Effect of Variation in Row Spacing on Soil Wind Erosion, Soil Properties, and Cyperus esculentus Yield in Sandy Land
Abstract
:1. Introduction
2. Material and Methods
2.1. Experiment Site and Design
2.2. Sampling and Measurements
2.3. Statistical Analysis
3. Results
3.1. Yields and Nutrient Concentrations Response to Strip Spacing
3.2. Soil Wind Erosion and Soil Property Response to Strip Spacing
3.3. The Relationship between Plant and Soil
4. Discussion
4.1. Plant Growth Response to Different Strip Spacing
4.2. Soil Wind Erosion and Soil Property Response to Different Strip Spacing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, H.S.; Shao, M.G.; Li, Y.Y. Soil desiccation in the Loess Plateau of China. Geoderma 2008, 143, 91–100. [Google Scholar] [CrossRef]
- D’Odorico, P.; Bhattachan, A.; Davis, K.F.; Ravi, S.; Runyan, C.W. Global desertification: Drivers and feedbacks. Adv. Water Resour. 2013, 51, 326–344. [Google Scholar] [CrossRef]
- Chen, S.Y.; Zhang, X.Y.; Sun, H.Y.; Ren, T.S.; Wang, Y.M. Effects of winter wheat row spacing on evapotranspiration, grain yield and water use efficiency. Agric. Water Manag. 2010, 97, 1126–1132. [Google Scholar] [CrossRef]
- Zougmore, R.; Kambou, F.N.; Ouattara, K.; Guillobze, S. Sorghum-cowpea Intercropping: An Effective Technique Against Runoff and Soil Erosion in the Sahel (Saria, Burkina Faso). Arid. Soil Res. Rehabil. 2010, 14, 329–342. [Google Scholar] [CrossRef]
- Yan, Y.C.; Xin, X.P.; Xu, X.L.; Wang, X.; Yang, G.X.; Yan, R.R.; Chen, B.R. Quantitative effects of wind erosion on the soil texture and soil nutrients under different vegetation coverage in a semiarid steppe of northern China. Plant Soil 2013, 369, 585–598. [Google Scholar] [CrossRef]
- Yan, Y.C.; Xin, X.P.; Xu, X.L.; Wang, X.; Yang, G.X.; Yan, R.R.; Chen, B.R. Effect of vegetation coverage on Aeolian dust accumulation in a semiarid steppe of northern China. Catena 2011, 87, 351–356. [Google Scholar] [CrossRef]
- Song, Y.Y.; Zhou, C.B.; Zhang, W.H. Vegetation coverage, species richness, and dune stability in the southern part of Gurbantünggüt Desert. Ecol. Res. 2011, 26, 79–86. [Google Scholar] [CrossRef]
- Wu, T.G.; Yu, M.K.; Wang, G.; Wang, Z.X.; Duan, X.; Dong, Y.; Cheng, X.G. Effects of stand structure on wind speed reduction in a Metasequoia glyptostroboides shelterbelt. Agrofor. Syst. 2013, 87, 251–257. [Google Scholar] [CrossRef]
- Pan, X.; Wang, Z.; Gao, Y. Effects of row spaces on windproof effectiveness of simulated shrubs with different form configurations. Earth Space Sci. 2021, 8, e2021EA001775. [Google Scholar] [CrossRef]
- Ezeh, O.; Gordon, M.H.; Niranjan, K. Tiger nut oil (Cyperus esculentus L.): A review of its composition and physico-chemical properties. Eur. J. Lipid Sci. Technol. 2014, 116, 783–794. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.W.; Xiao, H.B.; Ning, K.; Tang, C.G. Effects of land use and land cover on soil erosion control in southern China: Implications from a systematic quantitative review. J. Environ. Manag. 2021, 282, 111924. [Google Scholar] [CrossRef] [PubMed]
- Aydar, E.F.; Tutuncu, S.; Ozcelik, B. Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. J. Funct. Foods 2020, 70, 103975. [Google Scholar] [CrossRef]
- Carvalho, B.J.; Munekata, P.E.S.; de Carvalho, F.A.L.; Pateiro, M.; Barba, F.J.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Use of Tiger Nut (Cyperus esculentus L.) Oil Emulsion as Animal Fat Replacement in Beef Burgers. Foods 2020, 9, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tursun, N.; Datta, A.; Budak, S.; Kantarci, Z.; Knezevic, S.Z. Row spacing impacts the critical period for weed control in cotton (Gossypium hirsutum). Phytoparasitica 2016, 44, 139–149. [Google Scholar] [CrossRef]
- Yayeh, B.; Getachew, A.; Enyew, A.; Alemayehu, A.; Manuel, T.M. Effect of narrow-row planting patterns on crop competitive and economic advantage in maize–soybean relay strip intercropping system. Plant Prod. Sci. 2016, 20, 1–11. [Google Scholar]
- Su, Y.Z.; Zhang, T.H.; Li, Y.L.; Wang, F. Changes in soil properties after establishment of Artemisia halodendron and Caragana microphylaon shifting sand dunes in semiarid Horqin Sandy Land, Northern China. Environ. Manag. 2005, 36, 272–281. [Google Scholar] [CrossRef]
- Eberbach, P.; Pala, M. Crop row spacing and its influence on the partitioning of evapotranspiration by winter-grown wheat in Northern Syria. Plant Soil 2005, 268, 195–208. [Google Scholar] [CrossRef]
- Ma, R.; Wang, J.H.; Qu, J.J.; Liu, H.J. Effectiveness of shelterbelt with a non-uniform density distribution. J. Wind. Eng. Ind. Aerodyn. 2010, 98, 767–771. [Google Scholar] [CrossRef]
- Asokan, S.; Murthi, A.N.; Mahadevaswamy, M. Effect of nitrogen levels and row spacing on yield, ccs and nitrogen uptake in different sugarcane varieties. Sugar Tech 2005, 7, 44–47. [Google Scholar] [CrossRef]
- Birhanu, A.; Tadesse, T.; Tadesse, D. Effect of inter- and intra-row spacing on yield and yield components of mung bean (Vigna radiata L.) under rain-fed condition at Metema District, northwestern Ethiopia. Agric. Food Secur. 2018, 7, 84. [Google Scholar] [CrossRef]
- York, L.M.; Galindo, C.T.; Schussler, J.R.; Jonathan, P.L. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. J. Exp. Bot. 2015, 66, 2347–2358. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Wang, H.Q.; Fu, B.J.; Zhu, L.H.; Wang, Y.F.; Li, Z.H. Effects of plant diversity on soil erosion for different vegetation patterns. Catena 2016, 147, 632–637. [Google Scholar] [CrossRef]
- Gao, G.L.; Ding, G.D.; Zhao, Y.Y.; Wu, B.; Zhang, Y.Q.; Guo, J.B.; Qin, S.G.; Bao, Y.F.; Yu, M.H.; Liu, Y.D. Characterization of Soil Particle Size Distribution with a Fractal Model in the Desertified Regions of Northern China. Acta Geophys. 2016, 64, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Dong, Y.S.; Qi, Y.C.; Liu, W.G.; An, Z.S. Characterizing variations in soil particle-size distribution along a grass-desert shrub transition in the Ordos Plateau of Inner Mongolia, China. Land Degrad. Dev. 2013, 24, 141–146. [Google Scholar] [CrossRef]
- Fu, W.; Huang, M.B.; Gallichand, J.; Shao, M.G. Optimization of plant coverage in relation to water balance in the Loess Plateau of China. Geoderma 2012, 173–174, 134–144. [Google Scholar] [CrossRef]
- Sharratt, B.S.; McWilliams, D.A. Microclimatic and Rooting Characteristics of Narrow-Row versus Conventional-Row Corn. Agron. J. 2005, 97, 1129–1135. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.H.; Wei, Z.L.; Yi, C.; He, Y.F.; Luo, M.Z. The effect of different coverage of aquatic plants on the phytoplankton and zooplankton community structures: A study based on a shallow macrophytic lake. Aquat. Ecol. 2022, 56, 1347–1358. [Google Scholar] [CrossRef]
- Jiang, X.X. Wind erosion actuality and countermeasures in oases area of southern Xinjiang autonomous region. Bull. Soil Water Conserv. 2003, 1, 62–65. [Google Scholar]
- Dong, Z.B.; Sun, H.Y.; Zhao, A.G. WITSEG sampler: A segmented sand sampler for wind tunnel test. Geomorphology 2004, 59, 119–129. [Google Scholar] [CrossRef]
- Sparks, D. Methods of Soil Analysis; SSSA and ASA: Madison, WI, USA, 1996. [Google Scholar]
- Liu, Q.; Yin, R.; Tan, B.; You, C.M.; Zhang, L.; Xu, Z.F.; Martin, S.; Stefan, S. Nitrogen addition and plant functional type independently modify soil mesofauna effects on litter decomposition. Soil Biol. Biochem. 2021, 160, 108340. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Maddonni, G.A.; Otegui, M.E. Intra-specific competition in maize: Contribution of extreme plant hierarchies to grain yield, grain yield components and kernel composition. Field Crops Res. 2006, 97, 155–166. [Google Scholar] [CrossRef]
- Wang, Y.J.; Chen, F.Q.; Zhang, M.; Chen, S.H.; Tan, X.Q.; Liu, M.; Hu, Z.H. The effects of the reverse seasonal flooding on soil texture within the hydro-fluctuation belt in the Three Gorges reservoir, China. J. Soils Sediments 2018, 18, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Kelly, G.J.; Holtum, J.A.M.; Latzko, E. Photosynthesis Carbon Metabolism: New Regulators of CO2 Fixation, the New Importance of Pyrophosphate, and the Old Problem of Oxygen Involvement Revisited. In Thirty Years of Photosynthesis; Springer: Berlin/Heidelberg, Germany, 1989; pp. 74–101. [Google Scholar]
- Wu, A.; Hammer, G.L.; Doherty, A.; Gaemmerer, S.V.; Farquhar, G.D. Quantifying impacts of enhancing photosynthesis on crop yield. Nat. Plants 2019, 5, 380–388. [Google Scholar] [CrossRef]
- Yang, H. Effects of nitrogen and phosphorus addition on leaf nutrient characteristics in a subtropical forest. Trees 2018, 32, 383–391. [Google Scholar] [CrossRef]
- Li, X.L.; Ma, Y.J.; Ma, R.; Zhang, Y.H.; Tang, W.D.; Yang, J.J. Wind flow field and windproof efficiency of shelterbelt in different width. J. Desert Res. 2018, 38, 936–944. [Google Scholar]
- Shao, H.; Shi, D.F.; Shi, W.J.; Ban, X.B.; Chen, Y.C.; Chen, F.J.; Mi, G.H. Genotypic difference in the plasticity of root system architecture of field–grown maize in response to plant density. Plant Soil 2019, 439, 201–217. [Google Scholar] [CrossRef]
- Mendez, M.J.; Buschiazzo, D.E. Soil coverage evolution and wind erosion risk on summer crops under contrasting tillage systems. Aeolian Res. 2015, 16, 117–124. [Google Scholar] [CrossRef]
- Liu, T.D.; Song, F.B. Maize photosynthesis and microclimate within the canopies at grain-filling stage in response to narrow-wide strip planting patterns. Photosynthetica 2012, 50, 215–222. [Google Scholar] [CrossRef]
- Jia, H.L.; Wang, G.; Li, G.; Zhuang, J.; Tang, L. Wind erosion control utilizing standing corn residue in Northeast China. Soil Tillage Res. 2015, 153, 112–119. [Google Scholar] [CrossRef]
- Ahmadi, A.; Neyshabouri, M.R.; Rouhipour, H.; Asadi, H. Fractal dimension of soil aggregates as an index of soil erodibility. J. Hydrol. 2011, 400, 305–311. [Google Scholar] [CrossRef]
- Williams, J.; Prebble, R.; Williams, W.; Hignett, C. Influence of texture, structure and clay mineralogy on the soil moisture characteristics. Aust. J. Soil Res. 1983, 21, 15–32. [Google Scholar] [CrossRef]
- Tribals, S.; Nelson, S.O. Microwave Sensing Technique for Nondestructive Determination of Bulk Density and Moisture Content in Unshelled and Shelled Peanuts. Trans. ASABE 2006, 49, 1563–1568. [Google Scholar]
- Tornquist, C.G.; Hons, F.M.; Feagley, S.E. Agroforestry system effects on soil characteristics of the Sarapiqi region of Costa Rica. Agric. Ecosyst. Environ. 1999, 73, 19–20. [Google Scholar] [CrossRef]
- Fu, G.; Shen, Z.X. Response of alpine soils to nitrogen addition on the Tibetan Plateau: A meta-analysis. Appl. Soil Ecol. 2017, 114, 99–104. [Google Scholar] [CrossRef]
- Su, Y.Z.; Zhao, H.L.; Li, Y.L.; Cui, J.Y. Influencing mechanisms of several shrubs on soil chemical properties in semiarid Horqin Sandy Land, China. Arid. Land Res. Manag. 2004, 18, 251–263. [Google Scholar] [CrossRef]
- Neyshabouri, M.; Ahmadi, A.; Rouhipour, H.; Asadi, H.; Irannajad, M. Soil texture fractions and fractal dimension of particle size distribution as predictors of interrill erodibility. Turk. J. Agric. For. 2011, 35, 95–102. [Google Scholar] [CrossRef]
- Larney, F.J.; Bullock, M.S.; Janzen, H.H.; Benjamin, H.E.; Olson, E.C.S. Wind erosion effects on nutrient redistribution and soil productivity. J. Soil Water Conserv. 1998, 53, 133–140. [Google Scholar]
- Gang, C.; Zhu, H.L.; Yong, Z. Soil microbial activities and carbon and nitrogen fixation. Res. Microbiol. 2003, 154, 393–398. [Google Scholar]
- Wardle, D.A. A comparative assessment of factors which influence microbial biomass Carbon and Nitrogen levels in soil. Biol. Rev. 1992, 67, 321–358. [Google Scholar] [CrossRef]
- Cong, W.F.; Hoffland, E.; Li, L. Intercropping enhances soil carbon and nitrogen. Glob. Chang. Biol. 2015, 21, 1715–1726. [Google Scholar] [CrossRef] [PubMed]
- Camenzind, T.; Httenschwiler, S.; Treseder, K.K.; Lehmann, A.; Rilling, M.C. Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. 2018, 88, 4–21. [Google Scholar] [CrossRef]
Treatment | |||
---|---|---|---|
30 cm | 60 cm | 90 cm | |
Plant height/cm | 74.77 ± 10.70 a | 54.73 ± 5.70 b | 54.27 ± 3.66 b |
Plant density/plant·m−2 | 54.67 ± 16.17 a | 24 ± 10.78 b | 21.33 ± 2.31 b |
Tiller number/individual·plant−1 | 7.67 ± 2.89 a | 4.67 ± 1.08 b | 3.67 ± 2.09 b |
Leaf yield/kg·hectare−1 | 10614.9 ± 4377.0 a | 4697.4 ± 1471.1 b | 4613.3 ± 1816.4 b |
Root yield/kg·hectare−1 | 7648.7 ± 3710.3 a | 1366.1 ± 379.8 b | 1244.4 ± 1356.3 b |
Tuber yield/kg·hectare−1 | 6932.3 ± 2482.5 a | 2430.2 ± 688.7 b | 2709.3 ± 1228.5 b |
Treatment | ||||
---|---|---|---|---|
Control | 30 cm | 60 cm | 90 cm | |
Bulk density | 1.49 ± 0.03 a | 1.38 ± 0.08 a | 1.37 ± 0.07 a | 1.42 ± 0.06 a |
pH | 8.72 ± 0.30 a | 8.35 ± 0.12 c | 8.60 ± 0.20 a | 8.46 ± 0.15 b |
Organic C/g·kg−1 | 1.79 ± 0.41 b | 4.37 ± 0.65 a | 2.33 ± 0.67 b | 1.87 ± 0.24 b |
Available N/mg·kg−1 | 1.33 ± 0.27 d | 13.31 ± 1.40 a | 9.48 ± 0.60 b | 6.77 ± 0.60 c |
Available P/mg·kg−1 | 1.05 ± 0.07 d | 8.41 ± 0.20 a | 4.78 ± 0.38 b | 3.08 ± 0.51 c |
MBC/mg·kg−1 | 33.59 ± 1.86 b | 42.04 ± 1.68 a | 31.63 ± 6.38 b | 47.67 ± 5.88 a |
MBN/mg·kg−1 | 0.26 ± 0.05 b | 3.04 ± 0.54 a | 2.84 ± 0.44 a | 3.65 ± 0.33 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ren, W.; Zhao, Y.; Li, X.; Li, L. Effect of Variation in Row Spacing on Soil Wind Erosion, Soil Properties, and Cyperus esculentus Yield in Sandy Land. Sustainability 2022, 14, 14200. https://doi.org/10.3390/su142114200
Liu Y, Ren W, Zhao Y, Li X, Li L. Effect of Variation in Row Spacing on Soil Wind Erosion, Soil Properties, and Cyperus esculentus Yield in Sandy Land. Sustainability. 2022; 14(21):14200. https://doi.org/10.3390/su142114200
Chicago/Turabian StyleLiu, Yalan, Wei Ren, Yue Zhao, Xiangyi Li, and Lei Li. 2022. "Effect of Variation in Row Spacing on Soil Wind Erosion, Soil Properties, and Cyperus esculentus Yield in Sandy Land" Sustainability 14, no. 21: 14200. https://doi.org/10.3390/su142114200
APA StyleLiu, Y., Ren, W., Zhao, Y., Li, X., & Li, L. (2022). Effect of Variation in Row Spacing on Soil Wind Erosion, Soil Properties, and Cyperus esculentus Yield in Sandy Land. Sustainability, 14(21), 14200. https://doi.org/10.3390/su142114200