYjwwGKV4f (accessed on 19 September 2022). [CrossRef]
- Gui, Q.; Liu, C.; Du, D. The structure and dynamics of scientific collaboration network among countries along the belt and road. Sustainability 2019, 11, 5187. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Alon, I. Intellectual Structure of the Belt and Road Initiative Research: A Scientometric Analysis and Suggestions for a Future Research Agenda. Sustainability 2020, 12, 6901. [Google Scholar] [CrossRef]
- Chen, X. Study on scientific and technological collaboration network evolution of countries in one belt one road area. Stud. Sci. Sci. 2020, 38, 1811–1817–1857. [Google Scholar]
- Jiang, C.; Ma, X. The Impact of Financial Development on Carbon Emissions: A Global Perspective. Sustainability 2019, 11, 5241. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Perhiar, S.M.; Gilal, N.G. Loan Loss Provision and Risk-Taking Behavior of Commercial Banks in Pakistan: A Dynamic GMM Approach. Sustainability 2019, 11, 5209. [Google Scholar] [CrossRef] [Green Version]
- Lata, R.; Proff, S.V.; Brenner, T. The influence of distance types on co-patenting and co-publishing in the USA and Europe over time. Ann. Reg. Sci. 2018, 61, 49–71. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G. A graph-theoretic perspective on centrality. Soc. Netw. 2006, 28, 466–484. [Google Scholar] [CrossRef]
- Bergman, E.M.; Maier, G. Network central: Regional positioning for innovative advantage. Ann. Reg. Sci. 2009, 43, 615–644. [Google Scholar] [CrossRef]
- Huallachain, B.O.; Lee, D.S. Urban centers and networks of co-invention in American biotechnology. Ann. Reg. Sci. 2014, 52, 799–823. [Google Scholar] [CrossRef]
- Wanzenböck, I.; Scherngell, T.; Brenner, T. Embeddedness of regions in European knowledge networks: A comparative analysis of inter-regional r&d collaborations, co-patents and co-publications. Ann. Reg. Sci. 2014, 53, 337–368. [Google Scholar]
- Liu, H.; Zhao, S.; Xin, O. Analysis on the Evolution Path and Hotspot of Knowledge Innovation Study Based on Knowledge Map. Sustainability 2019, 11, 5528. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Lai, K.-H.; Cai, W. Responsible Production for Sustainability: Concept Analysis and Bibliometric Review. Sustainability 2021, 13, 1275. [Google Scholar] [CrossRef]
- Braun, T.; Glänzel, W. International collaboration: Will it be keeping alive east European research? Scientometrics 1996, 36, 247–254. [Google Scholar] [CrossRef]
- Hou, L.; Pan, Y.; Zhu, J. Impact of scientific, economic, geopolitical, and cultural factors on international research collaboration. J. Informetr. 2021, 15, 101194. [Google Scholar] [CrossRef]
- Ge, S.; Liu, X. The role of knowledge creation, absorption and acquisition in determining national competitive advantage. Technovation 2021, 112, 102396. [Google Scholar] [CrossRef]
- Gu, W.; Liu, H.; Wang, L. The multiple structure and formation mechanisms of the scientific collaboration network in the Belt and Road regions. Geogr. Res. 2020, 39, 1070–1087. [Google Scholar]
- Sun, Q.; Zhang, X.; Xu, X.; Yang, Q.; Wang, S. Does the “Belt and Road Initiative” Promote the Economic Growth of Participating Countries? Sustainability 2019, 11, 5240. [Google Scholar] [CrossRef] [Green Version]
- Jlc, A.; Bst, B. Transferring r&d knowledge: The key factors affecting knowledge transfer success. J. Eng. Technol. Manag. 2003, 20, 39–68. [Google Scholar]
- Esva, B.; Jccd, E.; Aurora, A.C.; Teixeira, A.A. Which distance dimensions matter in international research collaboration? A cross-country analysis by scientific domain. J. Informetr. 2022, 16, 101259. [Google Scholar]
- Yang, L.; Yue, T.; Ding, J.; Han, T. A comparison of disciplinary structure in science between the g7 and the BRIC countries by bibliometric methods. Scientometrics 2012, 93, 497–516. [Google Scholar] [CrossRef]
- Li, N. Evolutionary patterns of national disciplinary profiles in research: 1996–2015. Scientometrics 2017, 111, 493–520. [Google Scholar] [CrossRef]
- Sun, X.; Gao, J.; Liu, B.; Wang, Z. Big Data-Based Assessment of Political Risk along the Belt and Road. Sustainability 2021, 13, 3935. [Google Scholar] [CrossRef]
- Liu, X.; Mia, M.B. The geopolitics of knowledge communities: Situating Chinese and foreign studies of the green belt and road initiative. Geoforum 2022, 128, 168–180. [Google Scholar] [CrossRef]
- Kraay, A.; Mastruzzi, M. The Worldwide Governance Indicators: Methodology and Analytical Issues (1 September 2010). World Bank Policy Research Working Paper No. 5430. 2017. Available online: https://ssrn.com/abstract=2894745 (accessed on 9 May 2022).
- Schultz, E.L.; Tan, D.T.; Walsh, K.D. Endogeneity and the corporate governance—Performance relation. Aust. J. Manag. 2010, 35, 145–163. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Bond, B.S. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar]
- Roodman, D. How to do xtabond2: An introduction to difference and system gmm in stata. Stata J. 2009, 9, 86–136. [Google Scholar] [CrossRef]
Geographical Area | Country |
---|---|
Northeast Asia | Mongolia, and Russia |
Southeast Asia | Singapore, Malaysia, Thailand, Vietnam, Indonesia, Philippines, Cambodia, Myanmar, Laos, Brunei, and East Timor |
East Asia | China |
South Asia | India, Pakistan, Sri Lanka, Bangladesh, Nepal, Maldives, Bhutan |
West Asia and North Africa | United Arab Emirates, Kuwait, Turkey, Qatar, Oman, Lebanon, Saudi Arabia, Bahrain, Israel, Yemen, Egypt, Iran, Jordan, Syria, Iraq, Afghanistan, Palestine, Azerbaijan, Georgia and Armenia |
Central East Asia | Poland, Albania, Romania, Lithuania, Slovenia, Bulgaria, Czech Republic, Slovakia, Hungary, Macedonia, Serbia, Estonia, Croatia, Latvia, Bosnia and Herzegovina, Montenegro, Ukraine, Belarus, and Moldova |
Central Asia | Kazakhstan, Tajikistan, Uzbekistan, Kyrgyzstan, and Turkmenistan |
Variable | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
COOP | 2781 | 3804 | 2.000 | 31,935 |
PAPER | 9883 | 35,659 | 4.000 | 424,840 |
GDP | 10,955 | 13,703 | 442.800 | 85,076 |
POLITICS | 7.335 | 1.482 | 3.000 | 9.000 |
DISICIPLINE | 41.600 | 11.170 | 4.000 | 71.000 |
lnPAPER | lnCOOP | lnGDP | lnPOLITICS | lnDISICIPLINE | |
---|---|---|---|---|---|
lnPAPER | 1.000 | ||||
lnCOOP | 0.493 *** | 1.000 | |||
lnGDP | 0.360 *** | 0.395 *** | 1.000 | ||
lnPOLITICS | 0.429 *** | 0.762 *** | 0.287 *** | 1.000 | |
lnDISICIPLINE | 0.293 *** | 0.589 *** | 0.190 *** | 0.677 *** | 1.000 |
VARIABLES | VIF | 1/VIF |
---|---|---|
lnPOLITICS | 2.95 | 0.339368 |
lnCOOP | 2.66 | 0.375899 |
lnDISICIPLINE | 1.9 | 0.527109 |
lnGDP | 1.19 | 0.841625 |
Mean VIF | 2.17 |
MODELS VARIABLES | (1A) | (2A) | (3A) | (4A) | (5A) |
---|---|---|---|---|---|
lnPAPER | lnPAPER | lnPAPER | lnPAPER | lnPAPER | |
L.lnPAPER | 0.593 *** | 0.706 *** | 0.626 *** | 0.709 *** | 0.553 *** |
(−0.173) | (−0.144) | (−0.200) | (−0.135) | (0.174) | |
lnCOOP | 0.123 ** | 0.088 * | 0.119 * | 0.075 * | 0.149 ** |
(−0.058) | (−0.046) | (−0.068) | (−0.043) | (0.0593) | |
lnGDP | 0.024 | −0.002 | |||
(−0.058) | (0.059) | ||||
lnDISICIPLINE | −0.119 | −0.179 * | |||
(−0.101) | (0.091) | ||||
lnPOLITICS | 0.199 | 0.279 ** | |||
(−0.121) | (0.139) | ||||
AR(1) | 0.049 | 0.039 | 0.047 | 0.037 | 0.054 |
AR(2) | 0.096 | 0.108 | 0.096 | 0.110 | 0.106 |
Hansen test | 0.295 | 0.268 | 0.106 | 0.252 | 0.212 |
MODELS VARIABLES | (6A) | (7A) | (8A) |
---|---|---|---|
lnPAPER | lnPAPER | lnPAPER | |
L.lnPAPER | 0.665 *** | 0.541 *** | 0.484 ** |
(0.136) | (0.195) | (0.210) | |
lnCOOP | 0.090 * | 0.133 * | 0.161 ** |
(0.046) | (0.068) | (0.077) | |
lnGDP | 0.011 | −0.028 | −0.0370 |
(0.065) | (0.051) | (0.055) | |
lnDISICIPLINE | −0.124 | −0.0657 | −0.097 |
(0.088) | (0.089) | (0.105) | |
lnPOLITICS | 0.266 ** | 0.359 ** | 0.405 ** |
(0.133) | (0.137) | (0.161) | |
lnCOOP ∗ lnGDP | −0.0001 | ||
(0.0005) | |||
lnCOOP ∗ lnDISICIPLINE | −0.008 ** | ||
(0.003) | |||
lnCOOP ∗ lnPOLITICS | −0.012 * | ||
(0.006) | |||
AR(1) | 0.040 | 0.035 | 0.045 |
AR(2) | 0.105 | 0.156 | 0.187 |
Hansen test | 0.578 | 0.369 | 0.520 |
VARIABLES | VIF | 1/VIF |
---|---|---|
lnPOLITICS | 2.1 | 0.475335 |
lnDISICIPLINE | 1.85 | 0.541032 |
lnPAPER | 1.33 | 0.754599 |
lnGDP | 1.18 | 0.848605 |
Mean VIF | 1.61 |
MODELS VARIABLES | (1B) | (2B) | (3B) | (4B) | (5B) |
---|---|---|---|---|---|
lnCOOP | lnCOOP | lnCOOP | lnCOOP | lnCOOP | |
L.lnCOOP | 0.690 *** | 0.720 *** | 0.678 *** | 0.771 *** | 0.703 *** |
(−0.091) | (−0.078) | (−0.086) | (−0.064) | (−0.087) | |
lnPAPER | 0.592 *** | 0.410 ** | 0.449 ** | 0.288 ** | 0.428 ** |
(−0.222) | (−0.179) | (−0.175) | (−0.123) | (0.190) | |
lnGDP | −0.013 | 0.003 | |||
(−0.121) | (−0.103) | ||||
lnDISICIPLINE | 0.710 ** | 0.727 ** | |||
(−0.293) | (−0.302) | ||||
lnPOLITICS | −0.218 | −0.426 * | |||
(−0.316) | (−0.238) | ||||
AR(1) | 0.018 | 0.018 | 0.014 | 0.018 | 0.015 |
AR(2) | 0.436 | 0.487 | 0.678 | 0.512 | 0.692 |
Hansen test | 0.102 | 0.209 | 0.161 | 0.199 | 0.279 |
MODELS VARIABLES | (6B) | (7B) | (8B) |
---|---|---|---|
lnCOOP | lnCOOP | lnCOOP | |
L.lnCOOP | 0.699 *** | 0.713 *** | 0.618 *** |
(0.0754) | (0.0699) | (0.0923) | |
lnPAPER | −0.639 | −0.413 | −0.325 |
(0.501) | (0.448) | (0.372) | |
lnGDP | −0.786 * | 0.0491 | 0.00986 |
(0.405) | (0.120) | (0.114) | |
lnDISICIPLINE | 0.730 *** | −0.775 | 0.779 *** |
(0.272) | (0.850) | (0.278) | |
lnPOLITICS | −0.331 | −0.382 | −3.219 ** |
(0.302) | (0.253) | (1.321) | |
lnPAPER ∗ lnGDP | 0.121 ** | ||
(0.0601) | |||
lnPAPER ∗ lnDISICIPLINE | 0.212 * | ||
(0.126) | |||
lnPAPER ∗ lnPOLITICS | 0.449 ** | ||
(0.207) | |||
AR(1) | 0.014 | 0.016 | 0.021 |
AR(2) | 0.763 | 0.682 | 0.824 |
Hansen test | 0.975 | 0.997 | 0.812 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Liu, J.; Qiao, X. An Empirical Study on the Relationship between Scientific Collaboration and Knowledge Production of the Countries along the Belt and Road. Sustainability 2022, 14, 14489. https://doi.org/10.3390/su142114489
Wang F, Liu J, Qiao X. An Empirical Study on the Relationship between Scientific Collaboration and Knowledge Production of the Countries along the Belt and Road. Sustainability. 2022; 14(21):14489. https://doi.org/10.3390/su142114489
Chicago/Turabian StyleWang, Feifei, Jia Liu, and Xiaoyong Qiao. 2022. "An Empirical Study on the Relationship between Scientific Collaboration and Knowledge Production of the Countries along the Belt and Road" Sustainability 14, no. 21: 14489. https://doi.org/10.3390/su142114489
APA StyleWang, F., Liu, J., & Qiao, X. (2022). An Empirical Study on the Relationship between Scientific Collaboration and Knowledge Production of the Countries along the Belt and Road. Sustainability, 14(21), 14489. https://doi.org/10.3390/su142114489