Artificial Intelligence in the Water–Energy–Food Model: A Holistic Approach towards Sustainable Development Goals
Abstract
:1. Introduction
2. Theoretical Background
3. Methodology
3.1. Survey Design
3.2. Scientific Databases
- String1: water energy and food AND artificial intelligence;
- String2: water energy and food AND business model*;
- String3: water energy and food AND sustainable development goal*.
3.3. Period of Survey
3.4. Document Type
4. Results
5. Discussion and Theoretical Implications
6. Conclusions, Limitations, and Future Research Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Vaio, A.; Trujillo, L.; D’Amore, G.; Palladino, R. Water governance models for meeting sustainable development Goals: A structured literature review. Util. Policy 2021, 72, 101255. [Google Scholar] [CrossRef]
- Laspidou, C.S.; Mellios, N.K.; Spyropoulou, A.E.; Kofinas, D.T.; Papadopoulou, M.P. Systems thinking on the resource nexus: Modeling and visualization tools to identify critical interlinkages for resilient and sustainable societies and institutions. Sci. Total Environ. 2020, 717, 137264. [Google Scholar] [CrossRef]
- Olawuyi, D. Sustainable development and the water-energy-food nexus: Legal challenges and emerging solutions. Environ. Sci. Policy 2020, 103, 1–9. [Google Scholar] [CrossRef]
- Hoff, H. Understanding the nexus. In Background Paper for the Bonn 2011 Nexus Conference: The Water, Energy and Food Security Nexus; Stockholm Environment Institute: Stockholm, Sweden, 2011. [Google Scholar]
- Stringer, L.C.; Quinn, C.H.; Berman, R.J.; Le, H.T.V.; Msuya, F.E.; Orchard, S.E.; Pezzuti, J.C.B. Combining Nexus and Resilience Thinking in a Novel Framework to Enable More Equitable and Just Outcomes; Sustainability Research Institute Paper No. 193; Sustainability Research Institute: Leeds, UK, 2014; Volume 73. [Google Scholar]
- Weitz, N.; Strambo, C.; Kemp-Benedict, E.; Nilsson, M. Closing the governance gaps in the water-energy-food nexus: Insights from integrative governance. Glob. Environ. Chang. 2017, 45, 165–173. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. Governance of the water-energy-food security nexus: A multilevel coordination challenge. Environ. Sci. Policy 2019, 92, 356–367. [Google Scholar] [CrossRef]
- Kurian, M. The water–energy–food nexus: Trade-offs, thresholds and transdisciplinary approaches to sustainable development. Environ. Sci. Policy 2017, 68, 97–106. [Google Scholar] [CrossRef]
- Le Blanc, D. Towards integration at last? The sustainable development goals as a network of targets. Sustain. Dev. 2015, 23, 176–187. [Google Scholar] [CrossRef]
- Srigiri, S.R.; Dombrowsky, I. Governance of the water-energy-food nexus for an integrated implementation of the 2030 Agenda: Conceptual and methodological framework for analysis. Discuss. Pap. 2021, 2, 1–28. [Google Scholar]
- Simpson, G.B.; Jewitt, G.P. The water-energy-food nexus in the Anthropocene: Moving from ’nexus thinking ’to ’nexus action. Curr. Opin. Environ. Sustain. 2019, 40, 117–123. [Google Scholar] [CrossRef]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The water–energy–food nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13, 043002. [Google Scholar] [CrossRef]
- Silvestre, B.S.; Ţîrcă, D.M. Innovations for sustainable development: Moving toward a sustainable future. J. Clean. Prod. 2019, 208, 325–332. [Google Scholar] [CrossRef]
- Nishant, R.; Kennedy, M.; Corbett, J. Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. Int. J. Infor. Manag. 2020, 53, 102104. [Google Scholar] [CrossRef]
- Di Vaio, A.; Hassan, R.; Alavoine, C. Data intelligence and analytics: A bibliometric analysis of human–Artificial intelligence in public sector decision-making effectiveness. Technol. Forecast. Soc. Chang. 2022, 174, 121201. [Google Scholar] [CrossRef]
- Di Vaio, A.; Palladino, R.; Hassan, R.; Escobar, O. Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. J. Bus. Resear. 2020, 121, 283–314. [Google Scholar] [CrossRef]
- Di Vaio, A.; Boccia, F.; Landriani, L.; Palladino, R. Artificial intelligence in the agri-food system: Rethinking sustainable business models in the COVID-19 scenario. Sustainability 2020, 12, 4851. [Google Scholar] [CrossRef]
- Mikalef, P.; Framnes, V.A.; Danielsen, F.; Krogstie, J.; Olsen, D. Big Data Analytics Capability: Antecedents and Business Value. In Proceedings of the Pacific Asia Conference on Information Systems, Langkawi Island, Malaysia, 16–20 July 2017; p. 136. [Google Scholar]
- Schneider, S.; Leyer, M. Me or information technology? Adoption of artificial intelligence in the delegation of personal strategic decisions. Manag. Dec. Econ. 2019, 40, 223–231. [Google Scholar] [CrossRef]
- Bebbington, J.; Unerman, J. Achieving the United Nations Sustainable Development Goals. Account. Audit. Account. J. 2018, 31, 2–24. [Google Scholar] [CrossRef]
- Caprani, L. Five Ways the Sustainable Development Goals are Better than the Millennium Development Goals and Why Every Educationalist Should Care. Manag. Educ. 2016, 30, 102–104. [Google Scholar] [CrossRef]
- Duan, W.L.; Chen, Y.N.; Zou, S.; Nover, D. Managing the water-climate- food nexus for sustainable development in Turkmenistan. J. Clean. Prod. 2019, 20, 220. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Infor. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Benson, D.; Gain, A.K.; Rouillard, J.J. Water governance in a comparative perspective: From IWRM to a’nexus’ approach? Water Altern. 2015, 8, 756–773. [Google Scholar]
- Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A review of the current state of research on the water, energy, and food nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30. [Google Scholar] [CrossRef] [Green Version]
- DiMaggio, P.J.; Powell, W.W. The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. Am. Sociol. Rev. 1983, 48, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Urbinatti, A.M.; Benites-Lazaro, L.L.; Carvalho, C.M.D.; Giatti, L.L. The conceptual basis of water-energy-food nexus governance: Systematic literature review using network and discourse analysis. J. Integr. Environ. Sci. 2020, 17, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Ghodsvali, M.; Krishnamurthy, S.; de Vries, B. Review of transdisciplinary approaches to food–water–energy nexus: A guide towards sustainable development. Environ. Sci. Policy 2019, 101, 266–278. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Cudennec, C.; Gain, A.K.; Hoff, H.; Lawford, R.; Qi, J.; de Strasser, L.; Yillia, P.T.; Zheng, C. Challenges in operationalizing the water–energy–food nexus. Hydrol. Sci. J. 2017, 62, 1714–1720. [Google Scholar] [CrossRef] [Green Version]
- Mohtar, R.H.; Daher, B. Water–energy–food nexus framework for facilitating multi-stakeholder dialogue. Water Int. 2016, 41, 655–661. [Google Scholar] [CrossRef]
- Bonn Conference. Messages from the Bonn2011 Conference: The Water, Energy and Food Security Nexus—Solutions for a Green Economy. In The Water, Energy and Food Security Nexus—Solutions for a Green Economy, Bonn; Stockholm Environment Institute: Stockholm Sweden, 2011. [Google Scholar]
- Freeman, R.E. Stakeholder Management: Framework and Philosophy; Pitman: Mansfield, MA, USA, 1984. [Google Scholar]
- Parmar, B.L.; Freeman, R.E.; Harrison, J.S.; Wicks, A.C.; Purnell, L.; De Colle, S. Stakeholder theory: The state of the art. Acad. Manag. Ann. 2010, 4, 403–445. [Google Scholar] [CrossRef]
- Bergendahl, J.A.; Sarkis, J.; Timko, M.T. Transdisciplinarity and the food energy and water nexus: Ecological modernization and supply chain sustainability perspectives. Res. Conserv. Recycl. 2018, 133, 309–319. [Google Scholar] [CrossRef]
- Villamor, G.B.; Griffith, D.L.; Kliskey, A.; Alessa, L. Integrating public/local and scientific knowledge in model development for food-energy-water systems. In Proceedings of the 9th International Congress on Environmental Modelling and Software, Ft. Collins, CO, USA, 24–28 June 2018. [Google Scholar]
- Kaplan, A.; Haenlein, M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus. Horiz. 2019, 62, 15–25. [Google Scholar] [CrossRef]
- Kahneman, D.; Rosenfield, A.M.; Gandhi, L.; Blaser, T. Noise. Harv. Bus. Rev. 2016, 38–46. [Google Scholar]
- Tsui, E. Exploring the KM toolbox. Knowl. Manag. 2000, 4, 11–14. [Google Scholar]
- Schroeder, P.; Anggraeni, K.; Weber, U. The relevance of circular economy practices to the sustainable development goals. J. Ind. Ecol. 2019, 23, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Mondejar, M.E.; Avtar, R.; Diaz, H.L.B.; Dubey, R.K.; Esteban, J.; Gómez-Morales, A.; Hallam, B.; Mbungu, N.T.; Okolo, C.C.; Prasad, K.A.; et al. Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet. Sci. Total Environ. 2021, 794, 148539. [Google Scholar] [CrossRef]
- Mosalam, H.A.; El-Barad, M. Design of an integration platform between the water-energy nexus and a business model applied for sustainable development. Water Sci. Technol. 2020, 81, 1398–1405. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.; Schindehutte, M.; Allen, J. The entrepreneur’s business model: Toward a unified perspective. J. Bus. Res. 2005, 58, 726–735. [Google Scholar] [CrossRef]
- Dirican, C. The Effects of Technological Development and Artificial Intelligence Studies on Marketing. J. Manag. Market. Logist. 2015, 2. [Google Scholar]
- Palomares, I.; Martínez-Cámara, E.; Montes, R.; García-Moral, P.; Chiachio, M.; Chiachio, J.; Alonso, S.; Melero, F.J.; Molina, D.; Fernández, B.; et al. A panoramic view and swot analysis of artificial intelligence for achieving the sustainable development goals by 2030: Progress and prospects. Appl. Intell. 2021, 51, 6497–6527. [Google Scholar] [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef] [Green Version]
- Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockström, J. Six Transformations to achieve the Sustainable Development Goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Braun, V.; Clarke, V. Using thematic analysis in psychology. Qual. Res. Psychol. 2006, 3, 77–101. [Google Scholar] [CrossRef] [Green Version]
- Hicks, D.; Wang, J. Coverage and overlap of the new social sciences and humanities journal lists. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 284–294. [Google Scholar] [CrossRef]
- Zupic, I.; Čater, T. Bibliometric methods in management and organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Krippendorff, K. Validity in Content Analysis; Sage Publishing: New York, NY, USA, 1980. [Google Scholar]
- Lal, R. The role of industry and the private sector in promoting the 4 per 1000 initiative and other negative emission technologies. Geoderma 2020, 378, 114613. [Google Scholar] [CrossRef]
- Virnodkar, S.S.; Pachghare, V.K.; Patil, V.C.; Jha, S.K. Remote sensing and machine learning for crop water stress determination in various crops: A critical review. Precis. Agric. 2020, 21, 1121–1155. [Google Scholar] [CrossRef]
- Sampath, P.V.; Jagadeesh, G.S.; Bahinipati, C.S. Sustainable Intensification of Agriculture in the Context of the COVID-19 Pandemic: Prospects for the Future. Water 2020, 10, 2738. [Google Scholar] [CrossRef]
- Palanichamy, M.; Sankaralingam, R. Narayanasamy. Statistical Studies on Rainfall and Time-based Deviations in Precipitation Trends in Vaigai River Basin, TN State, India. Indian J. Geo-Mar. Sci. 2020, 49, 15–23. [Google Scholar]
- Sishodia, R.P.; Shukla, S.; Wani, S.P.; Graham, W.D.; Jones, J.W. Future irrigation expansion outweigh groundwater recharge gains from climate change in semi-arid India. Sci. Total Environ. 2018, 635, 725–740. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.W.; Moll, H.C.; Uiterkamp, A.J.M.S. Design and development of a measuring method for environmental sustainability in food production systems. Ecol. Econ. 2003, 46, 231–248. [Google Scholar] [CrossRef]
- Govindan, R.; Al-Ansari, T. Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments. Renew. Sustain. Energy Rev. 2019, 112, 653–668. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Chang, L.C.; Uen, T.S.; Guo, S.L.; Xu, C.Y.; Chang, F.J. Prospect for small-hydropower installation settled upon optimal water allocation: An action to stimulate synergies of water-food-energy nexus. Appl. Energy 2019, 238, 668–682. [Google Scholar] [CrossRef]
- Veldhuis, A.J.; Glover, J.; Bradley, D.; Behzadian, K.; López-Avilés, A.; Cottee, J.; Downing, C.; Ingram, J.; Leach, M.; Farmani, R.; et al. Re-distributed manufacturing and the food-water-energy nexus: Opportunities and challenges. Prod. Plan. Contr. 2019, 30, 593–609. [Google Scholar] [CrossRef] [Green Version]
- Wada, Y.; Vinca, A.; Parkinson, S.; Willaarts, B.A.; Magnuszewski, P.; Mochizuki, J.; Mayor, B.; Wang, Y.P.; Burek, P.; Byers, E.; et al. Co-designing Indus Water-Energy-Land Futures. One Earth 2019, 1, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Camaréna, S. Engaging with Artificial Intelligence (AI) with a Bottom-Up Approach for the Purpose of Sustainability: Victorian Farmers Market Association, Melbourne Australia. Sustainability 2021, 13, 9314. [Google Scholar] [CrossRef]
- de Sousa Jabbour, A.B.L.; Luiz, J.V.R.; Luiz, O.R.; Jabbour, C.J.C.; Ndubisi, N.O.; de Oliveira, J.H.C.; Junior, F.H. Circular economy business models and operations management. J. Clean. Prod. 2019, 235, 1525–1539. [Google Scholar] [CrossRef]
- Uen, T.S.; Chang, F.J.; Zhou, Y.L.; Tsai, W.P. Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes. Sci. Total Environ. 2018, 633, 341–351. [Google Scholar] [CrossRef]
- Nhamo, L.; Mabhaudhi, T.; Mpandeli, S.; Dickens, C.; Nhemachena, C.; Senzanje, A.; Naidoo, D.; Liphadzi, S.; Modi, A.T. An integrative analytical model for the water-energy-food nexus: South Africa case study. Environ. Sci. Policy 2020, 109, 15–24. [Google Scholar] [CrossRef]
- Goel, R.K.; Yadav, C.S.; Vishnoi, S.; Rastogi, R. Smart agriculture-Urgent need of the day in developing countries. Sustain. Comput.-Inform. Syst. 2021, 30, 100512. [Google Scholar] [CrossRef]
- Resende, R.T.; Kuki, K.N.; Correa, T.R.; Zaidan, U.R.; Mota, P.H.S.; Telles, L.A.A.; Gonzales, D.G.E.; Motoike, S.Y.; Resende, M.D.V.; Leite, H.G.; et al. Data-based agroecological zoning of Acrocomia aculeata: GIS modeling and ecophysiological aspects into a Brazilian representative occurrence area. Ind. Crops Prod. 2020, 154, 112749. [Google Scholar] [CrossRef]
- Hemming, S.; de Zwart, F.; Elings, A.; Righini, I.; Petropoulou, A. Remote control of greenhouse vegetable production with artificial intelligence-Greenhouse climate, irrigation, and crop production. Sensors 2019, 19, 1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nika, C.E.; Exposito, A.; Kisser, J.; Bertino, G.; Oral, H.V.; Dehghanian, K.; Vasilaki, V.; Iacovidou, E.; Fatone, F.; Atanasova, N.; et al. Validating Circular Performance Indicators: The Interface between Circular Economy and Stakeholders. Water 2021, 13, 2198. [Google Scholar] [CrossRef]
- Das, K. Integrating Lean, Green, and Resilience Criteria in a Sustainable Food Supply Chain Planning Model. Int. J. Math. Eng. Manag. Sci. 2019, 4, 259–275. [Google Scholar] [CrossRef]
- Purwanto, A.; Sušnik, J.; Suryadi, F.X.; de Fraiture, C. Water-energy-food nexus: Critical review, practical applications, and prospects for future research. Sustainability 2021, 13, 1919. [Google Scholar] [CrossRef]
- Ryan, S.M.; Roberts, E.; Hibbett, E.; Bloom, N.; Haden, C.; Rushforth, R.R.; Pfeiffer, K.; Ruddell, B.L. The FEWSION for Community Resilience (F4R) Process: Building Local Technical and Social Capacity for Critical Supply Chain Resilience. Front. Environ. Sci. 2021, 6, 601220. [Google Scholar] [CrossRef]
- Bekchanov, M.; Lamers, J. The effect of energy constraints on water allocation decisions: The elaboration and application of a System-Wide Economic-Water-Energy Model (SEWEM). Water 2016, 8, 253. [Google Scholar] [CrossRef] [Green Version]
- Perrone, D.; Hornberger, G. Frontiers of the food–energy–water trilemma: Sri Lanka as a microcosm of trade-offs. Environ. Res. Lett. 2016, 11, 014005. [Google Scholar] [CrossRef]
- Giampietro, M.; Mayumi, K.; Martín, J.R. Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MUSIASEM): An outline of rationale and theory. Energy 2008, 34, 313–322. [Google Scholar] [CrossRef]
- Daher, B.; Mohtar, R.H. Water–energy–food (WEF) Nexus Tool 2.0: Guiding integrative resource planning and decision-making. Water Int. 2015, 40, 748–771. [Google Scholar] [CrossRef]
- Denning, D.E. Is Quantum Computing a Cybersecurity Threat? Although quantum computers currently don’t have enough processing power to break encryption keys, future versions might. Am. Sci. 2019, 107, 83–86. [Google Scholar] [CrossRef]
- Hao, K. Training a Single AI Model Can Emit as much Carbon as Five Cars in Their Lifetimes. Available online: https://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/ (accessed on 8 November 2021).
- Sarnacchiaro, P.; Boccia, F. Some remarks on measurement models in the structural equation model: An application for socially responsible food consumption. J. Appl. Stat. 2018, 45, 1193–1208. [Google Scholar] [CrossRef]
- Malagó, A.; Comero, S.; Bouraoui, F.; Kazezyılmaz-Alhan, C.M.; Gawlik, B.M.; Easton, P.; Laspidou, C. An analytical framework to assess SDG targets within the context of WEFE nexus in the Mediterranean region. Resour. Conserv. Recycl. 2021, 164, 105205. [Google Scholar] [CrossRef] [PubMed]
- Lawford, R.G. A design for a data and information service to address the knowledge needs of the Water-Energy-Food (WEF) Nexus and strategies to facilitate its implementation. Front. Environ. Sci. 2019, 7, 56. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amore, G.; Di Vaio, A.; Balsalobre-Lorente, D.; Boccia, F. Artificial Intelligence in the Water–Energy–Food Model: A Holistic Approach towards Sustainable Development Goals. Sustainability 2022, 14, 867. https://doi.org/10.3390/su14020867
D’Amore G, Di Vaio A, Balsalobre-Lorente D, Boccia F. Artificial Intelligence in the Water–Energy–Food Model: A Holistic Approach towards Sustainable Development Goals. Sustainability. 2022; 14(2):867. https://doi.org/10.3390/su14020867
Chicago/Turabian StyleD’Amore, Gabriella, Assunta Di Vaio, Daniel Balsalobre-Lorente, and Flavio Boccia. 2022. "Artificial Intelligence in the Water–Energy–Food Model: A Holistic Approach towards Sustainable Development Goals" Sustainability 14, no. 2: 867. https://doi.org/10.3390/su14020867
APA StyleD’Amore, G., Di Vaio, A., Balsalobre-Lorente, D., & Boccia, F. (2022). Artificial Intelligence in the Water–Energy–Food Model: A Holistic Approach towards Sustainable Development Goals. Sustainability, 14(2), 867. https://doi.org/10.3390/su14020867