The Plant Species Composition of an Abandoned Meadow as an Element of an Ecosystem Mosaic within an Urban-Industrial Landscape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Studied Species
2.3. Field Data Collection
- Treatment CTRL—no treatment,
- Treatment MOL—mown once a year with the biomass left,
- Treatment MTL—mown twice a year with the biomass left,
- Treatment MOH—mown once a year with the biomass removed,
- Treatment MTH—mown twice a year with the biomass removed.
2.4. Data Analysis
3. Results
4. Discussion
4.1. Calamagrostis epigejos (L.) Roth—A Widespread Grass in Poland, and all over the World
4.2. The Difference in Diversity, Mowing, and Time
4.3. The Response of Plants to Applied Treatments—The Impact of Subsequent Treatments on the Value of the Assessed Parameter
4.4. Directions for Maintaining an Ecosystem Mosaic in an Urban-Industrial Landscape
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
CONTROL | MOH | MOL | MTH | MTL | p-Value | |
---|---|---|---|---|---|---|
Achillea millefolium L. | 0.17 | 0.10 | 0.43 | 0.07 | 0.55 | 0.001 |
Aegopodium podagraria L. | 0.98 | 0.55 | 0.95 | 0.00 | 0.00 | 0.001 |
Alopecurus pratensis L. | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | NS |
Anthriscus sylvestris (L.) Hoffm. | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.001 |
Artemisia vulgaris L. | 0.30 | 0.58 | 0.60 | 0.10 | 0.28 | 0.001 |
Carex hirta L. | 0.27 | 0.70 | 0.70 | 0.53 | 0.52 | NS |
Cirsium arvense (L.) Scop. | 0.28 | 0.37 | 0.30 | 0.68 | 0.17 | 0.001 |
Cirsium palustre (L.) Scop. | 0.00 | 0.15 | 0.00 | 0.02 | 0.00 | 0.001 |
Dactylis glomerata L. | 0.20 | 0.03 | 0.18 | 0.18 | 0.00 | NS |
Daucus carota L. | 0.12 | 0.03 | 0.00 | 0.00 | 0.05 | 0.005 |
Elymus repens (L.) Gould | 0.63 | 0.95 | 0.78 | 1.00 | 0.82 | 0.008 |
Festuca rubra L. | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | NS |
Galeopsis tetrahit L. | 0.03 | 0.02 | 0.00 | 0.08 | 0.08 | NS |
Galium aparine L. | 0.00 | 0.13 | 0.00 | 0.10 | 0.08 | 0.019 |
Heracleum sphondylium L. | 0.00 | 0.00 | 0.58 | 0.02 | 0.15 | 0.001 |
Holcus lanatus L. | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | NS |
Lathyrus pratensis L. | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | NS |
Poa pratensis L. | 0.10 | 0.15 | 0.25 | 0.33 | 0.00 | 0.001 |
Rumex acetosa L. | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | NS |
Taraxacum officinale F. H. Wigg. | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | NS |
Urtica dioica L. | 0.40 | 0.05 | 0.00 | 0.07 | 0.12 | 0.001 |
Vicia angustifolia L. | 0.07 | 0.00 | 0.00 | 0.03 | 0.03 | NS |
Vicia cracca L. | 0.00 | 0.00 | 0.02 | 0.37 | 0.28 | 0.001 |
References
- Tscharntke, T.; Batáry, P.; Dormann, C.F. Set-aside management: How do succession, sowing patterns and landscape context affect biodiversity? Agric. Ecosyst. Environ. 2011, 143, 37–44. [Google Scholar] [CrossRef]
- Kącki, Z. Variability and long-term changes in the species composition of Molinia meadows in Poland: A case study using a large data set from the Polish Vegetation Database. Acta Bot. Sil. Monogr. 2012, 7, 1–144. [Google Scholar]
- Valkó, O.; Török, P.; Matus, G.; Tóthmérész, B. Is regular mowing the most appropriate and cost-effective management maintaining diversity and biomass of target forbs in mountain hay meadows? Flora 2012, 207, 303–309. [Google Scholar] [CrossRef]
- Kącki, Z.; Michalska-Hejduk, D. Assessment of Biodiversity in Molinia Meadows in Kampinoski National Park Based on Biocenotic Indicators. Pol. J. Environ. Stud. 2010, 19, 351–362. [Google Scholar]
- Swacha, G.; Kącki, Z.; Załuski, T. Classification of Molinia meadows in Poland using a hierarchical expert system. Phytocoenologia 2016, 46, 33–47. [Google Scholar] [CrossRef]
- Swacha, G.; Botta-Dukát, Z.; Kącki, Z.; Pruchniewicz, D.; Żołnierz, L. The effect of abandonment on vegetation composition and soil properties in Molinion meadows (SW Poland). PLoS ONE 2018, 13, e0197363. [Google Scholar] [CrossRef]
- Bartha, S.; Szentes, S.; Horváth, A.; Házi, J.; Zimmermann, Z.; Molnár, C.; Dancza, I.; Margóczi, K.; Pál, R.W.; Purger, D.; et al. Impact of mid-successional dominant species on the diversity and progress of succession in regenerating temperate grasslands. Appl. Veg. Sci. 2013, 17, 201–213. [Google Scholar] [CrossRef]
- Pruchniewicz, D.; Żołnierz, Ł. The influence of Calamagrostis epigejos expansion on the species composition and soil properties of mountain mesic meadows. Acta Soc. Bot. Pol. 2017, 86, 3516. [Google Scholar] [CrossRef]
- Bart, D.; Hartman, J.M. Environmental Determinants of Phragmites australis expansion in a New Jersey Salt Marsh: An experimental approach. Oikos 2000, 89, 59–69. [Google Scholar] [CrossRef]
- Bąba, W.; Kurowska, M.; Kompała-Bąba, A.; Wilczek, A.; Długosz, J.; Szarejko, I. Genetic diversity of populations of Brachypodium pinnatum (L.) P. Beauv.: Expansive grass in a fragmented landscape. Pol. J. Ecol. 2012, 60, 31–40. [Google Scholar]
- Bąba, W.; Błońska, A.; Kompała-Bąba, A.; Małkowski, Ł.; Ziemer, B.; Sierka, E.; Nowak, T.; Woźniak, G.; Besenyei, L. Arbuscular mycorrhizal fungi (AMF) root colonization dynamics of Molinia caerulea (L.) Moench. in grasslands and post-industrial sites. Ecol. Eng. 2016, 95, 817–827. [Google Scholar] [CrossRef]
- Rebele, F. Calamagrostis epigejos (L.) Roth. auf anthropogenen Standorten—Ein Überblick. Verh. Der Ges. Für Ökologie 1996, 26, 753–763. [Google Scholar]
- Somodi, I.; Virágh, K.; Aszalós, R. The effect of the abandonment of grazing on the mosaic of vegetation patches in a temperate grassland area in Hungary. Ecol. Complex. 2004, 1, 177–189. [Google Scholar] [CrossRef]
- Kompała, A.; Woźniak, G. The role of grasses in chosen anthropogenic plant communities in the Upper Silesia Industrial District. In Studies on Grasses in Poland; Frey, L., Ed.; W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 2001; pp. 329–351. [Google Scholar]
- Trueman, I.C.; Cohn, E.V.J.; Tokarska-Guzik, B.; Rostański, A.; Woźniak, G. Calcareous waste slurry as wildlife habitat in England and Poland. In The Exploitation of Natural Resources and the Consequences, Proceedings of the GREEN 3: The 3rd International Symposium on Geotechnics Related to the European Environment, Berlin, Germany, 21–23 June 2000; Sarsby, R.W., Meggyes, T., Sarsby, R.W., Meggyes, T., Eds.; T. Telford: London, UK, 2001; pp. 527–534. [Google Scholar]
- Kompała, A.; Błońska, A.; Woźniak, G. Vegetation of the “Żabie Doły” area (Bytom) covering the wastelands of zinc-lead industry. Arch. Ochr. Środowiska 2004, 30, 59–76. [Google Scholar]
- Cohn, E.V.J.; Rostański, A.; Tokarska-Guzik, B.; Trueman, I.C.; Woźniak, G. The flora and vegetation of an old solvay process tip in Jaworzno (Upper Silesia, Poland). Acta Soc. Bot. Pol. 2001, 70, 47–60. [Google Scholar] [CrossRef]
- Piekarska-Stachowiak, A.; Szary, M.; Ziemer, B.; Besenyei, L.; Woźniak, G. An application of the plant functional group concept to restoration practice on coal mine spoil heaps. Ecol. Res. 2014, 29, 843–853. [Google Scholar] [CrossRef]
- Stefanowicz, A.M.; Kapusta, P.; Błońska, A.; Kompała-Bąba, A.; Woźniak, G. Effects of Calamagrostis epigejos, Chamaenerion palustre and Tussilago farfara on nutrient availability and microbial activity in the surface layer of spoil heaps after hard coal mining. Ecol. Eng. 2015, 83, 328–337. [Google Scholar] [CrossRef]
- Hillebrand, H.; Cardinale, B.J. A critique for meta-analyses and the productivity—Diversity relationship. Ecology 2010, 91, 2545–2549. [Google Scholar] [CrossRef]
- Whittaker, R.J. Meta-analyses and mega-mistakes: Calling time on meta-analysis of the species richness-productivity relationship. Ecology 2010, 91, 2522–2533. [Google Scholar] [CrossRef]
- Kiehl, K.; Kirmer, A.; Donath, W.T.; Rasran, L.; Hölzel, N. Species introduction in restoration projects—Evaluation of different techniques for the establishment of semi-natural grasslands in Central and Northwestern Europe. Basic Appl. Ecol. 2010, 11, 285–299. [Google Scholar] [CrossRef]
- Prach, K.; Walker, L.R. Four opportunities for studies of ecological succession. Trends Ecol. Evol. 2011, 26, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Rebele, F.; Lehmann, C. Biological flora of Central Europe: Calamagrostis epigejos (L.) Roth. Flora 2001, 196, 325–344. [Google Scholar] [CrossRef]
- Williams, J.W.; Jackson, S.T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 2007, 5, 475–482. [Google Scholar] [CrossRef]
- Török, P.; Vida, E.; Deák, B.; Lengyel, S.; Tóthmérész, B. Grassland restoration on former croplands in Europe: An assessment of applicability of techniques and costs. Biodivers. Conserv. 2011, 20, 2311–2332. [Google Scholar] [CrossRef]
- Házi, J.; Bartha, S.; Szentes, S.; Wichmann, B.; Penksza, K. Seminatural grassland management by mowing of Calamagrostis epigejos in Hungary. Plant Biosyst. 2011, 145, 699–707. [Google Scholar] [CrossRef]
- Concilio, A.L.; Loik, M.E. Elevated nitrogen effects on Bromus tectorum dominance and native plant diversity in an arid montane ecosystem. Appl. Veg. Sci. 2013, 16, 598–609. [Google Scholar] [CrossRef]
- Rahmonov, O. The chemical composition of plant litter of black locust (Robinia pseudoacacia L.) and its ecological role in sandy ecosystems. Acta Ecol. Sin. 2009, 29, 237–243. [Google Scholar] [CrossRef]
- Matuszkiewicz, W. Przewodnik do Oznaczania Zbiorowisk Roślinnych Polski; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2012; pp. 1–536. (In Polish) [Google Scholar]
- Jańczyk-Węglarska, J. Strategie Rozwoju Osobniczego Calamagrostis epigeios (L.) Roth na tle Warunków Ekologicznych Poznańskiego Przełomu Warty; Wydawnictwo Naukowe UAM: Poznań, Poland, 1996; pp. 1–104. (In Polish) [Google Scholar]
- Házi, J.; Penksza, K.; Barczi, A.; Szentes, S.; Pápay, G. Effects of Long-Term Mowing on Biomass Composition in Pannonian Dry Grasslands. Agron. J. 2022, 12, 1107. [Google Scholar] [CrossRef]
- Fiala, K.; Holub, P.; Sedláková, I.; Tůma, I.; Záhora, J.; Tesarová, M. Reason and consequences of expansion of Calamagrostis epigejos in alluvial meadows of landscape affected by water control measures—A multidisciplinary research. Ekol. Bratisl. 2003, 22, 242–252. [Google Scholar]
- Gloser, V.; Košvancová, M.; Gloser, J. Changes in growth parameters and content of N-storage compounds in roots and rhizomes of Calamagrostis epigejos after repeated defoliation. Biol. Bratisl. 2004, 59, 179–184. [Google Scholar]
- Sierka, E.; Kopczyńska, S. Participation of Calamagrostis epigejos (L.) Roth in plant communities of the River Bytomka valley in terms of its biomass use in power industry. Environ. Socio-Econ. Stud. 2014, 2, 38–44. [Google Scholar] [CrossRef]
- Rebele, F. Competition and coexistence of rhizomatous perennial plants along a nutrient gradient. Plant Ecol. 2000, 147, 77–94. [Google Scholar] [CrossRef]
- Holub, P.; Tůma, I.; Fiala, K. The effect of nitrogen addition on biomass production and competition in three expansive tall grasses. Environ. Pollut. 2012, 170, 211–216. [Google Scholar] [CrossRef]
- Mirek, Z.; Piękoś-Mirkowa, H.; Zając, A.; Zając, M. Flowering Plants and Pteridophytes of Poland. A Checklist. Biodiversity of Poland; W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 2002; pp. 1–442. [Google Scholar]
- Magurran, A.E. Measuring Biological Diversity; Blackwell Science: Oxford, UK, 2004; pp. 1–256. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.Rproject.org/ (accessed on 26 July 2022).
- Sierka, E.; Chmura, D. Role of Calamagrostis epigeios (L.) Roth in forest vegetation of the Silesian Upland. In Biology of Grasses; Frey, L., Ed.; W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 2005; pp. 343–353. [Google Scholar]
- Fiala, K.; Tůma, I.; Holub, P. Effect of nitrogen addition and drought on aboveground biomass of expanding tall grasses Calamagrostis epigejos and Arrhenatherum elatius. Biologia 2011, 66, 275–281. [Google Scholar] [CrossRef]
- Kramberger, B.; Kaligaric, M. Semi-natural grasslands: The effects of cutting frequency on long-term changes of floristic composition. Pol. J. Ecol. 2008, 56, 33–43. [Google Scholar]
- Bartha, S.; Campatella, G.; Canullo, R.; Bódis, J.; Mucina, L. On the importance of fine-scale spatial complexity in vegetation restoration. Int. J. Ecol. Environ. Sci. 2004, 30, 101–116. [Google Scholar]
- Klimeš, L.; Klimešová, J. The effects of mowing and fertilization on carbohydrate reserves and regrowth of grasses: Do they promote plant coexistence in species-rich meadows? Evol. Ecol. 2001, 15, 363–382. [Google Scholar] [CrossRef]
- Bartha, S.; Meiners, S.J.; Pickett, S.T.A.; Cadenasso, M.L. Plant colonization windows in a mesic old field succession. Appl. Veg. Sci. 2003, 6, 205–212. [Google Scholar] [CrossRef]
- Bartha, S.; Campetella, G.; Ruprecht, E.; Kun, A.; Házi, J.; Horváth, A.; Virágh, K.; Molnár, Z. Will inter-annual variability in sand grassland communities increase with climate change? Community Ecol. 2008, 9, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Michalska-Hejduk, D.; Kopeć, D. Dynamics of semi-natural vegetation with special focus on Molinion meadows after 50 years of strict protection. Pol. J. Environ. Stud. 2012, 21, 1731–1741. [Google Scholar]
- Dalton, H.; Brand-Hardy, R. Nitrogen: The essential public enemy. J. Appl. Ecol. 2003, 40, 771–781. [Google Scholar] [CrossRef]
- Marozas, V.; Racinskas, J.; Bartkevicius, E. Dynamics of ground vegetation after surface fires in hemiboreal Pinus sylvestris forest. For. Ecol. Manag. 2007, 250, 47–55. [Google Scholar] [CrossRef]
- Dostálek, J.; Frantík, V. Dry grassland plant diversity conservation using low-intensity sheep and goat grazing management: Case study in Prague (Czech Republic). Biodivers. Conserv. 2008, 17, 1439–1454. [Google Scholar] [CrossRef]
- Aiken, S.G.; Dore, W.G.; Lefkovitch, L.P.; Armstrong, K.C. Calamagrostis epigejos (Poaceae) in North America, especially Ontario. Can. J. Bot. 1989, 67, 3205–3218. [Google Scholar] [CrossRef]
- Somodi, I.; Virágh, K.; Podani, J. The effect of the expansion of the clonal grass Calamagrostis epigejos on the species turnover of a semi-arid grassland. Appl. Veg. Sci. 2008, 11, 187–192. [Google Scholar] [CrossRef]
- Pruchniewicz, D.; Żołnierz, L. Relationship between litter produced by Calamagrostis epigejos and seedling recruitment of mesic meadow species in mountain conditions. Community Ecol. 2017, 18, 149–156. [Google Scholar] [CrossRef] [Green Version]
C. epigejos (L.) Roth Percent Cover Abundance | S | H | |
---|---|---|---|
Biomass | 2379.2 | - | - |
Mowing | 2376.8 | - | - |
Year | 2410 *** | 924.15 *** | 200.99 *** |
Treatment (Mowing × Biomass + Control) | - | 894.37 ** | 171.66 * |
Total AIC of model | 2378.5 | 887.1 | 168.7 |
Cover of C. epigejos (L.) Roth | Species Richness | Shannon–Wiener H | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | CTRL | MOH | MOL | MTH | MTL | CTRL | MOH | MOL | MTH | MTL | CTRL | MOH | MOL | MTH | MTL |
1 | d | d | b | C | b | ab | A | abc | a | ab | ab | a | ab | a | ab |
2 | cd | cd | a | abc | a | a | A | a | ab | a | a | a | ab | ab | a |
3 | bcd | bcd | a | Bc | a | ab | A | ab | ab | ab | a | a | a | ab | ab |
4 | abc | abc | a | abc | a | ab | A | ab | ab | ab | a | a | ab | b | ab |
5 | ab | ab | a | A | a | ab | A | abc | ab | ab | ab | a | ab | ab | b |
6 | a | a | a | A | a | b | A | c | b | b | b | a | b | b | b |
7 | a | a | a | Ab | a | b | A | bc | ab | ab | ab | a | ab | ab | ab |
Parameter | Abbreviation | DCA1 | DCA2 | r2 | p-Value |
---|---|---|---|---|---|
Mowing (once, twice per year) | MOWING | 0.99953 | −0.03066 | 0.551 | 0.001 |
Biomass left | BIOMASS | 0.18737 | −0.98229 | 0.1145 | 0.001 |
Cover abundance of C. epigejos (L.) Roth | CAL.EPI | −0.63871 | 0.76945 | 0.0026 | 0.734 |
Year of the study | YEAR | 0.9505 | −0.31072 | 0.0342 | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błońska, A.; Chmura, D.; Hutniczak, A.; Wilczek, Z.; Jarosz, J.; Besenyei, L.; Woźniak, G. The Plant Species Composition of an Abandoned Meadow as an Element of an Ecosystem Mosaic within an Urban-Industrial Landscape. Sustainability 2022, 14, 11851. https://doi.org/10.3390/su141911851
Błońska A, Chmura D, Hutniczak A, Wilczek Z, Jarosz J, Besenyei L, Woźniak G. The Plant Species Composition of an Abandoned Meadow as an Element of an Ecosystem Mosaic within an Urban-Industrial Landscape. Sustainability. 2022; 14(19):11851. https://doi.org/10.3390/su141911851
Chicago/Turabian StyleBłońska, Agnieszka, Damian Chmura, Agnieszka Hutniczak, Zbigniew Wilczek, Jacek Jarosz, Lynn Besenyei, and Gabriela Woźniak. 2022. "The Plant Species Composition of an Abandoned Meadow as an Element of an Ecosystem Mosaic within an Urban-Industrial Landscape" Sustainability 14, no. 19: 11851. https://doi.org/10.3390/su141911851
APA StyleBłońska, A., Chmura, D., Hutniczak, A., Wilczek, Z., Jarosz, J., Besenyei, L., & Woźniak, G. (2022). The Plant Species Composition of an Abandoned Meadow as an Element of an Ecosystem Mosaic within an Urban-Industrial Landscape. Sustainability, 14(19), 11851. https://doi.org/10.3390/su141911851