Effect of Agricultural Social Services on Green Production of Natural Rubber: Evidence from Hainan, China
Abstract
:1. Introduction
2. Theoretical Analysis
3. Materials and Methods
3.1. Study Area
3.2. Collected Data
3.3. Methods
3.3.1. Slack-Based Measure (SBM)
3.3.2. Tobit Model
3.3.3. Propensity Score Matching (PSM)
3.4. Variables
3.4.1. Input Variables and Output Variables
3.4.2. Description of Variables Affecting Rubber Green Productivity
4. Results
4.1. Green Production Efficiency for Rubber Farmers
4.2. Robustness Test: Propensity Score Matching Method (PSM)
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vrignon-Brenas, S.; Gay, F.; Ricard, S.; Snoeck, D.; Perron, T.; Mareschal, L.; Laclau, J.-P.; Gohet, É.; Malagoli, P. Nutrient Management of Immature Rubber Plantations. A Review. Agron. Sustain. Dev. 2019, 39, 11. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.-H.; Zhang, Y.-P.; Song, Q.-H.; Liu, W.-J.; Deng, X.-B.; Tang, J.-W.; Deng, Y.; Zhou, W.-J.; Yang, L.-Y.; Yu, G.-R. Rubber Plantations Act as Water Pumps in Tropical China. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Ahrends, A.; Hollingsworth, P.M.; Ziegler, A.D.; Fox, J.M.; Chen, H.; Su, Y.; Xu, J. Current Trends of Rubber Plantation Expansion May Threaten Biodiversity and Livelihoods. Glob. Environ. Chang. 2015, 34, 48–58. [Google Scholar] [CrossRef]
- Blagodatsky, S.; Xu, J.; Cadisch, G. Carbon Balance of Rubber (Hevea Brasiliensis) Plantations: A Review of Uncertainties at Plot, Landscape and Production Level. Agric. Ecosyst. Environ. 2016, 221, 8–19. [Google Scholar] [CrossRef]
- Sun, R.; Wu, Z.; Lan, G.; Yang, C.; Fraedrich, K. Effects of Rubber Plantations on Soil Physicochemical Properties on Hainan Island, China; Wiley Online Library: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Sun, R.; Wu, Z.; Chen, B.; Yang, C.; Qi, D.; Lan, G.; Fraedrich, K. Effects of Land-Use Change on Eco-Environmental Quality in Hainan Island, China. Ecol. Indic. 2020, 109, 105777. [Google Scholar] [CrossRef]
- Dong, Z.; Yuan, Z.; Long, F.; Wang, C.; Zhang, C.; Yang, F.; Wang, X.; Zhou, Q.; Tian, X.; Bi, F. A Pilot Study on Green Economy Policy Assessment of the United Nations—Taking the Assessment of Ecological Compensation Policy in Hainan Province of China as an Example. In Environmental Strategy and Planning in China; Springer: Berlin/Heidelberg, Germany, 2022; pp. 225–251. [Google Scholar]
- Guo, S.; Lu, J. Jurisdictional Air Pollution Regulation in China: A Tragedy of the Regulatory Anti-Commons. J. Clean. Prod. 2019, 212, 1054–1061. [Google Scholar] [CrossRef]
- Pan, X.; Luo, Z.; Liu, Y. Environmental Deterioration of Farmlands Caused by the Irrational Use of Agricultural Technologies. Front. Environ. Sci. Eng. 2016, 10, 18. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, F.; Zhou, S.; Turvey, C.G. The Peer Effect of Training on Farmers’ Pesticides Application: A Spatial Econometric Approach. China Agric. Econ. Rev. 2020, 12, 481–505. [Google Scholar] [CrossRef]
- Wang, W.; He, A.; Jiang, G.; Sun, H.; Jiang, M.; Man, J.; Ling, X.; Cui, K.; Huang, J.; Peng, S. Ratoon Rice Technology: A Green and Resource-Efficient Way for Rice Production. Adv. Agron. 2020, 159, 135–167. [Google Scholar]
- Satlewal, A.; Agrawal, R.; Bhagia, S.; Das, P.; Ragauskas, A.J. Rice Straw as a Feedstock for Biofuels: Availability, Recalcitrance, and Chemical Properties. Biofuels Bioprod. Biorefining 2018, 12, 83–107. [Google Scholar] [CrossRef]
- Aslam, M.S.; Xue, P.H.; Bashir, S.; Alfakhri, Y.; Nurunnabi, M.; Nguyen, V.C. Assessment of Rice and Wheat Production Efficiency Based on Data Envelopment Analysis. Environ. Sci. Pollut. Res. 2021, 28, 38522–38534. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Jing, X.; Wang, Y.; Shi, Y.; Ruan, J. Evaluating Production Process Efficiency of Provincial Greenhouse Vegetables in China Using Data Envelopment Analysis: A Green and Sustainable Perspective. Processes 2019, 7, 780. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zang, H.; Liu, J.; Shi, X.; Li, S.; Chen, F.; Chu, Q. Optimum Nitrogen Rate to Maintain Sustainable Potato Production and Improve Nitrogen Use Efficiency at a Regional Scale in China. A Meta-Analysis. Agron. Sustain. Dev. 2020, 40, 37. [Google Scholar] [CrossRef]
- Toma, P.; Miglietta, P.P.; Zurlini, G.; Valente, D.; Petrosillo, I. A Non-Parametric Bootstrap-Data Envelopment Analysis Approach for Environmental Policy Planning and Management of Agricultural Efficiency in EU Countries. Ecol. Indic. 2017, 83, 132–143. [Google Scholar] [CrossRef]
- Song, M.; An, Q.; Zhang, W.; Wang, Z.; Wu, J. Environmental Efficiency Evaluation Based on Data Envelopment Analysis: A Review. Renew. Sustain. Energy Rev. 2012, 16, 4465–4469. [Google Scholar] [CrossRef]
- An, H.; Li, C. Synthetic Evaluation on the Development of Agricultural Circular Economy Based on the Principal Component Analysis: A Case of Tailai County in Heilongjiang Province. In Proceedings of the 2009 International Conference on Management Science and Engineering, Moscow, Russia, 14–16 September 2009; IEEE: Manhattan, NY, USA, 2009; pp. 998–1003. [Google Scholar]
- Zhou, L.; Xie, X.; Zhu, Z.; Wang, L.; Wu, J. Input-Output Efficiency of Agricultural Resources Based on the Water-Energy-Food Nexus. J. Agric. Resour. Environ. 2020, 37, 875–881. [Google Scholar]
- Yang, L.; Zhiwei, Y.; Jiaqi, W.; Fei, L. A Research on the Efficiency of Regional Green Innovation in China—Based on DEA-SBM Model and Malmquist Index Method. In Proceedings of the E3S Web of Conferences, Vienna, Austria, 10–13 September 2021; EDP Sciences: Les Ulis, France, 2021; Volume 236, p. 04012. [Google Scholar]
- Chen, Y.; Fu, W.; Wang, J. Evaluation and Influencing Factors of China’s Agricultural Productivity from the Perspective of Environmental Constraints. Sustainability 2022, 14, 2807. [Google Scholar] [CrossRef]
- Atici, K.B.; Podinovski, V.V. Using Data Envelopment Analysis for the Assessment of Technical Efficiency of Units with Different Specialisations: An Application to Agriculture. Omega 2015, 54, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Chebil, A.; Frija, A.; Thabet, C. Economic Efficiency Measures and Its Determinants for Irrigated Wheat Farms in Tunisia: A DEA Approach. New Medit 2015, 14, 32–38. [Google Scholar]
- Liu, S.; Zhang, S.; He, X.; Li, J. Efficiency Change in North-East China Agricultural Sector: A DEA Approach. Agric. Econ. 2015, 61, 522–532. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Xu, B. Factors Affecting CO2 Emissions in China’s Agriculture Sector: A Quantile Regression. Renew. Sustain. Energy Rev. 2018, 94, 15–27. [Google Scholar] [CrossRef]
- Li, H.; Tang, M.; Cao, A.; Guo, L. Assessing the Relationship between Air Pollution, Agricultural Insurance, and Agricultural Green Total Factor Productivity: Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 78381–78395. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jin, M.; Cheng, J. Economic Growth of Green Agriculture and Its Influencing Factors in China: Based on Emergy Theory and Spatial Econometric Model. Environ. Dev. Sustain. 2021, 23, 15494–15512. [Google Scholar] [CrossRef]
- Ji, H.; Hoti, A. Green Economy Based Perspective of Low-Carbon Agriculture Growth for Total Factor Energy Efficiency Improvement. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 353–363. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, R.; Zhang, C.; Chen, K. The Role of Public Agricultural Extension Services in Driving Fertilizer Use in Rice Production in China. Ecol. Econ. 2022, 200, 107513. [Google Scholar] [CrossRef]
- Chen, T.; Rizwan, M.; Abbas, A. Exploring the Role of Agricultural Services in Production Efficiency in Chinese Agriculture: A Case of the Socialized Agricultural Service System. Land 2022, 11, 347. [Google Scholar] [CrossRef]
- Zang, L.; Wang, Y.; Ke, J.; Su, Y. What Drives Smallholders to Utilize Socialized Agricultural Services for Farmland Scale Management? Insights from the Perspective of Collective Action. Land 2022, 11, 930. [Google Scholar] [CrossRef]
- Roy, S. Economic Impact of COVID-19 Pandemic. A Prepr. 2020, 1–29. Available online: https://www.researchgate.net/publication/343222400 (accessed on 1 October 2022).
- Li, L.; Wang, Z.; Ye, F.; Chen, L.; Zhan, Y. Digital Technology Deployment and Firm Resilience: Evidence from the COVID-19 Pandemic. Ind. Mark. Manag. 2022, 105, 190–199. [Google Scholar] [CrossRef]
- Li, L.; Tong, Y.; Wei, L.; Yang, S. Digital Technology-Enabled Dynamic Capabilities and Their Impacts on Firm Performance: Evidence from the COVID-19 Pandemic. Inf. Manag. 2022, 59, 103689. [Google Scholar] [CrossRef]
- Li, L. Digital Transformation and Sustainable Performance: The Moderating Role of Market Turbulence. Ind. Mark. Manag. 2022, 104, 28–37. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, S.; Boussemart, J.-P.; Hao, Y. Digital Transition and Green Growth in Chinese Agriculture. Technol. Forecast. Soc. Chang. 2022, 181, 121742. [Google Scholar] [CrossRef]
- Corpuz, O.S.; Abas, E.L. Potential Carbon Storage of Rubber Plantations. Indian J. Pharm. Biol. Res. 2014, 2, 73. [Google Scholar] [CrossRef]
- Cai, B.; Shi, F.; Huang, Y.; Abatechanie, M. The Impact of Agricultural Socialized Services to Promote the Farmland Scale Management Behavior of Smallholder Farmers: Empirical Evidence from the Rice-Growing Region of Southern China. Sustainability 2021, 14, 316. [Google Scholar] [CrossRef]
- Sun, S.; Sun, Y.; Hu, R.; Zhang, C.; Cai, J. Current Situation, Problems and Policy of Agricultural Extension System in China. China Soft Sci. 2018, 6, 25–34. [Google Scholar]
- Wang, C.; Nie, P.; Peng, D.; Li, Z. Green Insurance Subsidy for Promoting Clean Production Innovation. J. Clean. Prod. 2017, 148, 111–117. [Google Scholar] [CrossRef]
- Gan, Y.; Xu, T.; Xu, N.; Xu, J.; Qiao, D. How Environmental Awareness and Knowledge Affect Urban Residents’ Willingness to Participate in Rubber Plantation Ecological Restoration Programs: Evidence from Hainan, China. Sustainability 2021, 13, 1852. [Google Scholar] [CrossRef]
- Li, S.; Zou, F.; Zhang, Q.; Sheldon, F.H. Species Richness and Guild Composition in Rubber Plantations Compared to Secondary Forest on Hainan Island, China. Agrofor. Syst. 2013, 87, 1117–1128. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Shuai, S.; Fan, Z. Modeling the Role of Environmental Regulations in Regional Green Economy Efficiency of China: Empirical Evidence from Super Efficiency DEA-Tobit Model. J. Environ. Manag. 2020, 261, 110227. [Google Scholar] [CrossRef] [PubMed]
- Tobin, J. Estimation of Relationships for Limited Dependent Variables. Econom. J. Econom. Soc. 1958, 26, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; He, B.; Zhang, J.; Jin, Y. Analysis of the Effect of Cooperatives on Increasing Farmers’ Income from the Perspective of Industry Prosperity Based on the PSM Empirical Study in Shennongjia Region. Sustainability 2021, 13, 13172. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Cecchini, L.; Venanzi, S.; Pierri, A.; Chiorri, M. Environmental Efficiency Analysis and Estimation of CO2 Abatement Costs in Dairy Cattle Farms in Umbria (Italy): A SBM-DEA Model with Undesirable Output. J. Clean. Prod. 2018, 197, 895–907. [Google Scholar] [CrossRef]
- Ella, D. China and the United Nations Framework Convention on Climate Change: The Politics of Institutional Categorization. Int. Relat. Asia-Pac. 2017, 17, 233–264. [Google Scholar] [CrossRef]
- Camerer, C.F.; Fehr, E. When Does "Economic Man" Dominate Social Behavior? Science 2006, 311, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Chavas, J.-P.; Nauges, C. Uncertainty, Learning, and Technology Adoption in Agriculture. Appl. Econ. Perspect. Policy 2020, 42, 42–53. [Google Scholar] [CrossRef]
Carbon Emission Sources | Emission Factors | Reference Sources |
---|---|---|
Chemical fertilizer | 0.8956 kg/kg | Carbon Dioxide Information Analysis Centre (CDIAC) |
Pesticides | 4.9341 kg/kg | Carbon Dioxide Information Analysis Centre (CDIAC) |
Fuel | 0.5927 kg/kg | China Emission Accounts and Datasets (CEADs) |
Items | Variables | Variable Description | Max | Min | Average | Standard |
---|---|---|---|---|---|---|
Input Variables | Labor input | Working days of rubber production | 145.00 | 30.00 | 88.59 | 22.51 |
Land input | Rubber planting area (mu) | 90.00 | 3.00 | 22.61 | 15.18 | |
Tool input | Input of rubber production tools (yuan) | 3900.00 | 100.00 | 757.71 | 652.84 | |
Fertilizer input | Fertilizer usage in rubber plantation (kg) | 3200.00 | 10.00 | 474.32 | 479.38 | |
Pesticide input | Pesticide usage in rubber plantation(kg) | 107.14 | 0.89 | 14.47 | 16.16 | |
Expected output variable | Planting income | Total income from rubber plantation (yuan) | 168,500.00 | 3000.00 | 27,031.05 | 24,805.82 |
Unexpected output variable | CO2 emissions | Fertilizer carbon emissions (kg) | 2865.92 | 8.59 | 424.80 | 429.33 |
Pesticide carbon emissions (kg) | 528.65 | 4.40 | 71.41 | 79.74 | ||
Fuel carbon emissions (kg) | 222.26 | 1.48 | 43.66 | 42.03 |
Items | Variables | Definition | Average | Standard |
---|---|---|---|---|
Core explanatory variables | Financial insurance services | Have you received financial insurance services for rubber production? yes = 1, no = 0 | 0.68 | 0.46 |
Market information service | Have you accepted market information services for rubber production? yes = 1, no = 0 | 0.60 | 0.49 | |
Technical extension services | Have you received technical extension services for rubber production? yes = 1, no = 0 | 0.52 | 0.50 | |
Control variables | Age | Respondent’s age (years) | 51.41 | 9.25 |
Gender | Male = 1, Female = 0 | 0.90 | 0.30 | |
Health status | 1 = poor, 2 = average, 3 = healthy | 2.88 | 0.36 | |
Educational level | 1 = elementary school; 2 = junior high school; 3 = high school; 4 = college or above | 2.03 | 0.88 | |
Social identity | Whether served as a village cadre | 0.28 | 0.45 | |
Planting scale | Rubber planting land area (mu) | 22.61 | 15.18 | |
Labor type | 1 = Agricultural; 2 = Part-time; 3 = Non-agricultural | 1.51 | 0.84 | |
Household income | Farming household rubber income (ten thousand yuan) | 2.70 | 2.48 | |
Risk appetite | 1 = risk averse, 2 = risk neutral, 3 = risk like | 1.46 | 0.78 |
Green Productivity | No Social Service | Received One Service | Received Two Services | Received Three Services |
---|---|---|---|---|
Number (57) | Number (153) | Number (186) | Number (156) | |
Ⅰ: 0–0.25 | 38 | 74 | 60 | 15 |
Ⅱ: 0.25–0.50 | 15 | 58 | 79 | 78 |
Ⅲ: 0.50–0.75 | 1 | 11 | 17 | 22 |
Ⅳ: 0.75–1.0 | 3 | 10 | 30 | 41 |
Average value | 0.27 | 0.32 | 0.42 | 0.54 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
---|---|---|---|---|---|
Financial insurance services | 0.0562 ** (0.0235) | 0.0562 ** (0.0235) | 0.0439 * (0.0234) | ||
Market information services | 0.074 2 *** (0.0224) | 0.127 *** (0.0253) | 0.0619 *** (0.0220) | ||
Technology extension services | 0.0700 *** (0.0232) | 0.121 *** (0.0258) | 0.0578 ** (0.0230) | ||
Village cadre | −0.0242 (0.0256) | −0.0253 (0.0253) | −0.0295 (0.0257) | −0.0328 (0.0255) | |
Gender | −0.0593 (0.0404) | −0.0605 (0.0396) | −0.0544 (0.0389) | −0.0587 (0.0390) | |
Age | 0.00113 (0.00130) | 0.00132 (0.00129) | 0.000999 (0.00131) | 0.00109 (0.00129) | |
Labor type | 0.0127 (0.0146) | 0.0156 (0.0144) | 0.00942 (0.0147) | 0.0123 (0.0144) | |
Income | 0.0756 *** (0.00730) | 0.0727 *** (0.00731) | 0.0740 *** (0.00721) | 0.0687 *** (0.00734) | |
Educated level | 0.0669 *** (0.0139) | 0.0644 *** (0.0139) | 0.0630 *** (0.0141) | 0.0594 *** (0.0139) | |
Health status | 0.0453 * (0.0233) | 0.0536 ** (0.0235) | 0.0488 ** (0.0229) | 0.0484 ** (0.0234) | |
Planting scale | −0.00979 *** (0.000982) | −0.00917 *** (0.000975) | −0.00932 *** (0.000959) | −0.00908 *** (0.000970) | |
Risk appetite | −0.0577 *** (0.0127) | −0.0590 *** (0.0126) | −0.0573 *** (0.0125) | −0.0537 *** (0.0124) | |
Constant term | 0.206 * (0.115) | 0.164 (0.115) | 0.207 * (0.114) | 0.239 *** (0.0226) | 0.154 (0.113) |
Prob > chi2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Pseudo R2 | 0.4657 | 0.4760 | 0.4743 | 0.1411 | 0.4980 |
Service Type | Match Type | Treat | Control | ATT | SE |
---|---|---|---|---|---|
Financial insurance | before matching | 0.601 | 0.191 | 0.411 | 0.017 |
Services | mahalanobis distance matching | 0.601 | 0.203 | 0.398 *** | 0.019 |
nearest neighbor matching | 0.557 | 0.211 | 0.346 *** | 0.019 | |
radius matching | 0.557 | 0.209 | 0.348 *** | 0.019 | |
kernel matching | 0.557 | 0.211 | 0.346 *** | 0.019 | |
Average value | 0.370 | ||||
Market information services | before matching | 0.601 | 0.191 | 0.411 | 0.017 |
mahalanobis distance matching | 0.601 | 0.206 | 0.395 *** | 0.018 | |
nearest neighbor matching | 0.565 | 0.212 | 0.354 *** | 0.020 | |
radius matching | 0.565 | 0.211 | 0.355 *** | 0.019 | |
kernel matching | 0.563 | 0.212 | 0.350 *** | 0.020 | |
Average value | 0.373 | ||||
Technology extension service | before matching | 0.601 | 0.191 | 0.411 | 0.017 |
mahalanobis distance matching | 0.601 | 0.206 | 0.395 *** | 0.018 | |
nearest neighbor matching | 0.569 | 0.209 | 0.359 *** | 0.020 | |
radius matching | 0.569 | 0.211 | 0.357 *** | 0.019 | |
kernel matching | 0.568 | 0.213 | 0.354 *** | 0.020 | |
Average value | 0.375 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhang, D.; Chen, Z.; Li, Z.; Cai, Z. Effect of Agricultural Social Services on Green Production of Natural Rubber: Evidence from Hainan, China. Sustainability 2022, 14, 14138. https://doi.org/10.3390/su142114138
Chen J, Zhang D, Chen Z, Li Z, Cai Z. Effect of Agricultural Social Services on Green Production of Natural Rubber: Evidence from Hainan, China. Sustainability. 2022; 14(21):14138. https://doi.org/10.3390/su142114138
Chicago/Turabian StyleChen, Jingpeng, Desheng Zhang, Zhi Chen, Zhijian Li, and Zigong Cai. 2022. "Effect of Agricultural Social Services on Green Production of Natural Rubber: Evidence from Hainan, China" Sustainability 14, no. 21: 14138. https://doi.org/10.3390/su142114138
APA StyleChen, J., Zhang, D., Chen, Z., Li, Z., & Cai, Z. (2022). Effect of Agricultural Social Services on Green Production of Natural Rubber: Evidence from Hainan, China. Sustainability, 14(21), 14138. https://doi.org/10.3390/su142114138