Analysis of Climate Change Impacts on the Food System Security of Saudi Arabia
Abstract
:1. Introduction
1.1. Challenges to Food Security in Saudi Arabia
1.1.1. Adverse Weather Conditions
1.1.2. Changing Rainfall Pattern
1.1.3. Limited Water Supply
1.1.4. Insects, Pests, and Diseases
1.1.5. Increasing Population and Urbanization
1.2. Climate Change Impact on the Food Supply Chain
2. Materials and Methods
2.1. Causality Analysis
2.1.1. Model Specifications
2.1.2. Developing VECM Models
- (i)
- Testing for the presence of unit roots in the set of data;
- (ii)
- Verifying the existence of co-integration within factors;
- (iii)
- Developing a VECM based on the results of these tests
3. Results and Discussion
3.1. Causality Analysis
3.1.1. Unit Root Test
3.1.2. Johansen’s Test of Co-Integration
3.1.3. Short- and Long-Run Granger Causality (GC) Tests
3.2. Adaptation Initiatives to Climate Change Impacts on the Food System in Saudi Arabia
3.2.1. Supply-Side Measures
3.2.2. Infrastructure Side Measures
3.2.3. Demand-Side Measures
Adapting Sustainable Eating Habits
Reducing Food Loss and Waste
4. Policy Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ziervogel, G.; Ericksen, P.J. Adapting to climate change to sustain food security. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 525–540. [Google Scholar] [CrossRef]
- Misra, A.K. Climate change and challenges of water and food security. Int. J. Sustain. Built Environ. 2014, 3, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Gregory, P.J.; Ingram, J.S.I.; Brklacich, M. Climate change and food security. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2139–2148. [Google Scholar] [CrossRef] [PubMed]
- Gitz, V.; Meybeck, A. Climate Change and Food Security: Risks and Responses; FAO: Rome, Italy, 2016. [Google Scholar]
- Schmidhuber, J.; Tubiello, F. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, C.; Tubiello, F.N.; Goldberg, R.; Mills, E.; Bloomfield, J. Increased crop damage in the US from excess precipitation under climate change. Glob. Environ. Chang. 2002, 12, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change. Climate Change: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Lake, I.R.; Hooper, L.; Abdelhamid, A.; Bentham, G.; Boxall, A.B.; Draper, A.; Fairweather-Tait, S.; Hulme, M.; Hunter, P.R.; Nichols, G.; et al. Climate change and food security: Health impacts in developed countries. Environ. Health Perspect. 2012, 120, 1520–1526. [Google Scholar] [CrossRef]
- Hunter, P.R. Climate change and waterborne and vector-borne disease. J. Appl. Microbiol. Symp. Suppl. 2003, 94, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Hall, G.V.; D’Souza, R.M.; Kirk, M. Foodborne disease in the new millennium: Out of the frying pan and into the fire? Med. J. Aust. 2002, 177, 614–618. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- FAO. The Future of Food and Agriculture and Challenges. 2017. Available online: https://www.fao.org/3/i6583e/i6583e.pdf (accessed on 2 November 2022).
- United Nations. World Urbanization Prospects: The 2005 Revision; United Nations Publications: New York, NY, USA, 2011. [Google Scholar]
- Thornton, P.K.; Jones, P.G.; Ericksen, P.J.; Challinor, A.J. Agriculture and food systems in sub-Saharan Africa in a 4 C+ world. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 117–136. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.I.; Khan, M.R. Impact of climate change on food security in Saudi Arabia: A roadmap to agriculture-water sustainability. J. Agribus. Dev. Emerg. Econ. 2020, 12, 1–18. [Google Scholar] [CrossRef]
- The World Bank. Natural Disasters in the Middle East and North Africa: A Regional Overview; The World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Bailey, R.; Willoughby, R. Edible Oil: Food Security in the Gulf; Chatham House: London, UK, 2013; pp. 10–12. [Google Scholar]
- Fiaz, S.; Noor, M.A.; Aldosri, F.O. Achieving food security in the Kingdom of Saudi Arabia through innovation: Potential role of agricultural extension. J. Saudi Soc. Agric. Sci. 2018, 17, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Lippman, T. Saudi Arabia’s quest for food security. Middle East Policy 2010, 17, 90–98. [Google Scholar] [CrossRef]
- Grindlea, A.K.; Siddiqia, A.; Anadona, L.D. Food security amidst water scarcity: Insights on sustainable food production from Saudi Arabia. Sustain. Prod. Consum. 2015, 2, 67–78. [Google Scholar] [CrossRef]
- Pieters, H.; Swinnen, J. Food security policy at the extreme of the water-energy-food nexus: The Kingdom of Saudi Arabia. Front. Econ. Glob. 2016, 16, 199–214. [Google Scholar] [CrossRef]
- Almazroui, M. Changes in Temperature Trends and Extremes over Saudi Arabia for the Period 1978–2019. Adv. Meteorol. 2020, 2020, 8828421. [Google Scholar] [CrossRef]
- Alharbi, T.; Sultan, M. An Assessment of the Distribution of Landslides Caused by Debris Flows in Faifa Mountians, Jazan Area, Saudi Arabia using Remote Sensing and Gis Techniques. Master’s Thesis, Western Michigan University, Kalamazoo, MI, USA, 1985. [Google Scholar]
- Youssef, A.M.; Sefry, S.A.; Pradhan, B.; Abu Alfadail, E. Analysis on causes of flash flood in Jeddah city (Kingdom of Saudi Arabia) of 2009 and 2011 using multi-sensor remote sensing data and GIS. Geomat. Nat. Hazards Risk 2016, 7, 1018–1042. [Google Scholar] [CrossRef]
- Alam, J.B.; Hussein, M.H.; Magram, S.F.; Barua, R. Impact of Climate Parameters on Agriculture in Saudi Arabia: Case Study of Selected Crops. Int. J. Clim. Chang. Impacts Responses 2011, 2, 41–50. [Google Scholar] [CrossRef]
- El-Sharif, A.S. Climatic constraints and potential corn production in Saudi Arabia—A study in agroclimate. GeoJournal 1986, 13, 119–127. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L.M. Extreme temperature trends on the west coast of Saudi Arabia. Atmos. Clim. Sci. 2012, 2, 351–361. [Google Scholar] [CrossRef] [Green Version]
- Alboghdady, M.; El-Hendawy, S.E. Economic impacts of climate change and variability on agricultural production in the Middle East and North Africa region. Int. J. Clim. Chang. Strateg. Manag. 2016, 8, 463–472. [Google Scholar] [CrossRef]
- Subyani, A.M. Hydrologic behavior and flood probability for selected arid basins in Makkah area, western Saudi Arabia. Arab. J. Geosci. 2011, 4, 817–824. [Google Scholar]
- Almazroui, M. Sensitivity of a regional climate model on the simulation of high intensity rainfall events over the Arabian Peninsula and around Jeddah (Saudi Arabia). Theor. Appl. Climatol. 2011, 104, 261–276. [Google Scholar] [CrossRef] [Green Version]
- Subyani, A.M. Geostatistical study of annual and seasonal mean rainfall patterns in southwest Saudi Arabia. Hydrol. Sci. J. 2004, 49, 803–817. [Google Scholar] [CrossRef] [Green Version]
- Taher, S.; Alshaikh, A. Spatial analysis of rainfall in southwest of Saudi Arabia using GIS. Hydrol. Res. 1998, 29, 91–104. [Google Scholar] [CrossRef]
- Subyani, A.M.; Hajjar, A.F. Rainfall analysis in the contest of climate change for Jeddah area, Western Saudi Arabia. Arab. J. Geosci. 2016, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Mashat, A.; Basset, H.A. Analysis of Rainfall over Saudi Arabia. J. King Abdulaziz Univ. Environ. Arid L. Agric. Sci. 2011, 22, 59–78. [Google Scholar] [CrossRef]
- Amin, M.R.; Zhang, J.; Yang, M. Effects of climate change on the yield and cropping area of major food crops: A case of Bangladesh. Sustainability 2014, 7, 898–915. [Google Scholar] [CrossRef] [Green Version]
- Drewes, J.E.; Rao Garduno, C.P.; Amy, G.L. Water reuse in the Kingdom of Saudi Arabia Status, prospects and research needs. Water Sci. Technol. Water Supply 2012, 12, 926–936. [Google Scholar] [CrossRef]
- Faurès, J.-M.; Hoogeveen, J.; Bruinsma, J. The FAO Irrigated Area Forecast for 2030; FAO: Rome, Italy, 2002; pp. 1–14. [Google Scholar]
- MEWA, National Water Strategy, Ministry of Environment, Water and Agriculture. Available online: https://www.mewa.gov.sa/en/Ministry/Agencies/TheWaterAgency/Topics/Pages/Strategy.aspx (accessed on 20 October 2022).
- Global Water Intelligence. Meeting the World’s Water and Wastewater Needs Until 2020; Volume 4: Middle East and Africa; Global Water Intelligence: Oxford, UK, 2017; pp. 1379–1385. [Google Scholar]
- Jaradat, A.A. Saline agriculture in the Arabian Peninsula: Management of marginal lands and saline water resources. J. Food Agric. Environ. 2005, 3, 302–306. Available online: https://pubag.nal.usda.gov/download/19158/pdf (accessed on 18 September 2022).
- Intergovernmental Panel on Climate Change. Climate Change 2007: The Physical Science Basis. 2007. Available online: https://www.ipcc.ch/report/ar4/wg1/ (accessed on 18 September 2022).
- FAO. Climate-Related Transboundary Pests and Diseases; FAO: Rome, Italy, 2008. [Google Scholar]
- Zhou, X.; Harrington, R.; Woiwod, I.P.; Perry, J.N.; Bale, J.S.; Clark, S.J. Effects of temperature on aphid phenology. Glob. Chang. Biol. 1995, 1, 303–313. [Google Scholar] [CrossRef]
- Ayers, J.; Huq, S.; Wright, H.; Faisal, A.M.; Hussain, S.T. Mainstreaming climate change adaptation into development in Bangladesh. Clim. Dev. 2014, 6, 293–305. [Google Scholar] [CrossRef] [Green Version]
- El-Habbab, M.S.; Al-Mulhim, F.; Al-Eid, S.; Abo El-Saad, M.; Aljassas, F.; Sallam, A.; Ghazzawy, H. Assessment of post-harvest loss and waste for date palms in the Kingdom of Saudi Arabia. Int. J. Environ. Agric. Res. 2017, 3, 1–11. [Google Scholar] [CrossRef]
- Plant Village. Crops. 2022. Available online: https://plantvillage.psu.edu/topics/pearl-millet/infos (accessed on 5 October 2022).
- Yaman, I.K.A. Insect pests of Saudi Arabia. J. Appl. Entomol. 1966, 58, 266–278. [Google Scholar] [CrossRef]
- Rambo, K.A.; Warsinger, D.M.; Shanbhogue, S.J.; Lienhard V, J.H.; Ghoniem, A.F. Water-Energy Nexus in Saudi Arabia. Energy Procedia 2017, 105, 3837–3843. [Google Scholar] [CrossRef] [Green Version]
- GAS. General Authority for Statistics, Saudi Reports and Statistics. 2017. Available online: https://www.stats.gov.sa/en (accessed on 20 September 2022).
- Hameed, M.; Moradkhani, H.; Ahmadalipour, A.; Moftakhari, H.; Abbaszadeh, P.; Alipour, A. A review of the 21st century challenges in the food-energy-water security in the middle east. Water 2019, 11, 682. [Google Scholar] [CrossRef] [Green Version]
- Ziska, L.; Crimmins, A.; McLeroy, S.; Auclair, A. Food safety, nutrition, and distribution. In The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2016; pp. 189–216. [Google Scholar]
- Rahman, M.M.; Rahman, S.; Rahman, M.; Hasan, A.; Shoaib, S.; Rushd, S. Greenhouse Gas Emissions from Solid Waste Management in Saudi Arabia—Analysis of Growth Dynamics and Mitigation Opportunities. Appl. Sci. 2021, 11, 1737. [Google Scholar] [CrossRef]
- Hasan, A.; Nahiduzzaman, K.; Aldosary, A.S.; Hewage, K.; Sadiq, R. Nexus of economic growth, energy consumption, FDI and emissions: A tale of Bangladesh. Environ. Dev. Sustain. 2022, 24, 6327–6348. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hasan, M.A.; Shafiullah, M.; Rahman, M.S.; Arifuzzaman, M.; Islam, K.; Islam, M.M.; Rahman, S.M. A Critical, Temporal Analysis of Saudi Arabia’s Initiatives for Greenhouse Gas Emissions Reduction in the Energy Sector. Sustainability 2022, 14, 12651. [Google Scholar] [CrossRef]
- Pasinetti, L. Causality and interdependence in econometric analysis and in economic theory. Struct. Chang. Econ. Dyn. 2019, 49, 357–363. [Google Scholar] [CrossRef]
- SAMA. Annual Statistics in 2020. Saudi Arabian Monetory Agency Yearly Statistics. 2020. Available online: https://www.sama.gov.sa/en-us/EconomicReports/pages/YearlyStatistics.aspx (accessed on 5 October 2022).
- World Resource Institute. Climate Watch (CAIT): Country Greenhouse Gas Emissions Data. 2022. Available online: https://www.wri.org/data/climate-watch-cait-country-greenhouse-gas-emissions-data (accessed on 4 October 2022).
- The World Bank. World Development Indicators-Databank. 2022. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 2 October 2022).
- Earth Policy Institute. Climate, Energy, and Transportation. 2022. Available online: https://www.earth-policy.org/data_center/C23 (accessed on 4 October 2022).
- Hasan, M. Understanding the Costs, Benefits, Mitigation Potentials and Ethical Aspects of New Zealand’s Transport Emissions Reduction Policies. Ph.D. Thesis, Victoria University of Wellington, Wellington, New Zealand, 2020. [Google Scholar]
- Hasan, A.; Frame, D.J.; Chapman, R.; Archie, K.M. Emissions from the road transport sector of New Zealand: Key drivers and challenges. Environ. Sci. Pollut. Res. 2019, 26, 23937–23957. [Google Scholar] [CrossRef]
- Majeed, A.; Wang, L.; Zhang, X.; Kirikkaleli, D. Modeling the dynamic links among natural resources, economic globalization, disaggregated energy consumption, and environmental quality: Fresh evidence from. Resour. Policy 2021, 73, 102204. [Google Scholar] [CrossRef]
- Majeed, A.; Ye, C.; Chenyun, Y.; Wei, X. Roles of natural resources, globalization, and technological innovations in mitigation of environmental degradation in BRI economies. PLoS ONE 2022, 17, e0265755. [Google Scholar] [CrossRef] [PubMed]
- Al Zawad, F.M.; Aksakal, A. Impacts of Climate Change on Water Resources in Saudi Arabia BT—Global Warming: Engineering Solutions; Dincer, I., Hepbasli, A., Midilli, A., Karakoc, T.H., Eds.; Springer: Boston, MA, USA, 2010; pp. 511–523. [Google Scholar]
- Allbed, A.; Kumar, L.; Shabani, F. Climate change impacts on date palm cultivation in Saudi Arabia. J. Agric. Sci. 2017, 155, 1203–1218. [Google Scholar] [CrossRef]
- Bodin, P.; Olin, S.; Pugh, T.; Arneth, A. Accounting for interannual variability in agricultural intensification: The potential of crop selection in Sub-Saharan Africa. Agric. Syst. 2016, 148, 159–168. [Google Scholar] [CrossRef]
- Chalise, S.; Naranpanawa, A. Climate change adaptation in agriculture: A computable general equilibrium analysis of land-use change in Nepal. Land Use Policy 2016, 59, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Moniruzzaman, S. Crop choice as climate change adaptation: Evidence from Bangladesh. Ecol. Econ. 2015, 118, 90–98. [Google Scholar] [CrossRef]
- UNCCD. Sustainable Land Management Contribution to Successful Land-Based Climate Change Adaptation and Mitigation; UNCCD: Bonn, Germany, 2017. [Google Scholar]
- Teixeira, E.I.; de Ruiter, J.; Ausseil, A.-G.; Daigneault, A.; Johnstone, P.; Holmes, A.; Tait, A.; Ewert, F. Adapting crop rotations to climate change in regional impact modelling assessments. Sci. Total Environ. 2018, 616–617, 785–795. [Google Scholar] [CrossRef]
- Waha, K.; Müller, C.; Bondeau, A.; Dietrich, J.; Kurukulasuriya, P.; Heinke, J.; Lotze-Campen, H. Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Glob. Environ. Chang. 2013, 23, 130–143. [Google Scholar] [CrossRef]
- Waongo, M.; Laux, P.; Kunstmann, H. Adaptation to climate change: The impacts of optimized planting dates on attainable maize yields under rainfed conditions in Burkina Faso. Agric. For. Meteorol. 2015, 205, 23–39. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, A.; Webber, H.; Zhao, G.; Ewert, F.; Kros, J.; Wolf, J.; Britz, W.; de Vries, W. Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements. Agric. Syst. 2017, 157, 81–92. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Barzman, M.; Booij, K.; Boonekamp, P.; Desneux, N.; Huber, L.; Kudsk, P.; Langrell, S.R.H.; Ratnadass, A.; Ricci, P.; et al. Robust cropping systems to tackle pests under climate change. A review. Agron. Sustain. Dev. 2015, 35, 443–459. [Google Scholar] [CrossRef]
- Palmer, M.A.; Liu, J.; Matthews, J.H.; Mumba, M.; D’Odorico, P. Manage water in a green way. Science 2015, 349, 584–585. [Google Scholar] [CrossRef] [PubMed]
- Daramola, A.Y.; Oni, O.T.; Ogundele, O.; Adesanya, A. Adaptive capacity and coping response strategies to natural disasters: A study in Nigeria. Int. J. Disaster Risk Reduct. 2016, 15, 132–147. [Google Scholar] [CrossRef]
- Ali, A.; Erenstein, O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim. Risk Manag. 2017, 16, 183–194. [Google Scholar] [CrossRef]
- Smith, P. Do grasslands act as a perpetual sink for carbon? Glob. Chang. Biol. 2014, 20, 2708–2711. [Google Scholar] [CrossRef] [PubMed]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [Green Version]
- Smith, N.K.C.; Johnson, P. Interlinkages between Desertification; Food Security and Greenhouse Gas Fluxes: Synergies; Land Degradation; Trade-offs and Integrated Response Options. In Climate Change and Land: An IPCC Special Report on Climate Change; and Greenhouse Gas Fluxe; Synerg: Greensboro, NC, USA, 2019. [Google Scholar]
- Kihara, J.; Fatondji, D.; Jones, J.W.; Hoogenboom, G.; Tabo, R.; Bationo, A. Improving Soil Fertility Recommendations in Africa using the Decision Support System for Agrotechnology Transfer (DSSAT); Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Bolinder, M.A.; Crotty, F.; Elsen, A.; Frac, M.; Kismányoky, T.; Lipiec, J.; Tits, M.; Tóth, Z.; Kätterer, T. The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: A synthesis of reviews. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 929–952. [Google Scholar] [CrossRef]
- Jensen, E.S.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global-scale analysis. Agron. Sustain. Dev. 2020, 40, 5. [Google Scholar] [CrossRef] [Green Version]
- Lal, R.; Smith, P.; Jungkunst, H.F.; Mitsch, W.J.; Lehmann, J.; Nair, P.R.; McBratney, A.B.; Sá, J.C.D.M.; Schneider, J.; Zinn, Y.L.; et al. The carbon sequestration potential of terrestrial ecosystems. J. Soil Water Conserv. 2018, 73, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Namatsheve, T.; Cardinael, R.; Corbeels, M.; Chikowo, R. Productivity and biological N2-fixation in cereal-cowpea intercropping systems in sub-Saharan Africa. A review. Agron. Sustain. Dev. 2020, 40, 30. [Google Scholar] [CrossRef]
- Nair, P.R.; Nair, V.D.; Kumar, B.M.; Showalter, J.M. Carbon Sequestration in Agroforestry Systems. Adv. Agron. 2010, 108, 237–307. [Google Scholar] [CrossRef]
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; van Noordwijk, M.; Creed, I.F.; Pokorny, J.; et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Chang. 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Kuyah, S.; Whitney, C.W.; Jonsson, M.; Sileshi, G.W.; Öborn, I.; Muthuri, C.W.; Luedeling, E. Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis. Agron. Sustain. Dev. 2019, 39, 47. [Google Scholar] [CrossRef] [Green Version]
- Mbow, C.; Rosenzweig, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Food Security; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Zhu, X.; Liu, W.; Chen, J.; Bruijnzeel, L.A.; Mao, Z.; Yang, X.; Cardinael, R.; Meng, F.-R.; Sidle, R.C.; Seitz, S.; et al. Reductions in water, soil and nutrient losses and pesticide pollution in agroforestry practices: A review of evidence and processes. Plant Soil 2020, 453, 45–86. [Google Scholar] [CrossRef]
- Amadu, F.O.; Miller, D.C.; McNamara, P.E. Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi. Ecol. Econ. 2020, 167, 106443. [Google Scholar] [CrossRef]
- Fleischman, F.; Basant, S.; Chhatre, A.; Coleman, E.A.; Fischer, H.W.; Gupta, D.; Güneralp, B.; Kashwan, P.; Khatri, D.; Muscarella, R.; et al. Pitfalls of Tree Planting Show Why We Need People-Centered Natural Climate Solutions. Bioscience 2020, 70, 947–950. [Google Scholar] [CrossRef]
- Holl, K.D.; Brancalion, P.H.S. Tree planting is not a simple solution. Science 2020, 368, 580–581. [Google Scholar] [CrossRef]
- Jamnadass, R.; Mumm, R.H.; Hale, I.; Hendre, P.; Muchugi, A.; Dawson, I.K.; Powell, W.; Graudal, L.; Yana-Shapiro, H.; Simons, A.J.; et al. Enhancing African orphan crops with genomics. Nat. Genet. 2020, 52, 356–360. [Google Scholar] [CrossRef]
- Rivera-Ferre, M.; López-I-Gelats, F.; Howden, M.; Smith, P.; Morton, J.; Herrero, M. Re-framing the climate change debate in the livestock sector: Mitigation and adaptation options. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 869–892. [Google Scholar] [CrossRef]
- Al-Kodmany, K. The Vertical Farm: A Review of Developments and Implications for the Vertical City. Buildings 2018, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Love, D.C.; Uhl, M.S.; Genello, L. Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquac. Eng. 2015, 68, 19–27. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, C.; Bonnett, G.; McIntyre, C.; Hochman, Z.; Wasson, A. Strategies to improve the productivity, product diversity and profitability of urban agriculture. Agric. Syst. 2019, 174, 133–144. [Google Scholar] [CrossRef]
- Al-Zahrani, K.; Baig, M.; Straquadine, G. Consumption behavior and Water Demand Management in the Kingdom of Saudi Arabia: Implications for extension and education. Arab. Gulf J. Sci. Res. 2013, 31, 79–89. [Google Scholar] [CrossRef]
- Rattanachot, W.; Wang, Y.; Chong, D.; Suwansawas, S. Adaptation strategies of transport infrastructures to global climate change. Transp. Policy 2015, 41, 159–166. [Google Scholar] [CrossRef]
- Leite, J.C.; Caldeira, S.; Watzl, B.; Wollgast, J. Healthy low nitrogen footprint diets. Glob. Food Sec. 2020, 24, 100342. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chaudhary, A.; Mathys, A. Dietary Change Scenarios and Implications for Environmental, Nutrition, Human Health and Economic Dimensions of Food Sustainability. Nutrients 2019, 11, 856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theurl, M.C.; Lauk, C.; Kalt, G.; Mayer, A.; Kaltenegger, K.; Morais, T.G.; Teixeira, R.F.; Domingos, T.; Winiwarter, W.; Erb, K.-H.; et al. Food systems in a zero-deforestation world: Dietary change is more important than intensification for climate targets in 2050. Sci. Total Environ. 2020, 735, 139353. [Google Scholar] [CrossRef]
- Bodirsky, B.L.; Dietrich, J.P.; Martinelli, E.; Stenstad, A.; Pradhan, P.; Gabrysch, S.; Mishra, A.; Weindl, I.; Le Mouël, C.; Rolinski, S.; et al. The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection. Sci. Rep. 2020, 10, 19778. [Google Scholar] [CrossRef]
- Hamilton, I.; Kennard, H.; McGushin, A.; Höglund-Isaksson, L.; Kiesewetter, G.; Lott, M.; Milner, J.; Purohit, P.; Rafaj, P.; Sharma, R.; et al. The public health implications of the Paris Agreement: A modelling study. Lancet. Planet. Health 2021, 5, e74–e83. [Google Scholar] [CrossRef]
- Jarmul, S.; Dangour, A.D.; Green, R.; Liew, Z.; Haines, A.; Scheelbeek, P.F. Climate change mitigation through dietary change: A systematic review of empirical and modelling studies on the environmental footprints and health effects of ‘sustainable diets. Environ. Res. Lett. 2020, 15, 123014. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- BBC. Saudi Arabia Launches Weight Loss Competition. BBC News. 2016. Available online: https://www.bbc.com/news/blogs-news-from-elsewhere-35630919 (accessed on 4 October 2022).
- Aschemann-Witzel, J. Consumer perception and trends about health and sustainability: Trade-offs and synergies of two pivotal issues. Curr. Opin. Food Sci. 2015, 3, 6–10. [Google Scholar] [CrossRef]
- Macdiarmid, J.I. Is a healthy diet an environmentally sustainable diet? Proc. Nutr. Soc. 2013, 72, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Galli, F.; Prosperi, P.; Favilli, E.; D’Amico, S.; Bartolini, F.; Brunori, G. How can policy processes remove barriers to sustainable food systems in Europe? Contributing to a policy framework for agri-food transitions. Food Policy 2020, 96, 101871. [Google Scholar] [CrossRef]
- FAO-WHO. Sustainable Healthy Diets Guiding Principles. 2019. Available online: https://www.fao.org/3/ca6640en/ca6640en.pdf (accessed on 4 October 2022).
- UNEP. UNEP Food Waste Index Report 2021|UNEP—UN Environment Programme; UNEP: Nairobi, Kenya, 2021; Available online: https://www.unep.org/resources/report/unep-food-waste-index-report-2021 (accessed on 15 October 2022).
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [Green Version]
- HLPE. Food Losses and Waste in the Context of Sustainable Food Systems a Report by the High Level Panel of Experts on Food Security and Nutrition; HLPE: Rome, Italy, 2014. [Google Scholar]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate Change and Food Systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef]
- Saudi Gazette. National Foundation for Food Preservation Established to Tackle SR40bn of Food Waste in KSA. Saudi Gazette. April 2022. Available online: https://saudigazette.com.sa/article/619478/SAUDI-ARABIA/National-Foundation-for-Food-Preservation-established-to-tackle-SR40bn-of-food-waste-in-KSA (accessed on 2 November 2022).
- Taylor, J.S.; Parfitt, J.; Jarosz, D. Regulating the Role of Unfair Trading Practices in Food Waste Generation Key Messages. EU Horizon 2020 REFRESH. 28 February 2019. Available online: https://eu-refresh.org/regulating-role-unfair-trading-practices-food-waste-generation.html (accessed on 2 November 2022).
Crop | Insect/Pest | Approximate Yield Loss (%) | Season of Occurrence | Reference |
---|---|---|---|---|
Dates | Red palm weevil | 12.6–20% | Year-round, but most prevalent between March and May and October and November | [45] |
Termites | Year-round | |||
Green and white pit scale insect | Year-round | |||
Inflorescence weevil and beetle | June–July | |||
Fruit rots | June–July | |||
Birds | July–October | |||
Sorghum | Charcoal rot | winter | [46] | |
Gray leaf spot | Winter | |||
Smut (Covered kernel) Sporisorium sorghi | Winter season | |||
Millet | Cercospora leaf spot (Cercospora penniseti) | Summer | [46] | |
Ergot (Claviceps fusiformis) | Summer | |||
Cotton | Micvocevotermes divevsus Silv. | Spring | [47] | |
Eavias insulana Bois. | Spring | |||
Oxycavenus hyalinipennis Costa. | Summer | |||
Sesame | Antigastra catalaunalis Dup. | Summer | [47] | |
Aphis gossypii Glover. | Spring and summer | |||
Wheat and barley | T oxopetera grarnirmn Rondani | 12–26% | Winter and Spring | [47] |
grotis ypsilon R. | Autumn and winter | |||
Phytophaga destructor Say. | Summer | |||
Scbistocerca gregaria Forsli. | Autumn | |||
Apple | Eriosoma lanigera Hausum. | All year | [47] | |
Lepidosaphes ulmi L. | All year | |||
Venturia inequalis | All year |
Variables | Descriptions | Year | Unit | Data Source |
---|---|---|---|---|
Food | Food = food imported + food produced (including grains, fruits, and vegetables) | 1990–2019 | tons | Saudi Arabian Monetary Agency: Annual Statistics [56] |
GHG | Greenhouse gas emissions | 1990–2019 | Million tons of CO2-Eq. | World Resource Institute [57] |
Pop | Total population of Saudi Arabia | 1990–2019 | Million | World Development Indicators: Databank [58] |
GDP | The sum of all domestic goods produced in Saudi Arabia in a single year divided by the population of that country. | 1990–2019 | Billion USD | World Development Indicators: Databank [58] |
Temp | Average temperature of Saudi Arabia | 1990–2019 | Degree Celsius | Earth Policy Institute Data Bank [59] |
At level | Test Statistics: ADF | Test Statistics: PP | ||
---|---|---|---|---|
Intercept | Intercept & Trend (I&T) | Intercept | (I&T) | |
Food | −2.12 (2) | −4.41 *** (0) | −2.04 (2) | −4.41 *** (0) |
GHG | −2.30 (2) | −3.00 (2) | 0.08 (2) | −1.59 (1) |
Pop | −3.13 ** (7) | −4.49 *** (6) | 2.95 (2) | −1.30 (2) |
GDP | 0.18 (0) | −2.03 (2) | 0.19 (1) | −2.06 (1) |
Temp | −2.57 (2) | −4.81 *** (2) | −2.36 (1) | −4.81 *** (1) |
At first difference | ||||
Food | −5.99 *** (0) | −6.05 *** (0) | −8.95 *** (2) | −9.45 *** (5) |
GHG | −3.24 ** (2) | −3.30 ** (2) | −3.24 ** (2) | −3.25 ** (2) |
Pop | −4.39 *** (6) | 0.47 (6) | −3.26 ** (2) | −3.45 ** (2) |
GDP | −4.55 *** (2) | −4.58 *** (2) | −4.49 *** (2) | −4.52 *** (2) |
Temp | −8.31 *** (2) | −8.14 *** (2) | −21.45 *** (2) | −24.99 *** (2) |
Co-Integration Equation (CE) Number | Hypothesis | Trace Statistics | Max Eigenvalue Statistics |
---|---|---|---|
r = 0 | No CE | 140.38 *** | 74.30 *** |
r = 1 | At most 1 CE | 66.08 *** | 38.38 *** |
r = 2 | At most 2 CE | 27.70 * | 21.56 ** |
r = 3 | At most 3 CE | 6.14 | 5.99 |
r = 4 | At most 4 CE | 0.15 | 0.15 |
Dependent Variable: Food | |||
---|---|---|---|
Explanatory Variable | Coefficient | Standard Error | T Statistics |
Constants | −4.7 × 108 | 7.7 × 108 | −0.61 |
GHG | 1.3 × 105 | 2.4 × 104 | 5.63 |
Pop | 4.02 × 105 | 7.4 × 105 | 0.54 |
GDP | 6.3 × 104 | 8.3 × 103 | 7.6 |
Temp | 2.06 × 107 | 1.7 × 106 | 11.9 |
Short-Run Granger Causality-F Statistics | Long-Run Granger Causality-T Statistics | |||||
---|---|---|---|---|---|---|
Ln (Food) | Ln (GHG) | Ln (Pop) | Ln (GDP) | Ln (Temp) | Error Correction Terms | |
Ln (Food) | - | 0.43 (0.66) | 0.06 (0.96) | 2.31 (0.13) | 0.57 (0.58) | 3.43 *** (0.004) |
Ln (GHG) | 0.78 (0.48) | - | 6.90 *** (0.008) | 8.13 *** (0.004) | 2.07 (0.16) | 0.61 (0.55) |
Ln (Pop) | 0.13 (0.88) | 1.02 (0.39) | - | 0.50 (0.62) | 1.00 (0.39) | 0.30 (0.77) |
Ln (GDP) | 0.21 (0.81) | 2.45 (0.12) | 1.83 (0.19) | - | 1.53 (0.25) | 2.01 * (0.06) |
Ln (Temp) | 0.94 (0.41) | 0.27 (0.77) | 1.26 (0.31) | 3.10 * (0.07) | 1.04 (0.31) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Akter, R.; Abdul Bari, J.B.; Hasan, M.A.; Rahman, M.S.; Abu Shoaib, S.; Shatnawi, Z.N.; Alshayeb, A.F.; Shalabi, F.I.; Rahman, A.; et al. Analysis of Climate Change Impacts on the Food System Security of Saudi Arabia. Sustainability 2022, 14, 14482. https://doi.org/10.3390/su142114482
Rahman MM, Akter R, Abdul Bari JB, Hasan MA, Rahman MS, Abu Shoaib S, Shatnawi ZN, Alshayeb AF, Shalabi FI, Rahman A, et al. Analysis of Climate Change Impacts on the Food System Security of Saudi Arabia. Sustainability. 2022; 14(21):14482. https://doi.org/10.3390/su142114482
Chicago/Turabian StyleRahman, Muhammad Muhitur, Runa Akter, Jaber Bin Abdul Bari, Md Arif Hasan, Mohammad Shahedur Rahman, Syed Abu Shoaib, Ziad Nayef Shatnawi, Ammar Fayez Alshayeb, Faisal Ibrahim Shalabi, Aminur Rahman, and et al. 2022. "Analysis of Climate Change Impacts on the Food System Security of Saudi Arabia" Sustainability 14, no. 21: 14482. https://doi.org/10.3390/su142114482
APA StyleRahman, M. M., Akter, R., Abdul Bari, J. B., Hasan, M. A., Rahman, M. S., Abu Shoaib, S., Shatnawi, Z. N., Alshayeb, A. F., Shalabi, F. I., Rahman, A., Alsanad, M. A., & Rahman, S. M. (2022). Analysis of Climate Change Impacts on the Food System Security of Saudi Arabia. Sustainability, 14(21), 14482. https://doi.org/10.3390/su142114482