A Hybrid ANP Method for Evaluation of Government Data Sustainability
Abstract
:1. Introduction
2. Related Works
2.1. Data Sustainability
2.2. AHP ANP and Hybrid MCDM
3. Method
3.1. The Convergence Problem of ANP
3.2. H-ANP
- 1.
- ;
- 2.
- (r is the Perron root);
- 3.
- (the Perron root is simple);
- 4.
- There exists an eigenvector such that ;
- 5.
- The Perron vector is the unique vector defined byIn addition, except for positive multiples of p, there are no other non-negative eigenvectors for A, regardless of the eigenvalue.
- 6.
- It is unnecessary for r to be the only eigenvalue on the spectral circle of A;
- 7.
- the Collatz–Wielandt formulaNote: a non-negative irreducible matrix A with is primitive if and only ifif is irreducible but imprimitive, there are eigenvalues on the spectral circles. Then, A can be used to demonstrate that each of these eigenvalues is simple and that they are distributed uniformly on the spectral circle so that they are the h th roots of .
3.3. Implementation
- Primitive weight calculation. The eigenvector with the largest eigenvalue is obtained. The consistency validation is performed.
- Construction of influence network. 1 and 0 are used to represent the relationship among pairwise elements.
- The construction of matrix D, the supermatrix in the ANP.
- Choice of the damping coefficient. The indicates the extent to which the real relationship can affect the final result.
- Power calculation. The limit power of the stochastic matrix A is calculated until a stable result is obtained.
Algorithm 1 H-ANP |
|
4. Experiment Results
5. Example and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC-ANP | Averagely-connected Analytic Network Process |
AHP | Analytic Hierarchy Process |
ANP | Analytic Network Process |
C.I. | Consistency Index |
C.R. | Consistency Ratio |
DANP | The Hybrid Method of Decision-Making Trial and Evaluation |
Laboratory and Analytic Network Analysis | |
DEMATEL | Decision-Making Trial and Evaluation Laboratory |
FANP | Fuzzy Analytic Network Process |
GFBWM | Group Fuzzy Best Worst method |
H-ANP | Hybrid Analytic Network Process |
IC | Intellectual Capital |
ITARA | Indifference Threshold-based Attribute Ratio Analysis |
MCDM | Multiple Criteria Decision Making |
MSE | Mean Squared Error |
NO-ANP | Not Only Analytic Network Process |
OECD | The Organization for Economic Co-operation and Development |
PROFUZANP | Probabilistic Fuzzy Analytic Network Process Approach |
TFN | Triangular Fuzzy Numbers |
TOPSIS | Techniques for Order Performance by Similarly to Ideal Solution |
Appendix A. AHP Weighting Process
City X Government Data Sustainability | Management Strategy | Standards | Data Security | Resource Assurance | Network Security | System Security | Weight |
---|---|---|---|---|---|---|---|
Management strategy | 1.0000 | 1.5518 | 1.1076 | 2.6673 | 1.2457 | 1.7188 | 0.2296 |
Standards | 0.6444 | 1.0000 | 1.7188 | 2.9542 | 2.1411 | 1.9332 | 0.2423 |
Data security | 0.9029 | 0.5818 | 1.0000 | 1.5281 | 1.7188 | 2.3714 | 0.1912 |
Resource assurance | 0.3749 | 0.3385 | 0.6544 | 1.0000 | 0.9029 | 1.2457 | 0.1057 |
Network security | 0.8027 | 0.4670 | 0.5818 | 1.1076 | 1.0000 | 1.0515 | 0.1249 |
System security | 0.5818 | 0.5173 | 0.4217 | 0.8027 | 0.9510 | 1.0000 | 0.1063 |
Management Strategy | Risk Assessment and Monitoring | Rule Construction of Data Rights | Emergency Response | Operation Plan and Control | Leadership Support | Weight |
---|---|---|---|---|---|---|
Risk assessment and monitoring | 1.0000 | 1.7188 | 2.2902 | 1.8384 | 1.4758 | 0.3070 |
Rule construction of data rights | 0.5818 | 1.0000 | 2.2902 | 1.7188 | 1.2457 | 0.2358 |
Emergency response | 0.4366 | 0.4366 | 1.0000 | 1.4011 | 1.1247 | 0.1503 |
Operation plan and control | 0.5439 | 0.5818 | 0.7137 | 1.0000 | 1.1076 | 0.1449 |
Leadership support | 0.6776 | 0.8027 | 0.8891 | 0.9029 | 1.0000 | 0.1620 |
Standards | Storage Period and Appraisal Disposal Plan | Data Carrier and Format | Electronic Records Filing Process Specification | Datatype of Storage and Transfer Plan | Quality Inspection | Outsourcing Management Security | Archive Solidification | Weight |
---|---|---|---|---|---|---|---|---|
Storage period and appraisal disposal plan | 1.0000 | 2.2902 | 1.2267 | 1.9332 | 1.2899 | 1.1076 | 1.2899 | 0.1934 |
Data carrier and format | 0.4366 | 1.0000 | 1.0000 | 1.9332 | 0.9349 | 0.7248 | 1.5518 | 0.1368 |
Electronic records filing process specification | 0.8152 | 1.0000 | 1.0000 | 1.4011 | 1.3797 | 1.3797 | 1.7188 | 0.1680 |
Datatype of storage and transfer plan | 0.5173 | 0.5173 | 0.7137 | 1.0000 | 0.8027 | 2.6673 | 1.0000 | 0.1225 |
Quality inspection | 0.7752 | 1.0696 | 0.7248 | 1.2457 | 1.0000 | 3.3227 | 1.5518 | 0.1688 |
Outsourcing management security | 0.9029 | 1.3797 | 0.7248 | 0.3749 | 0.3010 | 1.0000 | 0.7248 | 0.0959 |
Archive solidification | 0.7752 | 0.6444 | 0.5818 | 1.0000 | 0.6444 | 1.3797 | 1.0000 | 0.1147 |
Data Security | Metadata | Data Exchange Security | Encryption and Decryption | Security Classification | Data Transformation | Data Backup | Link Maintenance | Data Authorization Security | Data Encapsulation | Weight |
---|---|---|---|---|---|---|---|---|---|---|
Metadata | 1.0000 | 2.1407 | 2.8173 | 3.2011 | 3.4820 | 3.2011 | 4.4860 | 3.6371 | 3.4820 | 0.2811 |
Data exchange security | 0.4671 | 1.0000 | 1.4953 | 1.3161 | 1.7321 | 1.0000 | 2.9428 | 0.9193 | 1.9680 | 0.1253 |
Encryption and decryption | 0.3549 | 0.6687 | 1.0000 | 1.5923 | 0.8801 | 0.6985 | 2.9428 | 1.0000 | 1.9680 | 0.1021 |
Security classification | 0.3124 | 0.7598 | 0.6280 | 1.0000 | 1.3161 | 0.7136 | 1.2359 | 1.0000 | 0.7598 | 0.0789 |
Data transformation | 0.2872 | 0.5774 | 1.1362 | 0.7598 | 1.0000 | 1.0000 | 1.4953 | 1.0000 | 0.7598 | 0.0807 |
Data backup | 0.3124 | 1.0000 | 1.4316 | 1.4014 | 1.0000 | 1.0000 | 2.2361 | 1.3161 | 3.4087 | 0.1212 |
Link maintenance | 0.2229 | 0.3398 | 0.3398 | 0.8091 | 0.6687 | 0.4472 | 1.0000 | 0.6148 | 1.3161 | 0.0549 |
Data authorization security | 0.2749 | 1.0878 | 1.0000 | 1.0000 | 1.0000 | 0.7598 | 1.6266 | 1.0000 | 1.3161 | 0.0912 |
Data encapsulation | 0.2872 | 0.5081 | 0.5081 | 1.3161 | 1.3161 | 0.2934 | 0.7598 | 0.7598 | 1.0000 | 0.0646 |
Resource Assurance | Staff Security | Security Agency and Director Setting | Security Awareness Training | Finance and Materials | Site of Storage Security | Weight |
---|---|---|---|---|---|---|
Staff security | 1.0000 | 2.2795 | 1.3161 | 1.8481 | 3.2011 | 0.3192 |
Security agency and director setting | 0.4387 | 1.0000 | 0.7598 | 1.4953 | 1.8481 | 0.1767 |
Security awareness training | 0.7598 | 1.3161 | 1.0000 | 2.2361 | 3.9563 | 0.2777 |
Finance and materials | 0.5411 | 0.6687 | 0.4472 | 1.0000 | 1.9680 | 0.1429 |
Site of storage security | 0.3124 | 0.5411 | 0.2528 | 0.5081 | 1.0000 | 0.0835 |
Network Security | Network Device | Invasion Detection | Data Flow Cleaning | Single Sign on | Weight |
---|---|---|---|---|---|
Network device | 1.0000 | 1.0000 | 1.2457 | 1.0000 | 0.2559 |
Invasion detection | 1.0000 | 1.0000 | 2.1411 | 2.1411 | 0.3544 |
Data flow cleaning | 0.8027 | 0.4670 | 1.0000 | 1.1076 | 0.1944 |
Single sign on | 1.0000 | 0.4670 | 0.9029 | 1.0000 | 0.1952 |
System Security | Digital Signature | Operation Log | Identity Authentication and Authority Control | Access Control | Virus Killing | Weight |
---|---|---|---|---|---|---|
Digital signature | 1.0000 | 5.2068 | 1.6266 | 3.6371 | 2.9428 | 0.4142 |
Operation log | 0.1921 | 1.0000 | 0.6687 | 0.5081 | 2.9428 | 0.1209 |
Identity authentication and authority control | 0.6148 | 1.4953 | 1.0000 | 1.3161 | 3.6371 | 0.2262 |
Access control | 0.2749 | 1.9680 | 0.7598 | 1.0000 | 2.4323 | 0.1682 |
Virus killing | 0.3398 | 0.3398 | 0.2749 | 0.4111 | 1.0000 | 0.0706 |
Criterion Layer | Management Strategy | Standards | Data Security | Resource Assurance | Network Security | System Security | Total Sorting |
---|---|---|---|---|---|---|---|
Index layer | 0.2296 | 0.2423 | 0.1912 | 0.1057 | 0.1249 | 0.1063 | |
Risk assessment and monitoring | 0.3070 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.070494 |
Rule construction of data rights | 0.2358 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.054138 |
Emergency response | 0.1503 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.034515 |
Operation plan and control | 0.1449 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.033273 |
Leadership support | 0.1620 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.037194 |
Storage period and appraisal disposal plan | 0.0000 | 0.1934 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.046849 |
Data carrier and format | 0.0000 | 0.1368 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.033143 |
Electronic records filing process specification | 0.0000 | 0.1680 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.040699 |
Datatype of storage and transfer plan | 0.0000 | 0.1225 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.029669 |
Quality inspection | 0.0000 | 0.1688 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.040888 |
Outsourcing management security | 0.0000 | 0.0959 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.023233 |
Archive solidification | 0.0000 | 0.1147 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.027786 |
Metadata | 0.0000 | 0.0000 | 0.2811 | 0.0000 | 0.0000 | 0.0000 | 0.053751 |
Data exchange security | 0.0000 | 0.0000 | 0.1253 | 0.0000 | 0.0000 | 0.0000 | 0.023954 |
Encryption and decryption | 0.0000 | 0.0000 | 0.1021 | 0.0000 | 0.0000 | 0.0000 | 0.019524 |
Security classification | 0.0000 | 0.0000 | 0.0789 | 0.0000 | 0.0000 | 0.0000 | 0.015078 |
Data transformation | 0.0000 | 0.0000 | 0.0807 | 0.0000 | 0.0000 | 0.0000 | 0.015439 |
Data backup | 0.0000 | 0.0000 | 0.1212 | 0.0000 | 0.0000 | 0.0000 | 0.023172 |
Link maintenance | 0.0000 | 0.0000 | 0.0549 | 0.0000 | 0.0000 | 0.0000 | 0.010494 |
Data authorization security | 0.0000 | 0.0000 | 0.0912 | 0.0000 | 0.0000 | 0.0000 | 0.017437 |
Data encapsulation | 0.0000 | 0.0000 | 0.0646 | 0.0000 | 0.0000 | 0.0000 | 0.012346 |
Staff security | 0.0000 | 0.0000 | 0.0000 | 0.3192 | 0.0000 | 0.0000 | 0.033744 |
Security agency and director setting | 0.0000 | 0.0000 | 0.0000 | 0.1767 | 0.0000 | 0.0000 | 0.018674 |
Security awareness training | 0.0000 | 0.0000 | 0.0000 | 0.2777 | 0.0000 | 0.0000 | 0.029357 |
Finance and materials | 0.0000 | 0.0000 | 0.0000 | 0.1429 | 0.0000 | 0.0000 | 0.0151 |
Site of storage security | 0.0000 | 0.0000 | 0.0000 | 0.0835 | 0.0000 | 0.0000 | 0.008825 |
Network device | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2559 | 0.0000 | 0.031958 |
Invasion detection | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3544 | 0.0000 | 0.044263 |
Data flow cleaning | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1944 | 0.0000 | 0.024283 |
Single sign on | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1952 | 0.0000 | 0.024376 |
Digital signature | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4142 | 0.044046 |
Operation log | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1209 | 0.012856 |
Identity authentication and authority control | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2262 | 0.024051 |
Access control | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1682 | 0.017883 |
Virus killing | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0706 | 0.007509 |
Appendix B. ANP Hybrid Evaluating Process
0.0000 | 0.0000 | 0.2185 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4262 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0833 | 0.0000 | 0.0000 | 0.2583 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2086 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6017 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1523 | 0.2173 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6370 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
1.0000 | 0.0000 | 0.0668 | 0.0000 | 0.2222 | 0.1686 | 0.0000 | 0.0000 | 0.2808 | 0.1602 | 0.0000 | 0.0000 | 0.0000 | 0.2500 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.1203 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0556 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5842 | 0.0691 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0760 | 0.0000 | 0.0402 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0833 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0956 | 0.2162 | 0.0000 | 0.1350 | 0.0956 | 0.0549 | 0.0000 | 0.0281 | 0.0000 | 0.0000 | 0.0000 | 0.0681 | 0.0000 | 0.1667 | 0.2084 | 0.0000 | 0.6370 | 0.0714 | 0.0556 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3679 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0714 | 0.0556 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2333 | 0.0000 | 0.0000 | 0.0000 | 0.2763 | 0.0000 | 0.0000 | 0.0000 | 0.0617 | 0.0000 | 0.0714 | 0.0556 | 0.0833 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0630 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1052 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1047 | 0.0714 | 0.0556 | 0.0833 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0985 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1101 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2060 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8333 | 0.0000 | 0.0000 | 0.0000 | 0.0714 | 0.0556 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2690 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0878 | 0.2069 | 0.0000 | 0.0000 | 0.0000 | 0.4755 | 0.0000 | 0.7500 | 0.0000 | 0.0806 | 0.3414 | 0.0000 | 0.0000 | 0.0695 | 0.1829 | 0.0000 | 0.0714 | 0.0556 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0380 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2850 | 0.0000 | 0.2489 | 0.0000 | 0.2745 | 0.0709 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5039 | 0.0000 | 0.0714 | 0.0556 | 0.0000 | 0.0000 | 0.4155 | 0.0000 | 1.0000 | 0.0000 | 0.3555 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0556 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1219 | 0.0554 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2583 | 0.0714 | 0.0556 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4116 | 0.0000 | 0.0000 | 0.0000 | 0.2794 | 0.0915 | 0.0824 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1700 | 0.0000 | 0.0714 | 0.0556 | 0.0833 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3679 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1728 | 0.0000 | 0.0356 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0714 | 0.0556 | 0.0833 | 1.0000 | 0.2111 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1743 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1585 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2090 | 0.0000 | 0.0000 | 0.0000 | 0.0815 | 0.0000 | 0.0714 | 0.0556 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0714 | 0.0556 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0873 | 0.5000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0916 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0556 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4381 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1853 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0714 | 0.0556 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4711 | 0.2999 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1407 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0556 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2375 | 0.0000 | 0.0000 | 0.0700 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0714 | 0.0000 | 0.0833 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.8333 | 0.0425 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0520 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0556 | 0.0833 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.1667 | 0.0627 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0833 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.7147 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0577 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2227 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1044 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0718 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.1047 | 0.0000 | 0.0000 | 0.0337 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2794 | 0.0000 | 0.2120 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0833 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.6370 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2722 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0833 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0630 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.2583 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4619 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1044 | 0.0000 | 0.0000 | 0.0000 | 0.0630 | 0.0000 | 0.3955 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1375 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0833 | 0.0000 | 0.0350 | 0.1047 | 0.0000 | 0.0000 | 0.0266 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Appendix C. Fuzzy Comprehensive Evaluation Process
References
- Jiang, H.; Shao, Q.; Liou, J.J.; Shao, T.; Shi, X. Improving the Sustainability of Open Government Data. Sustainability 2019, 11, 2388. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.I.; Lee, Y.D.; Ho, T.N. Applying integrated DEA/AHP to evaluate the economic performance of local governments in China. Eur. J. Oper. Res. 2011, 209, 129–140. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. Axiomatic foundation of the analytic hierarchy process. Manag. Sci. 1986, 32, 841–855. [Google Scholar] [CrossRef]
- Saaty, T.L. An exposition of the AHP in reply to the paper “remarks on the analytic hierarchy process”. Manag. Sci. 1990, 36, 259–268. [Google Scholar] [CrossRef]
- Saaty, T.L. Highlights and critical points in the theory and application of the analytic hierarchy process. Eur. J. Oper. Res. 1994, 74, 426–447. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 2003, 145, 85–91. [Google Scholar] [CrossRef]
- Saaty, T.L.; Takizawa, M. Dependence and independence: From linear hierarchies to nonlinear networks. Eur. J. Oper. Res. 1986, 26, 229–237. [Google Scholar] [CrossRef]
- Saaty, T.L. Fundamentals of the analytic network process—Dependence and feedback in decision-making with a single network. J. Syst. Sci. Syst. Eng. 2004, 13, 129–157. [Google Scholar] [CrossRef]
- Saaty, T.L. Rank from comparisons and from ratings in the analytic hierarchy/network processes. Eur. J. Oper. Res. 2006, 168, 557–570. [Google Scholar] [CrossRef]
- Saaty, T.L. Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process. RACSAM Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. Mat. 2008, 102, 251–318. [Google Scholar] [CrossRef]
- Mulyanto, A.; Amalia, T.; Novian, D.; Kaluku, M. Implementation of ANP Method in Determining Supplier to Improve Service towards Supermarket Consumers. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 180, p. 012123. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Feizizadeh, B.; Blaschke, T. Multi-criteria risk evaluation by integrating an analytical network process approach into GIS-based sensitivity and uncertainty analyses. Geomat. Nat. Hazards Risk 2018, 9, 127–151. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Zhou, L.; Hu, C.; Wang, L.; Jin, W. Analysis of Influencing Factors of Occupational Safety and Health in Coal Chemical Enterprises Based on the Analytic Network Process and System Dynamics. Processes 2019, 7, 53. [Google Scholar] [CrossRef] [Green Version]
- Mu, E.; Cooper, O.; Peasley, M. Best Practices in Analytic Network Process Studies. Expert Syst. Appl. 2020, 159, 113536. [Google Scholar] [CrossRef]
- Zammori, F.; Gabbrielli, R. ANP/RPN: A multi criteria evaluation of the risk priority number. Qual. Reliab. Eng. Int. 2012, 28, 85–104. [Google Scholar] [CrossRef]
- United Nations E-Government Survey (E-Government in Support of Sustainable Development); Technical Report; United Nations Department of Economic and Social Affairs: Geneva, Switzerland, 2016.
- DMG. Report of China Local Opening Government Data; Technical Report; Digital and Mobile Governance Lab of Fudan University: Shanghai, China, 2020. [Google Scholar]
- Vetrò, A.; Canova, L.; Torchiano, M.; Minotas, C.O.; Iemma, R.; Morando, F. Open data quality measurement framework: Definition and application to open government data. Gov. Inf. Q. 2016, 33, 325–337. [Google Scholar] [CrossRef] [Green Version]
- Viscusi, G.; Spahiu, B.; Maurino, A.; Batini, C. Compliance with open government data policies: An empirical assessment of Italian local public administrations. Inf. Polity 2014, 19, 263–275. [Google Scholar] [CrossRef]
- Donker, F.W.; Loenen, B.V. How to assess the success of the open data ecosystem? Int. J. Digit. Earth 2017, 10, 284–306. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.I.S.; Lóscio, B.F. What is a Data Ecosystem? In Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age, Delft, The Netherlands, 30 May–1 June 2018; Association for Computing Machinery: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Alison, K.; Sabou, M. Sustainability implications of open government data: A cross-regional study. In Proceedings of the ACM Web Science Conference, Oxford, UK, 28 June–1 July 2015. [Google Scholar]
- Williams, S.; Robinson, J. Measuring sustainability: An evaluation framework for sustainability transition experiments. Environ. Sci. Policy 2020, 103, 58–66. [Google Scholar] [CrossRef]
- OECD; EU. Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD Publishing: Paris, France, 2008. [Google Scholar]
- Chang, T.W.; Pai, C.J.; Lo, H.W.; Hu, S.K. A Hybrid Decision-Making Model for Sustainable Supplier Evaluation in Electronics Manufacturing. Comput. Ind. Eng. 2021, 156, 107283. [Google Scholar] [CrossRef]
- Gabus, A.; Fontela, E. World Problems, an Invitation to Further Thought within the Framework of DEMATEL; Battelle Geneva Research Center: Geneva, Switzerland, 1972; pp. 1–8. [Google Scholar]
- Torbacki, W. A hybrid MCDM model combining DANP and PROMETHEE II methods for the assessment of cybersecurity in industry 4.0. Sustainability 2021, 13, 8833. [Google Scholar] [CrossRef]
- Wudhikarn, R.; Chakpitak, N.; Neubert, G. Improving the Strategic Benchmarking of Intellectual Capital Management in Logistics Service Providers. Sustainability 2020, 12, 10174. [Google Scholar] [CrossRef]
- Foroozesh, F.; Monavari, S.M.; Salmanmahiny, A.; Robati, M.; Rahimi, R. Assessment of sustainable urban development based on a hybrid decision-making approach: Group fuzzy BWM, AHP, and TOPSIS–GIS. Sustain. Cities Soc. 2022, 76, 103402. [Google Scholar] [CrossRef]
- Ocampo, L. A probabilistic fuzzy analytic network process approach (PROFUZANP) in formulating sustainable manufacturing strategy infrastructural decisions under firm size influence. Int. J. Manag. Sci. Eng. Manag. 2018, 13, 158–174. [Google Scholar] [CrossRef]
- Harker, P.T. Incomplete pairwise comparisons in the analytic hierarchy process. Math. Model. 1987, 9, 837–848. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.D.; Hagiwara, I. Sensitivity analysis methods for coupled acoustic-structural systems part I: Modal sensitivities. AIAA J. 1991, 29, 1787–1795. [Google Scholar] [CrossRef]
- Dodd, F.; Donegan, H.; McMaster, T. Inverse inconsistency in analytic hierarchies. Eur. J. Oper. Res. 1995, 80, 86–93. [Google Scholar] [CrossRef]
- Salo, A.A.; Hämäläinen, R.P. On the measurement of preferences in the analytic hierarchy process. J. Multi-Criteria Decis. Anal. 1997, 6, 309–319. [Google Scholar] [CrossRef]
- Ishizaka, A.; Balkenborg, D.; Kaplan, T. Does AHP help us make a choice? An experimental evaluation. J. Oper. Res. Soc. 2011, 62, 1801–1812. [Google Scholar] [CrossRef] [Green Version]
- Aragonés-Beltrán, P.; Chaparro-González, F.; Pastor-Ferrando, J.; Rodríguez-Pozo, F. An ANP-based approach for the selection of photovoltaic solar power plant investment projects. Renew. Sustain. Energy Rev. 2010, 14, 249–264. [Google Scholar] [CrossRef]
- Azis, I.J. Analytic Network Process With Feedback Influence: A New Approach to Impact Study. In 2003 Batunanggar, Sukarela, Indonesias Banking Crisis Resolution: Lessons and the Way Forward, Occasional Internal Paper; University of Illinois: Urbana, IL, USA, 2002. [Google Scholar]
- Avrachenkov, K.E.; Sanchez, E. Fuzzy markov chains and decision-making. Fuzzy Optim. Decis. Mak. 2002, 1, 143–159. [Google Scholar] [CrossRef]
- Beasley, J.C. Graph-Theoretic Methods for Determining the Distinguished Eigenvalues to Nonnegative Reducible Matrices with Applications to Certain Linear Systems. 1986. Available online: https://ttu-ir.tdl.org/bitstream/handle/2346/12558/31295004985403.pdf?sequence=1&isAllowed=y (accessed on 20 October 2021).
- Sekitani, K.; Takahashi, I. A unified model and analysis for AHP and ANP. J. Oper. Res. Soc. Jpn. 2001, 44, 67–89. [Google Scholar] [CrossRef]
- Orrin, C.; Guoqing, L. Linking Disjoint Supermatrices and Criteria Clusters. J. Multi-Criteria Decis. Anal. 2016, 23, 139–159. [Google Scholar] [CrossRef]
- Adams, W.J.L.; Saaty, D.L. Method and System for Connecting Analytic Network Process Model (ANP) with Feedback Throughout the ANP Model between Sub-Networks. U.S. Patent 8,341,103, 25 December 2012. [Google Scholar]
- Kinoshita, E.; Sugiura, S. The Relationship between Dominant AHP/CCM and ANP. In Intelligent Decision Technologies; Springer: Berlin, Germany, 2011; pp. 319–328. [Google Scholar] [CrossRef]
- Ozcan-Deniz, G.; Zhu, Y. A multi-objective decision-support model for selecting environmentally conscious highway construction methods. J. Civ. Eng. Manag. 2015, 21, 733–747. [Google Scholar] [CrossRef] [Green Version]
- Azis, I.J. Analytic network process with feedback influence: A new approach to impact study. In Paper for Seminar Organized by Department of Urban and Regional Planning; University of Illinois at Urbana-Campaign: Champaign, IL, USA, 2003. [Google Scholar]
- Sekitani, K.; Takahashi, I. A new approach of revising unstable data in ANP by Bayes theorem. J. Oper. Res. Soc. Jpn. 2005, 48, 24–40. [Google Scholar] [CrossRef]
- Alyamani, R.; Long, S. The application of fuzzy Analytic Hierarchy Process in sustainable project selection. Sustainability 2020, 12, 8314. [Google Scholar] [CrossRef]
- Wudhikarn, R. Improving the intellectual capital management approach using the hybrid decision method. J. Intellect. Cap. 2018, 19, 670–691. [Google Scholar] [CrossRef]
- Zha, S.; Guo, Y.; Huang, S.; Tang, P. A Hybrid MCDM Approach Based on ANP and TOPSIS for Facility Layout Selection. Trans. Nanjing Univ. Aeronaut. Astronaut. 2018, 35, 1027–1037. [Google Scholar]
- Wudhikarn, R.; Chakpitak, N.; Neubert, G. Use of an analytic network process and Monte Carlo analysis in new product formula selection decisions. Asia-Pac. J. Oper. Res. 2015, 32, 1550007. [Google Scholar] [CrossRef]
- Wudhikarn, R.; Chakpitak, N.; Neubert, G. An analytic network process approach for the election of green marketable products. Benchmarking Int. J. 2015, 22, 994–1018. [Google Scholar] [CrossRef]
- Ozceylan, E.; Ozkan, B.; Cetinkaya, C. A Hybrid Model Based on FAHP and WASPAS for Evaluation of Explosive and Narcotics Trace Detection Devices. In Intelligent and Fuzzy Techniques in Aviation 4.0; Springer: Berlin, Germany, 2022; pp. 335–360. [Google Scholar]
- Çelik, P.; Akmermer, B. Target Market Selection for the Major Aquaculture Products of Turkey-An Evaluation on Export Markets by Hybrid Multi-criteria Decision-making Approach. Aquac. Stud. 2021, 22. [Google Scholar] [CrossRef]
- Ocampo, L.; Clark, E. Integrating sustainability and manufacturing strategy into a unifying framework. Int. J. Soc. Ecol. Sustain. Dev. (IJSESD) 2017, 8, 1–16. [Google Scholar] [CrossRef]
- Dahooie, J.H.; Mohammadi, N.; Meidutė-Kavaliauskienė, I.; Binkytė-Vėlienė, A. A novel performance evaluation framework for new service development in the healthcare industry using hybrid ISM and ANP. Technol. Econ. Dev. Econ. 2021, 27, 1481–1508. [Google Scholar] [CrossRef]
- Tabatabaee, S.; Mahdiyar, A.; Ismail, S. Towards the success of Building Information Modelling implementation: A fuzzy-based MCDM risk assessment tool. J. Build. Eng. 2021, 43, 103117. [Google Scholar] [CrossRef]
- Hosseini, A.; Pourahmad, A.; Ayashi, A.; Tzeng, G.H.; Banaitis, A.; Pourahmad, A. Improving the urban heritage based on a tourism risk assessment using a hybrid fuzzy MADM method: The case study of Tehran’s central district. J. Multi-Criteria Decis. Anal. 2021, 28, 248–268. [Google Scholar] [CrossRef]
- Gupta, V.; Jayant, A. A Novel Hybrid MCDM Approach followed by Fuzzy DEMATEL-ANP-TOPSIS to Evaluate Low Carbon Suppliers. 2021. Available online: https://catalog.lib.kyushu-u.ac.jp/ja/recordID/4491640/?repository=yes (accessed on 20 October 2021).
- Ortiz-Barrios, M.; Cabarcas-Reyes, J.; Ishizaka, A.; Barbati, M.; Jaramillo-Rueda, N.; de Jesús Carrascal-Zambrano, G. A hybrid fuzzy multi-criteria decision making model for selecting a sustainable supplier of forklift filters: A case study from the mining industry. Ann. Oper. Res. 2020, 307, 443–481. [Google Scholar] [CrossRef]
- Langville, A.N.; Meyer, C.D. Google’s PageRank and Beyond: The Science of Search Engine Rankings; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar] [CrossRef] [Green Version]
- Meyer, C.D. Matrix Analysis and Applied Linear Algebra; SIAM: Philadelphia, PA, USA, 2000; Volume 71. [Google Scholar] [CrossRef]
- Ross, S.M. Stochastic Processes; JOHN WILEY & SONS INC. Press: New York, NY, USA, 1996; Volume 2, Available online: https://b-ok.cc/book/837836/4af9ab (accessed on 20 October 2021).
- De la Fuente, A. Mathematical Methods and Models for Economists; Cambridge University Press: Cambridge, UK, 2000; pp. 457–492. [Google Scholar]
- Zheng, D.Z. Linear System Theory; Tsinghua University Publishing House: Beijing, China, 2002; pp. 213–251. [Google Scholar]
Authors | Purpose | Method/Hybrid What | Result |
---|---|---|---|
Wudhikarn, 2018 [49] | For addressing the deficiencies and gaps generally found in past studies on benchmarking and for benchmarking intellectual capital (IC) in the underdeveloped domain of logistics. | The proposed approach integrated the analytic network process and the concept of thinking and non-thinking assets with the generic benchmarking procedure. | Resolve the lack of consideration of relationships among past benchmarking concepts and the impacts of their managerial factors, as well as to examine the wide range of elements and indicators of IC influencing the sustainable development of organizations |
Shanshan et al., 2018 [50] | An application of a new aeronautic component assembly workshop facility layout selection is conducted. | A hybrid MCDM approach that employs ANP and technique for order preference by similarity to an ideal solution (TOPSIS) method to rank the optimal facility layout alternatives. | Illustrate the advantage of the proposed approach, the difference between ANP-TOPSIS and AHP-TOPSIS methods are compared and discussed. Results have demonstrated the effectiveness and feasibility of the proposed method. |
Wudhikarn et al., 2015 [51] | Solve the uncertainty inherent in the input data. To select among newly developed roof formulas by considering the uncertainty and interrelation among decision criteria and elements as well as alternatives. | Propose an improved process that considers uncertainty by using Monte Carlo analysis with input values then applied to the ANP procedures. | Furthermore, the results of improved method differ the rankings produced by the original ANP. The observed dissimilarities mainly result from uncertainty consideration discussed in this study. |
Wudhikarn et al., 2015 [52] | To account for the tradeoff issues among the criteria (quality, cost and green issue) in the new green product selection processes. | Eight quality dimensions proposed by Garvin are used to manage the quality issue, and a life cycle costing (LCC) method is applied for consideration of the cost and green issue. Therefore, the dependency issue among the criteria is considered. | An optimal environmentally friendly product does not overcome the existing toxic product of the focused company. The environmental performance is necessarily balanced by the quality and cost capabilities. |
Ozceylan et al., 2022 [53] | Evaluation and selection the best device. | Fuzzy analytic hierarchy process (FAHP) is applied for assigning weights of the attributes and weighted aggregated sum product assessment (WASPAS) method is used to determine the most suitable alternative device for explosive and narcotics trace detection. | Three well-known devices in the market are evaluated and the best alternative is suggested. |
Foroozesh et al., 2022 [30] | Develop a practical framework consisting of GIS and MCDM to assess the development sustainability of Karaj | The criteria were weighted and prioritized using Group Fuzzy BWM (GFBWM) and Analytic Hierarchy Process (AHP) methods. Fuzzy logic and Weighted Linear Combination (WLC) methods in GIS were used to determine the sustainability of Karaj for urban development. | Socioeconomic criterion and employment sub-criterion were the most important in AHP and GF-BWM methods. |
Çelik and Akmermer, 2021 [54] | Selection of these priority products to support the exporting potential of Turkey. | Provide forecasting about target markets based on qualitative and quantitative criteria by combining fuzzy analytic hierarchy process (FAHP) and the technique for order preference by similarity to ideal solution (TOPSIS) methods. | According to FAHP results, the trade balance criterion has the most significant effect while the distance criterion has least effect on the decision problem for ranking the target countries. |
Ocampo, 2018 [31] | Identifying the content of manufacturing strategy infrastructural decisions that attempt to integrate a sustainability and classical manufacturing strategy framework, in the presence of firm size as a relevant component in decision-making. | Triangular fuzzy numbers (TFNs) are used to elucidate the judgment of elements in pairwise comparison in the framework of the analytic network process (ANP). | This paper is a novel approach that holistically captures the judgmental uncertainty of individual decision-makers and the uncertainty of group decision-making. |
Ocampo and Clark, 2017 [55] | A unifying framework in formulating a manufacturing strategy which espouses sustainability with due consideration of the manufacturing’s internal and external competitive functions. | The proposed framework integrates the features based on the classical theories of manufacturing strategy and the other features that must be considered to transform a firm’s manufacturing strategy into a sustainable manufacturing strategy. | This framework serves as a guide for decision makers in identifying policies in various manufacturing decision areas that would comprise a sustainable manufacturing strategy |
Alyamani and Long, 2020 [48] | Rank the different project criteria based on relative importance and impact on sustainable projects. | Use the fuzzy analytic hierarchy process (FAHP) methodology in which fuzzy numbers are utilized to realistically represent human judgment. | The most important criterion to consider in sustainable project selection is project cost, followed by novelty and uncertainty as the second and third most important criteria, respectively. |
Dahooie et al., 2021 [56] | Allow for interaction between different decision makers, considering multiple and sometimes conflicting criteria. | Provide a framework to assess the NSD performance in healthcare industry using multiple-criteria-decision-making methods. | The proposed model consists of 17 different criteria that have been identified and finalized based on previous studies as well as experts’ opinions. |
Tabatabaee et al., 2021 [57] | Developing a risk assessment tool for BIM-based IBS projects and employing a hybrid, comprehensive and efficient method for model development. | The “Fuzzy Delphi Method” was employed to identify the critical risk factors, while “DEMATEL” and the “Parsimonious-fuzzy analytic network process” were employed for data analyses. | Developing a risk assessment tool for BIM-based IBS projects and employing a hybrid, comprehensive, and efficient method for model development. |
Torbacki, 2021 [28] | Ranking of the proposed three groups of measures, seven dimensions and twenty criteria to be implemented in companies to ensure cybersecurity in Industry 4.0 and facilitate the implementation of the sustainable production principles. | Using the combined DEMATEL and ANP (DANP) and PROMETHEE II methods | Achieve the Sustainable Development goals, reducing the carbon footprint of companies and introducing circular economy elements was also indicated. |
Hosseini et al., 2021 [58] | Assess the urban heritage of central districts in Tehran with an emphasis on tourism risk as a real case study. | Fourteen criteria developed on the basis of the fuzzy decision-making trial and evaluation laboratory (FDEMATEL) method are adopted for this assessment to construct the fuzzy influential network relation map and find the fuzzy influential weights;The hybrid modified fuzzy VIKOR method is adopted to evaluate and reduce the tourism risk towards for closing the gap zero. | According to the model and the results of the risk assessment in tourism, this method is a reasonable solution for the assessment and risk analysis in real-world problems. The proposed method can be a useful tool for managers in tourism and urban planning |
Gupta and Jayant, 2021 [59] | A novel hybrid framework has been proposed, which can provide sound support for implementations of LCSCM practices by effective evaluation of concerned criterions. | A novel hybrid MCDM model, which involved Decision making trial and evaluation laboratory (DEMATEL), Analytical network process (ANP) and techniques for order performance by similarly to ideal solution (TOPSIS) followed by fuzzy methodologies has been developed for evaluation and selection low carbon suppliers. | The novel hybrid MCDM approach to evaluate low carbon supplier to the improvement of LCSCM alternatives is the one which have greater final performance index having value of 0.2350 with corresponding index of supplier (T3), which is the best criteria in this method. |
Ortiz-Barrios et al., 2020 [60] | Supplier selection. | FAHP and FDEMATEL are combined to obtain the final contributions of both criteria and sub-criteria on the basis of interrelations and uncertainty. | The results evidence that quality criterion is the most crucial aspect when selecting suppliers of forklift filters. |
Connectivity Probability | ANP Ratio of Non-Convergence in 1000 Steps | H-ANP |
---|---|---|
0.0100 | 0.0800 | 0.0000 |
0.0500 | 0.3000 | 0.0000 |
0.0700 | 0.3400 | 0.0000 |
0.0900 | 0.3900 | 0.0000 |
0.0950 | 0.0370 | 0.0000 |
0.1000 | 0.2700 | 0.0000 |
0.1500 | 0.0500 | 0.0000 |
0.2000 | 0.0000 | 0.0000 |
Index | AHP | AC-ANP | H-ANP |
---|---|---|---|
Management strategy | |||
Risk assessment and monitoring (E1) | 0.0705 | 0.0343 | 0.0654 |
Rule construction of data rights (E2) | 0.0541 | 0.0194 | 0.0497 |
Emergency response (E3) | 0.0345 | 0.0114 | 0.0333 |
Operation plan and control (E4) | 0.0333 | 0.0954 | 0.0483 |
Leadership support (E5) | 0.0372 | 0.0049 | 0.0318 |
Standards | |||
Storage period and appraisal disposal plan (E6) | 0.0468 | 0.0120 | 0.0427 |
Data carrier and format (E7) | 0.0331 | 0.0142 | 0.0290 |
Electronic records filing process specification (E8) | 0.0407 | 0.0429 | 0.0424 |
Datatype of storage and transfer plan (E9) | 0.0297 | 0.0090 | 0.0280 |
Quality inspection (E10) | 0.0409 | 0.0549 | 0.0399 |
Outsourcing management security (E11) | 0.0232 | 0.0168 | 0.0214 |
Archive solidification (E12) | 0.0278 | 0.0485 | 0.0293 |
Data security | |||
Metadata (E13) | 0.0538 | 0.1076 | 0.0560 |
Data exchange security (E14) | 0.0240 | 0.0913 | 0.0368 |
Encryption and decryption (E15) | 0.0195 | 0.0087 | 0.0177 |
Security classification (E16) | 0.0151 | 0.0121 | 0.0145 |
Data transformation (E17) | 0.0154 | 0.0374 | 0.0210 |
Data backup (E18) | 0.0232 | 0.0327 | 0.0257 |
Link maintenance (E19) | 0.0105 | 0.0214 | 0.0116 |
Data authorization security (E20) | 0.0174 | 0.0179 | 0.0171 |
Data encapsulation (E21) | 0.0123 | 0.0133 | 0.0115 |
Resource assurance | |||
Staff security (E22) | 0.0337 | 0.0311 | 0.0342 |
Security agency and director setting (E23) | 0.0187 | 0.0055 | 0.0168 |
Security awareness training (E24) | 0.0294 | 0.0133 | 0.0270 |
Finance and materials (E25) | 0.0151 | 0.0720 | 0.0191 |
Site of storage security (E26) | 0.0088 | 0.0102 | 0.0082 |
Network security | |||
Network device (E27) | 0.0320 | 0.0232 | 0.0289 |
Invasion detection (E28) | 0.0443 | 0.0132 | 0.0418 |
Data flow cleaning (E29) | 0.0243 | 0.0172 | 0.0226 |
Single sign on (E30) | 0.0244 | 0.0057 | 0.0210 |
System security | |||
Digital signature (E31) | 0.0440 | 0.0346 | 0.0413 |
Operation log (E32) | 0.0129 | 0.0043 | 0.0109 |
Identity authentication and authority control (E33) | 0.0241 | 0.0245 | 0.0264 |
Access control (E34) | 0.0179 | 0.0254 | 0.0205 |
Virus killing (E35) | 0.0075 | 0.0140 | 0.0080 |
Var | 0.0002 | 0.0007 | 0.0002 |
MSE with respect to AHP | 0.0000 | 0.0007 | 0.0000 |
Kendall’s tau with respect to AHP | 1.0000 | 0.1529 | 0.8319 |
Group Set | Extensive Poor | Poor | Average | Good | Exellent |
---|---|---|---|---|---|
General | 0.2534 | 0.0938 | 0.2399 | 0.1987 | 0.1486 |
Management strategy | 0.0000 | 0.0145 | 0.4076 | 0.1521 | 0.1393 |
Standards | 0.4751 | 0.2198 | 0.0467 | 0.2333 | 0.0249 |
Data security | 0.1736 | 0.0579 | 0.4574 | 0.3109 | 0.0000 |
Resource assurance | 0.0000 | 0.1811 | 0.0156 | 0.0234 | 0.7797 |
Network security | 0.7472 | 0.0000 | 0.0000 | 0.0000 | 0.2527 |
System security | 0.1916 | 0.0749 | 0.3482 | 0.3851 | 0.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Li, L.; Ren, M. A Hybrid ANP Method for Evaluation of Government Data Sustainability. Sustainability 2022, 14, 884. https://doi.org/10.3390/su14020884
Xu J, Li L, Ren M. A Hybrid ANP Method for Evaluation of Government Data Sustainability. Sustainability. 2022; 14(2):884. https://doi.org/10.3390/su14020884
Chicago/Turabian StyleXu, Jicang, Linlin Li, and Ming Ren. 2022. "A Hybrid ANP Method for Evaluation of Government Data Sustainability" Sustainability 14, no. 2: 884. https://doi.org/10.3390/su14020884
APA StyleXu, J., Li, L., & Ren, M. (2022). A Hybrid ANP Method for Evaluation of Government Data Sustainability. Sustainability, 14(2), 884. https://doi.org/10.3390/su14020884