Spatiotemporal Change of Urban Ecologic Environment Quality Based on RSEI—Taking Meizhou City, China as an Example
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.3. Research Methods
2.3.1. Greenness Index
2.3.2. Heat Index
2.3.3. Humidity Index
2.3.4. Dryness Index
2.3.5. Construction of Remote Sensing Ecological Index
2.3.6. RSEI Evaluation Criteria
2.3.7. Correlation Analysis between the Ecological Environment Quality and POI
3. Results
3.1. Evaluation of Ecological Environment Quality in Meizhou City
3.2. Dynamic Changes of Ecological Environment Quality in Meizhou
3.3. Correlations between Meizhou POI and Various Indices
4. Discussions
4.1. Influencing Factors of Ecological Environment Quality in Meizhou
4.2. Research Highlights and Shortcomings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, M.; Wang, Y. Advances in the Evaluation of Ecological Environmental Quality. Ecol. Environ. Sci. 2012, 21, 1781–1788. [Google Scholar]
- Du, J.; Jiaerheng, A.; Zhao, C.; Fang, G.; Yin, J.; Xiang, B.; Yuan, X.; Fang, S. Dynamic Changes in Vegetation NDVI from 1982 to 2012 and Its Responses to Climate Change and Human Activities in Xinjiang, China. Chin. J. Appl. Ecol. 2015, 26, 3567–3578. [Google Scholar]
- Cheng, L.; Yang, D.; Zhang, X.; Zhang, Y. Spatiotemporal Evolution of Intensive Cultivated Land use in the County-level Regions in Xinjiang Based on the PSR Model. Arid. Zone Res. 2018, 35, 493–502. [Google Scholar] [CrossRef]
- Shu, J.; Yang, W. Study on the Comprehensive Evaluation of Eco-Environmental Quality in Hangzhou. Ecol. Econ. 2019, 35, 128–134. [Google Scholar]
- Ochoa-Gaona, S.; Kampichler, C.; De Jong, B.H.J.; Hernández, S.; Geissen, V.; Huerta, E. A multi-criterion Index for the Evaluation of Local Tropical Forest Conditions in Mexico. For. Ecol. Manag. 2010, 260, 618–627. [Google Scholar] [CrossRef]
- Sullivan, C.A.; Skeffington, M.S.; Gormally, M.J.; Finn, J.A. The Ecological Status of Grasslands on Lowland Farmlands in Western Ireland and Implications for Grassland Classification and Nature Value Assessment. Biol. Conserv. 2010, 143, 1529–1539. [Google Scholar] [CrossRef]
- Xu, H. A Remote Sensing Urban Ecological Index and Its Application. Acta Ecol. Sin. 2013, 33, 7853–7862. [Google Scholar]
- Xu, H. A Remote Sensing Index for Assessment of Regional Ecological Changes. China Environ. Sci. 2013, 33, 889–897. [Google Scholar]
- State Environmental Protection Administration. Environmental Protection Industry Standard of the People’s Republic of China (Trial) HJ/T192-2006. Available online: https://max.book118.com/html/2017/0604/111559755.shtm (accessed on 10 August 2019).
- Zhi, Y.; Wang, Z.; Ma, Z.; Han, X.; Li, J.; Ren, P.; Li, H.; Gao, T.; Bai, F. Research on Ningxia’s Resource and Environmental Performance and Its Changing Trends. Acta Ecol. Sin. 2009, 29, 6490–6498. [Google Scholar]
- Meng, Y.; Zhao, G. Ecological Environment Condition Evaluation of Estuarine Area Based on Quantitative Remote Sensing—A Case Study in Kenli County. China Environ. Sci. 2009, 29, 163–167. [Google Scholar]
- Ye, Y.; Liang, Y.; Shen, Y.; Xie, L. Some Issues Related to “Technical Criterion for Eco-environmental Status Evaluation (Trial Implementation)”. Trop. Geogr. 2009, 29, 404–406. [Google Scholar]
- Zhou, X.; Luo, H. Ecological Environment Quality Assessment of Beipanjiang Basin based on GIS and Remote Sense. Environ. Sci. Manag. 2018, 43, 178–182. [Google Scholar]
- Huang, Y.; Yan, H.; Li, X.; Wu, X.; Wang, Z. Monitoring and Evaluation of Remote Sensing Ecological Distance Index in Urumqi City. Remote Sens. Inf. 2019, 34, 72–77. [Google Scholar]
- Xu, H.; Wang, M.; Shi, T.; Guan, H.; Fang, C.; Lin, Z. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI). Ecol. Indic. 2018, 93, 730–740. [Google Scholar] [CrossRef]
- Rukeya, S.; Abuduheni, A.; Li, H.; Nijat, K.; Li, X. Dynamic Monitoring and Analysis of Ecological Environment in Fukang City Based on RSEI Model. Res. Soil Water Conserv. 2020, 27, 283–289+297. [Google Scholar]
- Zhu, H.; Wang, J.; Cheng, F.; Deng, H.; Zhang, E.; Li, Y. Monitoring and Evaluation of Eco-environmental Quality of Lake Basin Regions in Central Yunnan Province, China. Chin. J. Appl. Ecol. 2020, 31, 1289–1297. [Google Scholar]
- Sun, Y.; Li, J.; Yu, Y.; Zeng, W. Ecological Assessment Based on Remote Sensing Ecological Index: A Case Study of the “Three-Lake” Basin in Yuxi City, Yunnan Province, China. Sustainability 2022, 14, 11554. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Q.; Cao, M.; Liu, H. Spatiotemporal Change of Eco-Environmental Quality in the Oasis City and Its Correlation with Urbanization Based on RSEI: A Case Study of Urumqi, China. Sustainability 2022, 14, 9227. [Google Scholar] [CrossRef]
- Boori, M.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Spatiotemporal ecological vulnerability analysis with statistical correlation based on satellite remote sensing in Samara, Russia. J. Environ. Manag. 2021, 285, 112138. [Google Scholar] [CrossRef]
- Saleh, S.; Amoushahi, S.; Gholipour, M. Spatiotemporal ecological quality assessment of metropolitan cities: A case study of central Iran. Environ. Monit. Assess. 2021, 193, 305. [Google Scholar] [CrossRef]
- Yang, X.; Meng, F.; Fu, P.; Zhang, Y.; Liu, Y. Spatiotemporal change and driving factors of the Eco-Environment quality in the Yangtze River Basin from 2001 to 2019. Ecol. Indic. 2021, 131, 108214. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, J.; Su, W.; Wu, J.; Liu, J.; Liu, W.; Guo, R. Analysis of Ecological Environmental Quality Change in the Yellow River Basin Using the Remote-Sensing-Based Ecological Index. Sustainability 2022, 14, 10726. [Google Scholar] [CrossRef]
- An, M.; Xie, P.; He, W.; Wang, B.; Huang, J.; Khanal, R. Spatiotemporal change of ecologic environment quality and human interaction factors in three gorges ecologic economic corridor, based on RSEI. Ecol. Indic. 2022, 141, 109090. [Google Scholar] [CrossRef]
- Chen, W.; Liu, L.; Liang, Y. Retail center recognition and spatial aggregating feature analysis of retail formats in Guangzhou based on POI data. Geogr. Res. 2016, 35, 703–716. [Google Scholar]
- Chi, J.; Jiao, L.; Dong, T.; Gu, Y.; Ma, Y. Quantitative Identification and Visualization of Urban Functional Area Based on POI Data. J. Geomat. 2016, 41, 68–73. [Google Scholar]
- Guo, Y.; Liu, M. Classification and spatial distribution characteristics of tourist attractions in Shanxi Province based on POI data. Sci. Geogr. Sin. 2021, 41, 1246–1255. [Google Scholar]
- Han, L.; Zhang, M. Spatial coupling between land use level and land ecological security in the Yellow Triangle based on POI data. J. Shandong Univ. Financ. Econ. 2022, 34, 39–50+61. [Google Scholar]
- Luo, Y. Formation, Characteristics and Prevention of the Meteorological Disasters in Meizhou. Trop. Geogr. 2007, 27, 505–510. [Google Scholar]
- Wang, L.; Zhao, X. On Ecological Civilization Oriented Government Performance Assessment System in To-be Developed Areas: A Case Study of Meizhou in Guangdong Province. J. Poyang Lake 2015, 64–69. [Google Scholar]
- Jiang, Y. Evaluation of Coordinated Development between Ecological Environment and Economy in Mianyang City. Chin. J. Agric. Resour. Reg. Plan. 2017, 38, 131–135. [Google Scholar]
- Web of Science—GPP Dataset Preprocessing of MODIS—Taking MOD17A2H as an Example—Hu Yinglong’s Blog Post 2020-4-24. Available online: https://blog.sciencenet.cn/blog-3336537-1230005.html (accessed on 3 May 2020).
- Wagle, P.; Xiao, X.; Torn, M.; Cook, D.; Matamala, R.; Fischer, M.; Jin, C.; Dong, J.; Biradar, C. Sensitivity of vegetation indices and gross primary production of tall-grass prairie to severe drought. Remote Sens. Environ. 2014, 152, 1–14. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Z.; Liu, D.; Song, K.; Song, C. Analysis of temporal and spatial features of farmland productivity in the Sanjiang Plain. Trans. CSAE 2009, 25, 249–254, (In Chinese with English Abstract). [Google Scholar]
- Caccamo, G.; Chisholm, L.A.; Bradstock, R.; Puotinen, M.L. Assessing the sensitivity of MODIS to monitor drought in high biomass ecosystems. Remote Sens. Environ. 2011, 115, 2626–2639. [Google Scholar] [CrossRef]
- Hu, Y. Spatial Zoning and Effect Analysis for Land Use Spatial Conflict in Pearl River Delta Urban Agglomeration. Master’s Thesis, Guangzhou University, Guangzhou, China, 2019. [Google Scholar]
- Lu, Y.; Li, X.; Yang, Z. Evaluation on eco-environmental quality change of Wujiang River basin in Guizhou Province from 1990 to 2015. Bull. Soil Water Conserv. 2018, 38, 140–146. [Google Scholar]
- Crist, E.P. A TM Tasseled Cap Equivalent Transformation for Reflectance Factor Data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Muhammad, H.A.B.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a Tasselled Cap Transformation Based on Landsat 8 At-satellite Reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar]
- Feng, Y.; Luo, G.; Zhou, D. Effects of land use change on landscape pattern of a typical arid watershed in the recent 50 years: A case study on Manas River watershed in Xinjiang. Acta Ecol. Sin. 2010, 30, 4295–4305. [Google Scholar]
- Su, Y.-Z.; Zhao, W.-Z.; Su, P.-X.; Zhang, Z.-H.; Wang, T.; Ram, R. Ecological effects of desertification control and desertified land reclamation in an oasis–desert ecotone in an and region: A case study in Hexi Corridor, northwest China. Ecol. Eng. 2007, 29, 117–124. [Google Scholar] [CrossRef]
- Huang, S.; Zheng, X.; Ma, L.; Wang, H.; Huang, Q.; Leng, G.; Meng, E.; Guo, E. Quantitative contriution of climate change and human activities to vegetation cover variations based on GA-SVM model. J. Hydrol. 2020, 584, 124687. [Google Scholar] [CrossRef]
- Gao, P.; Kasimu, A.; Zhao, Y.; Lin, B.; Chai, J.; Ruzi, T.; Zhao, H. Evaluation of the Temporal and Spatial Changes of Ecological Quality in the Hami Oasis Based on RSEI. Sustainability 2020, 12, 7716. [Google Scholar] [CrossRef]
- Wang, Z.; Bai, T.; Xu, D.; Kang, J.; Shi, J.; Fang, H.; Nie, C.; Zhang, Z.; Yan, P.; Wang, D. Temporal and Spatial Changes in Vegetation Ecological Quality and Driving Mechanism in Kökyar Project Area from 2000 to 2021. Sustainability 2022, 14, 7668. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Technical Criterion for Ecosystem Status Evaluation; HJ 192-2015; China Environmental Science Press: Beijing, China, 2015.
- Wang, Y.; Zhao, Y.; Wu, J. Dynamic monitoring of long time series of ecological quality in urban agglomerations using Google Earth Engine cloud computing: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area, China. Acta Ecol. Sin. 2020, 40, 8461–8473. [Google Scholar]
- Miao, X.; Liang, Q. Analysis of Ecological Environment Changes in Yongjiang River Basin Based on Remote Sensing Ecological Index. Resour. Environ. Yangtze Basin 2020, 30, 427–438. [Google Scholar]
- Qiu, L.; He, Y.; Zhang, L.; Wang, W.; Tang, Y. Spatiotemporal variation characteristics and influence factors of MODIS LST in Qilian Mountains. Arid Land Geogr. 2020, 43, 726–737. [Google Scholar]
- Wang, F.; Li, W.; Lin, Y.; Nan, X.; Hu, Z. Spatiotemporal Pattern and Driving Forces Analysis of Ecological Environmental Quality in Typical Ecological Areas of the Yellow River Basin from 1990 to 2020 [J/OL]. Environ. Sci. 2022, 8, X821. [Google Scholar] [CrossRef]
Year | Landsat7 ETM or Landsat8 OL_TIRS | MODIS |
---|---|---|
2008 | LE71210432008353EDC00 LE71210442008353EDC00 LE71200432008346EDC00 LE71200442008346EDC00 | MOD17A2 (46 issues in 2008) MYD11A2 (46 issues in 2008) |
2013 | LS8_C_20140203120043L4 LS8_C_20131201120044L4 LS8_C_20130919121043L4 LS8_C_20130919121044L4 | MOD17A2 (46 issues in 2013) MYD11A2 (46 issues in 2013) |
2018 | LC81200432018013LGN00 LC81200442017314LGN00 LC81210432017353LGN00 LC81210442017305LGN00 | MOD17A2 (46 issues in 2018) MYD11A2 (46 issues in 2018) |
RSEI Grade | 2008 | 2013 | 2018 | |||
---|---|---|---|---|---|---|
Area /km2 | Percentage/% | Area /km2 | Percentage/% | Area /km2 | Percentage/% | |
Excellent (0.8–1] | 2457 | 15.7 | 4371 | 27.9 | 2814 | 18.0 |
Good (0.6–0.8] | 7201 | 46.0 | 5740 | 36.7 | 7545 | 48.2 |
Medium (0.4–0.6] | 5459 | 34.9 | 4788 | 30.6 | 4650 | 29.7 |
Inferior (0.2–0.4] | 125 | 0.8 | 250 | 1.6 | 147 | 0.9 |
Poor (0–0.2] | 418 | 2.7 | 511 | 3.3 | 504 | 3.2 |
Category | Grade | 2008–2013 | 2013–2018 | 2008–2018 | |||
---|---|---|---|---|---|---|---|
Area/km2 | Percentage/% | Area/km2 | Percentage/% | Area/km2 | Percentage/% | ||
Worse | Significantly | 1 | 0.01 | 293 | 1.87 | 238 | 1.52 |
Obviously | 28 | 0.18 | 866 | 5.54 | 168 | 1.07 | |
Moderately | 424 | 2.71 | 2703 | 17.28 | 682 | 4.36 | |
Slightly | 3454 | 22.08 | 6442 | 41.19 | 2018 | 12.90 | |
Unchanged | Nominally | 7798 | 49.86 | 3838 | 24.54 | 8416 | 53.81 |
Better | Slightly | 3486 | 22.29 | 890 | 5.69 | 2965 | 18.96 |
Moderately | 437 | 2.79 | 197 | 1.26 | 630 | 4.03 | |
Obviously | 12 | 0.08 | 222 | 1.42 | 343 | 2.19 | |
Significantly | 0 | 0.00 | 293 | 1.87 | 180 | 1.15 |
Index | POI | GPP | LST | NDSI | WET | RSEI |
---|---|---|---|---|---|---|
POI | 1 | −0.455 | 0.524 | 0.214 | −0.227 | −0.361 |
GPP | −0.455 | 1 | −0.644 | −0.329 | 0.298 | 0.611 |
LST | 0.524 | −0.644 | 1 | 0.418 | −0.377 | −0.474 |
NDSI | 0.214 | −0.329 | 0.418 | 1 | −0.269 | −0.309 |
WET | −0.227 | 0.298 | −0.377 | −0.269 | 1 | 0.331 |
Average correlation () | -- | 0.4237 | 0.4797 | 0.3387 | 0.3147 | 0.4313 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Chen, R.; Guo, Q.; Hu, Y. Spatiotemporal Change of Urban Ecologic Environment Quality Based on RSEI—Taking Meizhou City, China as an Example. Sustainability 2022, 14, 13424. https://doi.org/10.3390/su142013424
Chen Z, Chen R, Guo Q, Hu Y. Spatiotemporal Change of Urban Ecologic Environment Quality Based on RSEI—Taking Meizhou City, China as an Example. Sustainability. 2022; 14(20):13424. https://doi.org/10.3390/su142013424
Chicago/Turabian StyleChen, Zhiyun, Renrong Chen, Quan Guo, and Yinglong Hu. 2022. "Spatiotemporal Change of Urban Ecologic Environment Quality Based on RSEI—Taking Meizhou City, China as an Example" Sustainability 14, no. 20: 13424. https://doi.org/10.3390/su142013424
APA StyleChen, Z., Chen, R., Guo, Q., & Hu, Y. (2022). Spatiotemporal Change of Urban Ecologic Environment Quality Based on RSEI—Taking Meizhou City, China as an Example. Sustainability, 14(20), 13424. https://doi.org/10.3390/su142013424