Determinants of Regional Economic Resilience to Economic Crisis: Evidence from Chinese Economies
Abstract
:1. Introduction
2. Methods
2.1. Data
2.2. Resilience and Its Determinants
2.3. Resilience Indicator
2.4. Determinants of Regional Economic Resilience
2.5. Analytical Methods
Yij = 0, if RN < 0.
Log (pij/(1 − pij)) = γ00 + u0j,
β0j = γ00 + γij + u0j,
3. Results and Discussion
3.1. National- and Province-Based Regional Economic Resilience
3.2. Determinants of Regional Economic Resilience
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. National- and Province-Based Regional Economic Resilience
| Cityid | City | Province | RN | RP | 
|---|---|---|---|---|
| 1 | Beijing | Beijing | −0.11109 | |
| 2 | Tianjin | Tianjin | −0.5843 | |
| 3 | Shijiazhuang | Hebei | −0.25677 | 1.463781 | 
| 4 | Tangshan | Hebei | −0.87254 | −0.57746 | 
| 5 | Qinghuangdao | Hebei | −0.45149 | 0.818291 | 
| 6 | Handan | Hebei | −0.95008 | −0.83451 | 
| 7 | Xingtai | Hebei | −1.54113 | −2.79384 | 
| 8 | Baoding | Hebei | −0.2054 | 1.634082 | 
| 9 | Zhangjiakou | Hebei | −0.66689 | 0.104271 | 
| 10 | Chengde | Hebei | −0.32209 | 1.24727 | 
| 11 | Cangzhou | Hebei | −0.93111 | −0.77162 | 
| 12 | Langfang | Hebei | −0.69289 | 0.018063 | 
| 13 | Hengshui | Hebei | −0.88639 | −0.62338 | 
| 14 | Taiyuan | Shanxi | 0.146482 | 1.404865 | 
| 15 | Datong | Shanxi | −1.48236 | −2.01179 | 
| 16 | Yangquan | Shanxi | −0.51664 | 0.013896 | 
| 17 | Changzhi | Shanxi | 0.162884 | 1.43927 | 
| 18 | Jincheng | Shanxi | 0.028696 | 1.157797 | 
| 19 | Suzhou | Shanxi | 0.222703 | 1.564746 | 
| 20 | Jinzhong | Shanxi | 0.098738 | 1.304717 | 
| 21 | Yuncheng | Shanxi | −0.96673 | −0.9302 | 
| 22 | Yizhou | Shanxi | −1.31885 | −1.66882 | 
| 23 | Linfen | Shanxi | −0.37607 | 0.308768 | 
| 24 | Lvliang | Shanxi | −1.50201 | −2.05301 | 
| 25 | Huhehaote | Inner Mongolia | 0.647102 | 0.792586 | 
| 26 | Baotou | Inner Mongolia | −0.36959 | −0.31391 | 
| 27 | Wuhai | Inner Mongolia | −0.32789 | −0.26852 | 
| 28 | Chifeng | Inner Mongolia | −0.34386 | −0.28591 | 
| 29 | Tongliao | Inner Mongolia | −0.03096 | 0.054636 | 
| 30 | Erdors | Inner Mongolia | 1.352074 | 1.559825 | 
| 31 | Hailaer | Inner Mongolia | −0.46514 | −0.4179 | 
| 32 | Bayanzhuoer | Inner Mongolia | −0.04704 | 0.037131 | 
| 33 | Wulanchade | Inner Mongolia | −0.78522 | −0.76625 | 
| 34 | Shenyang | Liaoning | 0.122288 | 1.644333 | 
| 35 | Dalian | Liaoning | −0.94366 | −0.86726 | 
| 36 | Anshan | Liaoning | −0.26315 | 0.736152 | 
| 37 | Fushun | Liaoning | −1.23556 | −1.55503 | 
| 38 | Benxi | Liaoning | −0.5994 | −0.05611 | 
| 39 | Dandong | Liaoning | −0.9087 | −0.78487 | 
| 40 | Jinzhou | Liaoning | −0.631 | −0.13056 | 
| 41 | Yingkou | Liaoning | −0.5708 | 0.011278 | 
| 42 | Fuxin | Liaoning | −0.86719 | −0.68706 | 
| 43 | Liaoyang | Liaoning | −0.83911 | −0.62092 | 
| 44 | Panjin | Liaoning | −1.13943 | −1.32853 | 
| 45 | Tieling | Liaoning | −0.43092 | 0.340866 | 
| 46 | Zhaoyang | Liaoning | −0.02319 | 1.301552 | 
| 47 | Huludao | Liaoning | 0.177666 | 1.774813 | 
| 48 | Changchun | Jilin | 0.288544 | 0.521485 | 
| 49 | Jilin | Jilin | −0.32835 | −0.20693 | 
| 50 | Siping | Jilin | −0.85818 | −0.83254 | 
| 51 | Liaoyuan | Jilin | −0.77109 | −0.72971 | 
| 52 | Tonghua | Jilin | −0.89205 | −0.87253 | 
| 53 | Baishan | Jilin | −0.0421 | 0.131073 | 
| 54 | Songyuan | Jilin | 0.482841 | 0.750907 | 
| 55 | Baicheng | Jilin | −0.46179 | −0.3645 | 
| 56 | Haerbin | Heilongjiang | −1.57353 | −3.63828 | 
| 57 | Qiqihaer | Heilongjiang | −0.61837 | 0.755532 | 
| 58 | Jixi | Heilongjiang | −1.63553 | −3.9235 | 
| 59 | Hegang | Heilongjiang | −1.74667 | −4.43474 | 
| 60 | Shuangyashan | Heilongjiang | −1.59252 | −3.72567 | 
| 61 | Daqing | Heilongjiang | −1.4787 | −3.20207 | 
| 62 | Yichun | Heilongjiang | −1.05992 | −1.27564 | 
| 63 | Jiamusi | Heilongjiang | −1.00658 | −1.03028 | 
| 64 | Qitaihe | Heilongjiang | −0.81709 | −0.15858 | 
| 65 | Mudanjiang | Heilongjiang | −0.03457 | 3.44108 | 
| 66 | Heihe | Heilongjiang | −1.46661 | −3.14645 | 
| 67 | Neihua | Heilongjiang | −0.27408 | 2.339288 | 
| 68 | Shanghai | Shanghai | 0.300459 | |
| 69 | Nanjing | Jiangsu | 1.564261 | 0.412132 | 
| 70 | Wuxi | Jiangsu | 0.565437 | −0.13792 | 
| 71 | Xuzhou | Jiangsu | 0.461362 | −0.19523 | 
| 72 | Changzhou | Jiangsu | 0.301605 | −0.28321 | 
| 73 | Suzhou | Jiangsu | 1.373144 | 0.306884 | 
| 74 | Nantong | Jiangsu | 1.796283 | 0.539905 | 
| 75 | Lianyungang | Jiangsu | 0.206234 | −0.33573 | 
| 76 | Huaian | Jiangsu | −0.12028 | −0.51554 | 
| 77 | Yancheng | Jiangsu | 0.164331 | −0.35881 | 
| 78 | Yangzhou | Jiangsu | 0.445947 | −0.20372 | 
| 79 | Zhenjiang | Jiangsu | 1.006741 | 0.105107 | 
| 80 | Taizhou | Jiangsu | 0.720402 | −0.05258 | 
| 81 | Suqian | Jiangsu | −0.00178 | −0.45028 | 
| 82 | Hangzhou | Zhejiang | 0.757783 | 0.657364 | 
| 83 | Ningbo | Zhejiang | −1.44516 | −1.41973 | 
| 84 | Wenzhou | Zhejiang | 0.226893 | 0.156803 | 
| 85 | Jiaxing | Zhejiang | −1.41941 | −1.39545 | 
| 86 | Huzhou | Zhejiang | 1.11746 | 0.996493 | 
| 87 | Shaoxing | Zhejiang | 0.195993 | 0.127668 | 
| 88 | Jinhua | Zhejiang | 1.326105 | 1.193218 | 
| 89 | Quzhou | Zhejiang | 0.925476 | 0.815477 | 
| 90 | Zhoushan | Zhejiang | −0.19715 | −0.24302 | 
| 91 | Taizhou | Zhejiang | 0.404764 | 0.324512 | 
| 92 | Lishui | Zhejiang | −1.51561 | −1.48615 | 
| 93 | Hefei | Anhui | 1.08804 | 0.304413 | 
| 94 | Wuhu | Anhui | 0.701984 | 0.063241 | 
| 95 | Bengbu | Anhui | −0.58168 | −0.73868 | 
| 96 | Huainan | Anhui | −0.46929 | −0.66846 | 
| 97 | Maanshan | Anhui | 0.705013 | 0.065134 | 
| 98 | Huaibei | Anhui | −0.58149 | −0.73855 | 
| 99 | Tongling | Anhui | −0.12867 | −0.45568 | 
| 100 | Anqing | Anhui | 0.476086 | −0.07788 | 
| 101 | Huangshan | Anhui | 1.070805 | 0.293646 | 
| 102 | Chuzhou | Anhui | −0.10749 | −0.44244 | 
| 103 | Fuyang | Anhui | 0.954113 | 0.220748 | 
| 104 | Suzhou | Anhui | 0.890161 | 0.180797 | 
| 105 | Liuan | Anhui | 5.268123 | 2.915741 | 
| 106 | Haozhou | Anhui | 2.342163 | 1.087873 | 
| 107 | Chizhou | Anhui | −1.57333 | −1.35817 | 
| 108 | Xuancheng | Anhui | 0.761145 | 0.1002 | 
| 109 | Fuzhou | Fujian | 0.8043 | −0.01145 | 
| 110 | Xiamen | Fujian | 1.498696 | 0.369002 | 
| 111 | Putian | Fujian | 2.597335 | 0.970932 | 
| 112 | Sanming | Fujian | 0.552555 | −0.14938 | 
| 113 | Quanzhou | Fujian | −0.00554 | −0.45515 | 
| 114 | Zhangzhou | Fujian | 0.932425 | 0.05875 | 
| 115 | Nanping | Fujian | 0.586125 | −0.13098 | 
| 116 | Longyan | Fujian | −0.10543 | −0.50988 | 
| 117 | Ningde | Fujian | 1.875216 | 0.575293 | 
| 118 | Nanchang | Jiangxi | 0.547259 | 0.215881 | 
| 119 | Jingdezhen | Jiangxi | −0.307 | −0.45542 | 
| 120 | Pingxiang | Jiangxi | −0.40354 | −0.53129 | 
| 121 | Jiujiang | Jiangxi | −0.0971 | −0.29048 | 
| 122 | Xinyu | Jiangxi | −1.07151 | −1.0562 | 
| 123 | Yingtan | Jiangxi | 0.72118 | 0.352553 | 
| 124 | Ganzhou | Jiangxi | 0.825614 | 0.434621 | 
| 125 | Jian | Jiangxi | −0.56886 | −0.6612 | 
| 126 | Yichun | Jiangxi | 1.462779 | 0.935323 | 
| 127 | Fuzhou | Jiangxi | −0.00998 | −0.22202 | 
| 128 | Shangrao | Jiangxi | 0.225931 | −0.03663 | 
| 129 | Jinan | Shandong | −0.66993 | −0.38758 | 
| 130 | Qingdao | Shandong | −1.43154 | −1.80071 | 
| 131 | Zibo | Shandong | −0.47438 | −0.02474 | 
| 132 | Zaozhuang | Shandong | −0.49694 | −0.06659 | 
| 133 | Dongying | Shandong | −0.67694 | −0.40058 | 
| 134 | Yantai | Shandong | −0.43025 | 0.057156 | 
| 135 | Weifang | Shandong | −0.6611 | −0.37118 | 
| 136 | Jining | Shandong | −0.36247 | 0.182921 | 
| 137 | Taian | Shandong | −0.27669 | 0.342082 | 
| 138 | Weihai | Shandong | −0.55127 | −0.1674 | 
| 139 | Rizhao | Shandong | −0.37025 | 0.168486 | 
| 140 | Linyi | Shandong | 1.831404 | 4.253566 | 
| 141 | Dezhou | Shandong | −0.31576 | 0.269583 | 
| 142 | Liaocheng | Shandong | −0.29385 | 0.310232 | 
| 143 | Binzhou | Shandong | 0.040836 | 0.931233 | 
| 144 | Heze | Shandong | 0.070261 | 0.985831 | 
| 145 | Zhengzhou | Henan | 0.54524 | 0.282566 | 
| 146 | Kaifeng | Henan | 0.269364 | 0.053586 | 
| 147 | Luoyang | Henan | 0.415253 | 0.174676 | 
| 148 | Pingdingshan | Henan | −0.21199 | −0.34594 | 
| 149 | Anyang | Henan | 0.591732 | 0.321155 | 
| 150 | Hebi | Henan | 0.306126 | 0.084099 | 
| 151 | Xinxiang | Henan | 1.300494 | 0.909436 | 
| 152 | Jiaozuo | Henan | −0.70323 | −0.75368 | 
| 153 | Puyang | Henan | −0.42632 | −0.52384 | 
| 154 | Xuchang | Henan | 0.057256 | −0.12247 | 
| 155 | Luohe | Henan | 0.337541 | 0.110174 | 
| 156 | Sanmenxia | Henan | −0.17706 | −0.31695 | 
| 157 | Nanyang | Henan | −0.23032 | −0.36116 | 
| 158 | Shangqiu | Henan | 0.594604 | 0.323539 | 
| 159 | Xinyang | Henan | −0.10897 | −0.26044 | 
| 160 | Zhoukou | Henan | 0.072022 | −0.11021 | 
| 161 | Zhumadian | Henan | 0.435657 | 0.191611 | 
| 162 | Wuhan | Hubei | −0.20812 | −0.30838 | 
| 163 | Huangshi | Hubei | 0.380738 | 0.20592 | 
| 164 | Shiyan | Hubei | 0.163261 | 0.015978 | 
| 165 | Yichang | Hubei | 1.629116 | 1.296238 | 
| 166 | Xiangfan | Hubei | 0.38812 | 0.212367 | 
| 167 | Ezhou | Hubei | −0.42163 | −0.49486 | 
| 168 | Jinmen | Hubei | 0.409257 | 0.230828 | 
| 169 | Xiaogan | Hubei | −0.62101 | −0.66899 | 
| 170 | Jingzhou | Hubei | 1.180686 | 0.904585 | 
| 171 | Huanggang | Hubei | −0.29478 | −0.38407 | 
| 172 | Xianning | Hubei | −0.45912 | −0.5276 | 
| 173 | Suizhou | Hubei | 1.130519 | 0.860769 | 
| 174 | Changsha | Hunan | 0.890677 | 0.869584 | 
| 175 | Zhuzhou | Hunan | 0.18113 | 0.167953 | 
| 176 | Xiangtan | Hunan | −0.92194 | −0.92282 | 
| 177 | Hengyang | Hunan | −1.62677 | −1.61978 | 
| 178 | Shaoyang | Hunan | 0.397515 | 0.381923 | 
| 179 | Yueyang | Hunan | −0.1575 | −0.1669 | 
| 180 | Changde | Hunan | 2.008414 | 1.974851 | 
| 181 | Zhangjiajie | Hunan | −0.52758 | −0.53285 | 
| 182 | Yiyang | Hunan | −0.74386 | −0.74671 | 
| 183 | Chenzhou | Hunan | 0.359088 | 0.343925 | 
| 184 | Yongzhou | Hunan | 0.474048 | 0.457603 | 
| 185 | Huaihua | Hunan | 0.381726 | 0.366311 | 
| 186 | Loudi | Hunan | −1.51698 | −1.51121 | 
| 187 | Guangzhou | Guangdong | −1.21975 | −1.23501 | 
| 188 | Shaoguan | Guangdong | −0.50528 | −0.47093 | 
| 189 | Shenzhen | Guangdong | 0.436537 | 0.536262 | 
| 190 | Zhuhai | Guangdong | −0.72095 | −0.70158 | 
| 191 | Shantou | Guangdong | 0.11597 | 0.193442 | 
| 192 | Foshan | Guangdong | −0.40845 | −0.36739 | 
| 193 | Jiangmen | Guangdong | 0.28294 | 0.372002 | 
| 194 | Zhanjiang | Guangdong | 0.250871 | 0.337707 | 
| 195 | Maoming | Guangdong | −0.17425 | −0.11692 | 
| 196 | Zhaoqing | Guangdong | −1.22821 | −1.24405 | 
| 197 | Huizhou | Guangdong | −0.53061 | −0.49802 | 
| 198 | Meizhou | Guangdong | −0.45549 | −0.41769 | 
| 199 | Shanwei | Guangdong | 0.535752 | 0.642365 | 
| 200 | Heyuan | Guangdong | 0.379586 | 0.475357 | 
| 201 | Yangjiang | Guangdong | 0.01007 | 0.08019 | 
| 202 | Qingyuan | Guangdong | −0.27257 | −0.22207 | 
| 203 | Dongguan | Guangdong | 7.123492 | 7.687429 | 
| 204 | Zhongshan | Guangdong | −0.57192 | −0.5422 | 
| 205 | Chaozhou | Guangdong | −0.03841 | 0.028346 | 
| 206 | Jieyang | Guangdong | −1.31475 | −1.3366 | 
| 207 | Yunfu | Guangdong | −1.20414 | −1.21831 | 
| 208 | Nanning | Guangxi | 0.138094 | 0.028772 | 
| 209 | Liuzhou | Guangxi | 0.463053 | 0.322516 | 
| 210 | Guilin | Guangxi | −1.11879 | −1.10738 | 
| 211 | Wuzhou | Guangxi | −0.14081 | −0.22334 | 
| 212 | Beihai | Guangxi | 0.800893 | 0.627905 | 
| 213 | Fangchenggang | Guangxi | −0.09698 | −0.18372 | 
| 214 | Qinzhou | Guangxi | −0.20268 | −0.27927 | 
| 215 | Guigang | Guangxi | 1.189621 | 0.979292 | 
| 216 | Yulin | Guangxi | 1.397779 | 1.167455 | 
| 217 | Baise | Guangxi | 0.277851 | 0.155104 | 
| 218 | Hezhou | Guangxi | −0.3003 | −0.36751 | 
| 219 | Hechi | Guangxi | −0.37315 | −0.43337 | 
| 220 | Laibin | Guangxi | −0.08068 | −0.16899 | 
| 221 | Chongzuo | Guangxi | −0.18622 | −0.26439 | 
| 222 | Haikou | Hainan | 0.756012 | −0.10631 | 
| 223 | Sanya | Hainan | 2.080534 | 0.567777 | 
| 224 | Chongqing | Chongqing | −0.0118 | |
| 225 | Chengdu | Sichuan | 1.387773 | 0.847688 | 
| 226 | Zigong | Sichuan | 0.346122 | 0.041645 | 
| 227 | Panzhihua | Sichuan | −1.07356 | −1.05692 | 
| 228 | Luzhou | Sichuan | 0.681912 | 0.301484 | 
| 229 | Deyang | Sichuan | 0.169929 | −0.0947 | 
| 230 | Mianyang | Sichuan | −1.40085 | −1.31018 | 
| 231 | Guangyuan | Sichuan | −0.31248 | −0.46799 | 
| 232 | Suining | Sichuan | −0.2908 | −0.45121 | 
| 233 | Neijiang | Sichuan | −0.59552 | −0.68701 | 
| 234 | Leshan | Sichuan | −1.27323 | −1.21143 | 
| 235 | Nanchong | Sichuan | 0.681486 | 0.301154 | 
| 236 | Meishan | Sichuan | 0.597725 | 0.236339 | 
| 237 | Yibin | Sichuan | −0.61184 | −0.69964 | 
| 238 | Guangan | Sichuan | 1.535255 | 0.96181 | 
| 239 | Dazhou | Sichuan | 0.716645 | 0.328361 | 
| 240 | Yaan | Sichuan | −1.44421 | −1.34373 | 
| 241 | Bazhong | Sichuan | 0.543564 | 0.194429 | 
| 242 | Ziyang | Sichuan | −0.2715 | −0.43628 | 
| 243 | Guiyang | Guizhou | −0.308 | 0.267204 | 
| 244 | Liupanshui | Guizhou | −0.10159 | 0.645183 | 
| 245 | Zunyi | Guizhou | −2.29372 | −1.36893 | 
| 246 | Anshun | Guizhou | 0.548663 | 1.835948 | 
| 247 | Kunming | Yunnan | 0.007942 | −0.14291 | 
| 248 | Qujing | Yunnan | 1.038497 | 0.733414 | 
| 249 | Yuxi | Yunnan | 0.30601 | 0.110551 | 
| 250 | Baoshan | Yunnan | 0.483655 | 0.26161 | 
| 251 | Shaotong | Yunnan | −0.54346 | −0.61179 | 
| 252 | Lijiang | Yunnan | 0.963303 | 0.669473 | 
| 253 | Simao | Yunnan | 0.212645 | 0.031159 | 
| 254 | Lincang | Yunnan | −0.11591 | −0.24823 | 
| 255 | Xian | Shaanxi | 0.121028 | 0.211093 | 
| 256 | Tongchuan | Shaanxi | −1.02695 | −1.02912 | 
| 257 | Baoji | Shaanxi | −0.10214 | −0.03001 | 
| 258 | Xianyang | Shaanxi | −0.87945 | −0.86977 | 
| 259 | Weinan | Shaanxi | −0.82571 | −0.8117 | 
| 260 | Yanan | Shaanxi | 0.264379 | 0.365962 | 
| 261 | Hanzhong | Shaanxi | 0.032731 | 0.115703 | 
| 262 | Yulin | Shaanxi | −0.10492 | −0.033 | 
| 263 | Ankang | Shaanxi | 1.114078 | 1.283927 | 
| 264 | Shangluo | Shaanxi | 0.678829 | 0.813709 | 
| 265 | Lanzhou | Gansu | 0.677763 | 0.515168 | 
| 266 | Jiayuguan | Gansu | 0.906522 | 0.721757 | 
| 267 | Jinchang | Gansu | 0.343099 | 0.212937 | 
| 268 | Baiyin | Gansu | −0.20667 | −0.28355 | 
| 269 | Tianshui | Gansu | −0.18993 | −0.26844 | 
| 270 | Wuwei | Gansu | 0.225993 | 0.107179 | 
| 271 | Zhangye | Gansu | −0.469 | −0.52046 | 
| 272 | Pingliang | Gansu | −0.11815 | −0.20362 | 
| 273 | Jiuquan | Gansu | −0.04386 | −0.13652 | 
| 274 | Qingyang | Gansu | 0.488924 | 0.344629 | 
| 275 | Dingxi | Gansu | −0.7664 | −0.78904 | 
| 276 | Longnan | Gansu | −0.89582 | −0.90592 | 
| 277 | Xining | Qinghai | −0.18809 | |
| 278 | Yinchuan | Ningxia | −0.04179 | 0.059206 | 
| 279 | Shizuishan | Ningxia | −0.06651 | 0.031879 | 
| 280 | Wuzhong | Ningxia | 0.217087 | 0.345368 | 
| 281 | Guyuan | Ningxia | −0.11229 | −0.01872 | 
| 282 | Zhongwei | Ningxia | −1.14909 | −1.16481 | 
| 283 | Urumqi | Xinjiang | 0.298819 | 0.130162 | 
| 284 | Kelamayi | Xinjiang | −0.55072 | −0.60906 | 
Appendix A.2. Robust Test
| Two-Level Logistic Model | |
|---|---|
| GINI | 0.011 * | 
| INNO | 2.102 *** | 
| GOV | 0.030 *** | 
| HUMCAP | 1.624 ** | 
| FIN | 2.316 *** | 
| INDO | 1.014 | 
| FASSE | 1.940 | 
| AGE65 | 1.280 | 
| ENTR | 0.876 | 
| Constant | 0.002 ** | 
| Log likelihood | −386.885 | 
| p-value | 0.000 | 
| No of obs | 284 | 
References
- NBER. Business Cycle Dating Committee. 2010. Available online: http://www.nber.org/cycles/sept2010.html (accessed on 9 July 2021).
- Han, Y.; Goetz, S.J. The Economic Resilience of U.S. Counties during the Great Recession. Rev. Reg. Stud. 2015, 45, 131–149. [Google Scholar] [CrossRef]
- Martin, R.L. Regional economic resilience, hysteresis and recessionary shocks. J. Econ. Geogr. 2012, 12, 1–32. [Google Scholar] [CrossRef]
- Clark, J.; Bailey, D. Labour, work and regional resilience. Reg. Stud. 2018, 52, 741–744. [Google Scholar] [CrossRef] [Green Version]
- Acuti, D.; Bellucci, M.; Manetti, G. Company disclosures concerning the resilience of cities from the Sustainable Development Goals (SDGs) perspective. Cities 2020, 99, 102608. [Google Scholar] [CrossRef]
- Croese, S.; Green, C.; Morgan, G. Localizing the Sustainable Development Goals Through the Lens of Urban Resilience: Lessons and Learnings from 100 Resilient Cities and Cape Town. Sustainability 2020, 12, 550. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Wang, Z.; Sun, Q.; Yuen, K.F.; Zhang, Y.; Xue, H.; Zhao, S. Spatial–Temporal Evolution of Urban Resilience and Its Influencing Factors: Evidence from the Guanzhong Plain Urban Agglomeration. Sustainability 2020, 12, 2593. [Google Scholar] [CrossRef] [Green Version]
- Zhai, G.; Li, S.; Chen, J. Reducing Urban Disaster Risk by Improving Resilience in China from a Planning Perspective. Hum. Ecol. Risk Assess. Int. J. 2015, 21, 1206–1217. [Google Scholar] [CrossRef]
- Zhu, S.; Li, D.; Feng, H.; Gu, T.; Hewage, K.; Sadiq, R. Smart city and resilient city: Differences and connections. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1388. [Google Scholar] [CrossRef]
- Mera, A.P.; Balijepalli, C. Towards improving resilience of cities: An optimisation approach to minimising vulnerability to disruption due to natural disasters under budgetary constraints. Transportation 2019, 47, 1809–1842. [Google Scholar] [CrossRef]
- Moore, E.A.; Russell, J.D.; Babbitt, C.W.; Tomaszewski, B.; Clark, S.S. Spatial modeling of a second-use strategy for electric vehicle batteries to improve disaster resilience and circular economy. Resour. Conserv. Recycl. 2020, 160, 104889. [Google Scholar] [CrossRef]
- Fratesi, U.; Rodríguez-Pose, A. The crisis and regional employment in Europe: What role for sheltered economies? Camb. J. Reg. Econ. Soc. 2016, 9, 33–57. [Google Scholar]
- Faggian, A.; Gemmiti, R.; Jaquet, T.; Santini, I. Regional economic resilience: The experience of the Italian local labor systems. Ann. Reg. Sci. 2017, 60, 393–410. [Google Scholar] [CrossRef]
- Martin, R.; Gardiner, B. The resilience of cities to economic shocks: A tale of four recessions (and the challenge of Brexit). Pap. Reg. Sci. 2019, 98, 1801–1832. [Google Scholar] [CrossRef]
- Briguglio, L.; Cordina, G.; Farrugia, N.; Vella, S. Economic Vulnerability and Resilience: Concepts and Measurements. Oxf. Dev. Stud. 2009, 37, 229–247. [Google Scholar] [CrossRef]
- NBS. China Statistical Yearbook for Regional Economy. 2020. Available online: http://www.stats.gov.cn/tjsj/tjcbw/ (accessed on 3 November 2021).
- NBS. China City Statistical Yearbook. 2019. Available online: http://www.stats.gov.cn/tjsj/ (accessed on 3 November 2021).
- National Bureau of Statistics. Available online: http://www.stats.gov.cn/ (accessed on 3 November 2021).
- Martin, R.; Sunley, P. On the Notion of Regional Economic Resilience: Conceptualisation and Explanation. Pap. Evol. Econ. Geogr. 2015, 15, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Pendall, R.; Foster, K.A.; Cowell, M. Resilience and regions: Building understanding of the metaphor. Camb. J. Reg. Econ. Soc. 2009, 3, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Pike, A.; Dawley, S.; Tomaney, J. Resilience, Adaptation and Adaptability. Camb. J. Reg. Econ. Soc. 2010, 3, 59–70. [Google Scholar] [CrossRef]
- Fingleton, B.; Garretsen, H.; Martin, R. Shocking aspects of monetary union: The vulnerability of regions in Euroland. J. Econ. Geogr. 2015, 15, 907–934. [Google Scholar] [CrossRef]
- Hill, E. Economic shocks and regional economic resilience. In Building Resilient Regions: Institute of Governmental Studies; University of California: Berkeley, CA, USA, 2012. [Google Scholar]
- Simmie, J.; Martin, R. The economic resilience of regions: Towards an evolutionary approach. Camb. J. Reg. Econ. Soc. 2010, 3, 27–43. [Google Scholar] [CrossRef] [Green Version]
- Oliva, S.; Lazzeretti, L. Adaptation, adaptability and resilience: The recovery of Kobe after the Great Hanshin Earthquake of 1995. Eur. Plan. Stud. 2017, 25, 1–21. [Google Scholar] [CrossRef]
- Rose, A. Economic resilience to natural and man-made disasters: Multidisciplinary origins and contextual dimensions. Environ. Hazards 2007, 7, 383–398. [Google Scholar] [CrossRef]
- Rajan, R.G. Fault Lines: How Hidden Fractures Still Threaten the World Economy; Economics Books; Princeton University Press: Princeton, NJ, USA, 2010; Volume 23, pp. 151–155. [Google Scholar]
- Brescia, R.H. The Cost of Inequality: Social Distance, Predatory Conduct, and the Financial Crisis. Soc. Sci. Electron. Publ. 2010, 66, 641. [Google Scholar]
- Martins, N.O. Globalisation, Inequality and the Economic Crisis. New Political Econ. 2011, 16, 1–18. [Google Scholar] [CrossRef]
- Tridico, P. Financial crisis and global imbalances: Its labour market origins and the aftermath. Camb. J. Econ. 2012, 36, 17–42. [Google Scholar] [CrossRef]
- Forbes, K.J. A Reassessment of the Relationship Between Inequality and Growth. Am. Econ. Rev. 2000, 90, 869–887. [Google Scholar] [CrossRef] [Green Version]
- Frank, M.W. Inequality and Growth in the United States: Evidence from A New State-Level Panel Of Income Inequality Measures. Econ. Inq. 2009, 47, 55–68. [Google Scholar] [CrossRef]
- Partridge, M.D. Does Income Distribution Affect U.S. State Economic Growth? J. Reg. Sci. 2010, 45, 363–394. [Google Scholar] [CrossRef]
- Lewin, P.A.; Watson, P.; Brown, A. Surviving the Great Recession: The influence of income inequality in US urban counties. Reg. Stud. 2017, 52, 781–792. [Google Scholar] [CrossRef]
- Rahe, M.; Weber, B.; Wu, X.; Fisher, M. Income Inequality and County Economic Resistance to Job Loss during the Great Recession. Rev. Reg. Stud. 2019, 49, 129–147. [Google Scholar] [CrossRef]
- Bathelt, H.; Munro, A.K.; Spigel, B. Challenges of Transformation: Innovation, Re-bundling and Traditional Manufacturing in Canada’s Technology Triangle. Reg. Stud. 2013, 47, 1111–1130. [Google Scholar] [CrossRef] [Green Version]
- Filippetti, A.; Archibugi, D. Innovation in times of crisis: National Systems of Innovation, structure, and demand. Res. Policy 2011, 40, 179–192. [Google Scholar] [CrossRef]
- Acs, Z.J.; Armington, C.; Zhang, T. The determinants of new-firm survival across regional economies: The role of human capital stock and knowledge spillover. Pap. Reg. Sci. 2007, 86, 367–391. [Google Scholar] [CrossRef]
- Wolman, H. Coping with Adversity: Regional Economic Resilience and Public Policy; Cornell University Press: Ithaca, NY, USA, 2017. [Google Scholar]
- Guo, J.; Xu, Z. Research on the influence of industrial related variety on regional economic resilience-Analysis of threshold effect based on regional innovation level. Sci. Technol. Prog. Policy 2019, 36, 39–47. [Google Scholar]
- Eraydin, A. Attributes and Characteristics of Regional Resilience: Defining and Measuring the Resilience of Turkish Regions. Reg. Stud. 2015, 50, 600–614. [Google Scholar] [CrossRef]
- Du, Z.; Zhang, H.; Ye, Y.; Jin, L.; Xu, Q. Urban shrinkage and growth: Measurement and determinants of economic resilience in the Pearl River Delta. J. Geogr. Sci. 2019, 29, 1331–1345. [Google Scholar] [CrossRef] [Green Version]
- Cuadrado-Roura, J.R.; Maroto, A. Unbalanced regional resilience to the economic crisis in Spain: A tale of specialisation and productivity. Camb. J. Reg. Econ. Soc. 2016, 9, 153–178. [Google Scholar] [CrossRef]
- Tan, J. Regional economic resilience of resourceSociety, 2016. n Spainuential factors during economic crises in China. Growth Change 2020, 51, 362–381. [Google Scholar] [CrossRef]
- Doran, J.; Fingleton, B. Employment Resilience in Europe and the 2008 Economic Crisis: Insights from Micro-Level Data. Reg. Stud. 2016, 50, 644–656. [Google Scholar] [CrossRef]
- Christopherson, S.; Michie, J.; Tyler, P. Regional resilience: Theoretical and empirical perspectives. Camb. J. Reg. Econ. Soc. 2010, 3, 3–10. [Google Scholar] [CrossRef]
- Briguglio, L. Conceptualising and Measuring Economic Resilience. Building the Economic Resilience of Small States; Briguglio, G.C.L., Kisanga, E.J., Eds.; Malta, Islands and Small States Institute of the University of Malta and London, Commonwealth Secretariat: London, UK, 2006. [Google Scholar]
- Cellini, R.; Torrisi, G. Regional Resilience in Italy: A Very Long-Run Analysis. Reg. Stud. 2014, 48, 1779–1796. [Google Scholar] [CrossRef] [Green Version]
- Fingleton, B.; Garretsen, H.; Martin, R. Recessionary shocks and regional employment: Evidence on the resilience of U.K. Regions. J. Reg. Sci. 2012, 52, 109–133. [Google Scholar] [CrossRef]
- LaGravinese, R. Economic crisis and rising gaps North-South: Evidence from the Italian regions. Camb. J. Reg. Econ. Soc. 2015, 8, 331–342. [Google Scholar] [CrossRef]
- Giannakis, E.; Bruggeman, A. Regional disparities in economic resilience in the European Union across the urban–rural divide. Reg. Stud. 2019, 54, 1200–1213. [Google Scholar] [CrossRef]
- Giannakis, E.; Papadas, C.T. Spatial Connectivity and Regional Economic Resilience in Turbulent Times. Sustainability 2021, 13, 11289. [Google Scholar] [CrossRef]
- Di Caro, P.; Fratesi, U. Regional determinants of economic resilience. Ann. Reg. Sci. 2017, 60, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Cosci, S.; Sabato, V. Income and Employment Dynamics in Europe. Reg. Stud. 2007, 41, 295–309. [Google Scholar] [CrossRef]
- Ezcurra, R.; Rapún, M. Regional Disparities and National Development Revisited: The Case of Western Europe. Eur. Urban Reg. Stud. 2006, 13, 355–369. [Google Scholar] [CrossRef]
- Hox, J.J. Multilevel Analysis: Techniques and Applications, 2nd ed.; Quantitative methodology series; Marcoulides, G.A., Ed.; Routledge: New York, NY, USA, 2010. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Eribaum: Mahwah, NJ, USA, 1988; Volume 31, pp. 499–500. [Google Scholar]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; Wiley: New York, NY, USA, 2012. [Google Scholar]
- Zeng, B. Research on the influencing factors of China’s provincial economic resilience under the background of financial crisis. Financ. Theory Teach. 2018, 150, 78–93. [Google Scholar]
- Bristow, G.; Healy, A. Innovation and regional economic resilience: An exploratory analysis. Ann. Reg. Sci. 2017, 60, 265–284. [Google Scholar] [CrossRef] [Green Version]
- Crescenzi, R.; Luca, D.; Milio, S. The geography of the economic crisis in Europe: National macroeconomic conditions, regional structural factors and short-term economic performance. Camb. J. Reg. Econ. Soc. 2016, 9, 13–32. [Google Scholar] [CrossRef]
- Chapple, K.; Lester, T.W. The resilient regional labour market? The US case. Camb. J. Reg. Econ. Soc. 2010, 3, 85–104. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Pose, A. Do Institutions Matter for Regional Development? Reg. Stud. 2013, 47, 1034–1047. [Google Scholar] [CrossRef] [Green Version]
- Di Caro, P. Testing and explaining economic resilience with an application to Italian regions. Pap. Reg. Sci. 2015, 96, 93–113. [Google Scholar] [CrossRef]
- Östh, J.; Reggiani, A.; Galiazzo, G. Spatial economic resilience and accessibility: A joint perspective. Comput. Environ. Urban Syst. 2015, 49, 148–159. [Google Scholar] [CrossRef]
- Shapiro, J.M. Smart Cities: Quality of Life, Productivity, and the Growth Effects of Human Capital. Rev. Econ. Stat. 2006, 88, 324–335. [Google Scholar] [CrossRef]
- Florida, R. Cities and the Creative Class; Routledge: New York, NY, USA; London, UK, 2005. [Google Scholar]
- Brown, L.; Greenbaum, R.T. The role of industrial diversity in economic resilience: An empirical examination across 35 years. Urban Stud. 2016, 54, 1347–1366. [Google Scholar] [CrossRef]
- Su, R.; Zhao, X. Research on Urban Manufacturing Development, Entrepreneurial Vitality and Economic Resilience. Financ. Econ. 2020, 9, 79–92. [Google Scholar]
- Tan, J.; Zhang, P.; Lo, K.; Li, J.; Liu, S. Conceptualizing and measuring economic resilience of resource-based cities: Case study of Northeast China. Chin. Geogr. Sci. 2017, 27, 471–481. [Google Scholar] [CrossRef] [Green Version]
- Martin, R. How Regions React to Recessions: Resilience and the Role of Economic Structure. Reg. Stud. 2016, 50, 561–585. [Google Scholar] [CrossRef] [Green Version]







| Variables | Definition | Minimum | Maximum | Average | 
|---|---|---|---|---|
| GINI | Gini coefficient | 0.06 | 0.44 | 0.19 | 
| INNO | Ln (fiscal expenditure for science and technology) | 5.75 | 13.26 | 9.51 | 
| GOV | (Public finance expenditure—fiscal expenditure for science and technology)/gross regional product (%) | 0.04 | 0.49 | 0.11 | 
| HUMCAP | Ln (number of students in colleges and universities per 10,000) | −3.77 | 4.19 | 0.64 | 
| FIN | Balance of bank deposits and loans/gross regional product | 0.73 | 6.58 | 1.86 | 
| INDO | Growth rate of total industrial output (%) | 4.70 | 134.12 | 60.51 | 
| FASSE | Investment in fixed assets/gross regional product (%) | 16.00 | 93.44 | 46.17 | 
| AGE65 | Share of population older than 65 years (%) | 8.67 | 16.20 | 12.33 | 
| ENTR | Employment in urban individual economy and private economy/population (%) | 2.00 | 21.00 | 6.29 | 
| Two-Level Logistic Model | Logit Model | |
|---|---|---|
| GINI | 0.015 ** | 0.224 * | 
| INNO | 1.779 ** | 1.444 * | 
| GOV | 0.874 *** | 0.904 *** | 
| HUMCAP | 1.657 ** | 1.763 * | 
| FIN | 2.731 *** | 3.059 *** | 
| INDO | 1.006 | 1.011 | 
| FASSE | 1.000 | 1.003 | 
| AGE65 | 5.036 | 0.916 | 
| ENTR | 0.922 | 0.881 | 
| Constant | 0.007 * | 0.024 * | 
| Log likelihood | −411.004 | 356.293 | 
| p-value | 0.000 | 0.000 | 
| No. of obs. | 284 | 279 | 
| Small Economies | Large Economies | |
|---|---|---|
| GINI | 0.015 * | 0.019 * | 
| INNO | 1.944 * | 0.876 | 
| GOV | 0.889 ** | 0.770 ** | 
| HUMCAP | 1.611 *** | 1.560 * | 
| FIN | 2.502 *** | 5.776 *** | 
| INDO | 0.992 | 1.046 * | 
| FASSE | 1.009 | 0.990 | 
| AGE65 | 1.283 | 3.275 | 
| ENTR | 0.950 | 0.903 | 
| Constant | 0.001 ** | 0.586 | 
| Log likelihood | −266.506 | −146.468 | 
| p-value | 0.018 | 0.018 | 
| No. of obs. | 182 | 102 | 
| Resource-Based Economies | Synthetic Economies | |
|---|---|---|
| GINI | 0.045 * | 0.026 * | 
| INNO | 1.985 ** | 2.065 ** | 
| GOV | 0.968 | 0.752 *** | 
| HUMCAP | 1.749 | 1.507 *** | 
| FIN | 0.267 * | 2.814 *** | 
| INDO | 1.019 | 0.990 | 
| FASSE | 0.969 | 1.025 * | 
| AGE65 | 5.493 | 4.623 | 
| ENTR | 0.905 | 0.944 | 
| Constant | 0.001 * | 0.005 * | 
| Log likelihood | −157.695 | −255.217 | 
| p-value | 0.011 | 0.003 | 
| No. of obs. | 108 | 176 | 
| Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. | 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, M. Determinants of Regional Economic Resilience to Economic Crisis: Evidence from Chinese Economies. Sustainability 2022, 14, 809. https://doi.org/10.3390/su14020809
Wang X, Li M. Determinants of Regional Economic Resilience to Economic Crisis: Evidence from Chinese Economies. Sustainability. 2022; 14(2):809. https://doi.org/10.3390/su14020809
Chicago/Turabian StyleWang, Xiaowen, and Meiyue Li. 2022. "Determinants of Regional Economic Resilience to Economic Crisis: Evidence from Chinese Economies" Sustainability 14, no. 2: 809. https://doi.org/10.3390/su14020809
APA StyleWang, X., & Li, M. (2022). Determinants of Regional Economic Resilience to Economic Crisis: Evidence from Chinese Economies. Sustainability, 14(2), 809. https://doi.org/10.3390/su14020809
 
         
                                                
 
       