Towards a Decision-Making Approach of Sustainable Water Resources Management Based on Hydrological Modeling: A Case Study in Central Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Site
2.2. SWAT+ Input Datasets
2.3. Crop and Irrigation Water Requirement
2.4. Methodology
- SWt represents the humidity of the soil (mm),
- SW0 is the base humidity of the soil (mm),
- t is the time (days),
- Rday is the rainfall volume (mm),
- Qsurf represents the value of surface runoff,
- Ea represents the value of evapotranspiration (mm),
- Wseep represents the value of seepage of water from the soil into deeper layers,
- Qgw represents the value of underground runoff (mm).
2.4.1. Streamflow Data
2.4.2. SWAT+ Model
2.4.3. Model Performance Evaluation
- is the observed parameter’s value,
- is the simulated parameter’s value,
- is the mean of observed parameters,
- is the mean of simulated parameters,
- n is the number of time intervals.
3. Results and Discussion
3.1. Hydrologic Parameter Assessement
Parameter | Definition | Unit | Range | Type of Change | Best Value | References |
---|---|---|---|---|---|---|
CN2.hru | Initial SCS CN II value | null | 25–98 | Percentage | −22.80795 | [43] |
cn3_swf.hru | Soil water factor for cn3 | null | 0–1 | Percentage | 8.89045 | [43] |
Ovn.hru | Manning Coefficient | null | 0.1–30 | absolute value | 0.74993 | [43] |
ESCO.hru | Soil evaporation compensation factor | null | 0–1 | absolute value | 0.04 | [43,44] |
EPCO.hru | plant uptake compensation factor | null | 0–1 | absolute value | 0.00785 | [43,44] |
Perco.hru | Percolation | (mm H2O) | 0–1 | absolute value | 0.80787 | [43] |
Alpha.aqu | Baseflow alpha factor | day | 0–1 | absolute value | 0.03163 | [43,44] |
bf_max.aqu | Baseflow rate when the entire area is contributing to Baseflow, default =1 | mm | 0.1–2 | absolute value | 1.63215 | [43] |
flo_min.aqu | Minimum aquifer storage to allow return flow | mm | 0–5000 | absolute value | 48.52915 | [43,44] |
AWC.hru | Available Water Capacity | mm_H20/mm | 0.01–1 | absolute value | 0.87555 | [43] |
K.hru | Saturated Hydraulic Conductivity | mm/h | 0.0001–2000 | absolute value | 68.14435 | [43] |
3.2. Calibaration and Validation
3.3. Spatial Distribution of Water Balance
3.3.1. Rainfall
3.3.2. Evapotranspiration
3.3.3. Surface Runoff
3.3.4. Lateral Flow
3.3.5. Percolation
3.3.6. Water Yield
- Qsurf is the surface runoff;
- Qlat is the lateral flow;
- Qgw is the groundwater contribution to streamflow;
- Tloss is the transmission loss.
3.3.7. Water Balance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Jin, G.; Yu, Y. Review of River Basin Water Resource Management in China. Water 2018, 10, 425. [Google Scholar] [CrossRef]
- Shiklomanov, I.A. World Water Resources: A New Appraisal and Assessment for the 21st Century; Cambridge University Press: Cambridge, UK, 2004; p. 435. [Google Scholar]
- Encyclopedia of Global Environmental Change; Munn, R.E. (Ed.) Wiley: Chichester, UK; New York, NY, USA, 2002; ISBN 978-0-471-97796-4. [Google Scholar]
- Oki, T.; Entekhabi, D.; Harrold, T.I. The global water cycle. In Geophysical Monograph Series; Sparks, R.S.J., Hawkesworth, C.J., Eds.; American Geophysical Union: Washington, DC, USA, 2004; Volume 150, pp. 225–237. ISBN 978-0-87590-415-3. [Google Scholar]
- Kuchment, L.S. The Hydrological Cycle and Human Impact on It. Water Resour. Manag. 2004, 41. Available online: http://www.biodiversity.ru/programs/ecoservices/library/functions/water/doc/Kuchment.pdf (accessed on 23 May 2022).
- Hagemann, S.; Arpe, K.; Roeckner, E. Evaluation of the Hydrological Cycle in the ECHAM5 Model. J. Clim. 2006, 19, 3810–3827. [Google Scholar] [CrossRef]
- Costa, M.H.; Foley, J.A. Trends in the Hydrologic Cycle of the Amazon Basin. J. Geophys. Res. Atmos. 1999, 104, 14189–14198. [Google Scholar] [CrossRef]
- Brouziyne, Y.; Abouabdillah, A.; Bouabid, R.; Benaabidate, L. SWAT Streamflow Modeling for Hydrological Components’ Understanding within an Agro-Sylvo-Pastoral Watershed in Morocco. J. Mater. Environ. Sci. 2018, 9, 128–138. [Google Scholar] [CrossRef]
- Madan Kumar Jha, B.U. Assessing Climate Change Impact on Water Balance Components of Upper Baitarni River Basin Using SWAT Model. J. Earth Sci. Clim. Chang. 2015, 29, 4767–4785. [Google Scholar] [CrossRef]
- Jamali, A.A.; Ghorbani Kalkhajeh, R.; Randhir, T.O.; He, S. Modeling Relationship between Land Surface Temperature Anomaly and Environmental Factors Using GEE and Giovanni. J. Environ. Manag. 2022, 302, 113970. [Google Scholar] [CrossRef]
- Jamali, A.A.; Montazeri Naeeni, M.A.; Zarei, G. Assessing the Expansion of Saline Lands through Vegetation and Wetland Loss Using Remote Sensing and GIS. Remote Sens. Appl. Soc. Environ. 2020, 20, 100428. [Google Scholar] [CrossRef]
- Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An Introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 1: History and Philosophy of a Physically-Based, Distributed Modelling System. J. Hydrol. 1986, 87, 45–59. [Google Scholar] [CrossRef]
- Mourad, K.A.; Alshihabi, O. Assessment of Future Syrian Water Resources Supply and Demand by the WEAP Model. Hydrol. Sci. J. 2016, 61, 393–401. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Cheng, F.; Shen, Z. WetSpass-Based Study of the Effects of Urbanization on the Water Balance Components at Regional and Quadrat Scales in Beijing, China. Water 2018, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- El Garouani, A.; Aharik, K.; El Garouani, S. Water Balance Assessment Using Remote Sensing, Wet-Spass Model, CN-SCS, and GIS for Water Resources Management in Saïss Plain (Morocco). Arab. J. Geosci. 2020, 13, 738. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A Physically Based, Variable Contributing Area Model of Basin Hydrology/Un Modèle à Base Physique de Zone d’appel Variable de l’hydrologie Du Bassin Versant. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Thanapakpawin, P.; Richey, J.; Thomas, D.; Rodda, S.; Campbell, B.; Logsdon, M. Effects of Landuse Change on the Hydrologic Regime of the Mae Chaem River Basin, NW Thailand. J. Hydrol. 2007, 334, 215–230. [Google Scholar] [CrossRef]
- Er-Raki, S.; Ezzahar, J.; Merlin, O.; Amazirh, A.; Hssaine, B.A.; Kharrou, M.H.; Khabba, S.; Chehbouni, A. Performance of the HYDRUS-1D Model for Water Balance Components Assessment of Irrigated Winter Wheat under Different Water Managements in Semi-Arid Region of Morocco. Agric. Water Manag. 2021, 244, 106546. [Google Scholar] [CrossRef]
- Adnan, M.; Kang, S.; Zhang, G.; Anjum, M.N.; Zaman, M.; Zhang, Y. Evaluation of SWAT Model Performance on Glaciated and Non-Glaciated Subbasins of Nam Co Lake, Southern Tibetan Plateau, China. J. Mt. Sci. 2019, 16, 1075–1097. [Google Scholar] [CrossRef]
- Ortegón, Y.A.C.; Acosta-Prado, J.C.; Acosta Castellanos, P.M. Impact of Land Cover Changes on the Availability of Water Resources in the Regional Natural Park Serranía de Las Quinchas. Sustainability 2022, 14, 3237. [Google Scholar] [CrossRef]
- Dananto, M.; Aga, A.O.; Yohannes, P.; Shura, L. Assessing the Water-Resources Potential and Soil Erosion Hotspot Areas for Sustainable Land Management in the Gidabo Watershed, Rift Valley Lake Basin of Ethiopia. Sustainability 2022, 14, 5262. [Google Scholar] [CrossRef]
- Ijlil, S.; Essahlaoui, A.; Mohajane, M.; Essahlaoui, N.; Mili, E.M.; Van Rompaey, A. Machine Learning Algorithms for Modeling and Mapping of Groundwater Pollution Risk: A Study to Reach Water Security and Sustainable Development (Sdg) Goals in a Mediterranean Aquifer System. Remote Sens. 2022, 14, 2379. [Google Scholar] [CrossRef]
- Alitane, A.; Essahlaoui, A.; El Hafyani, M.; El Hmaidi, A.; El Ouali, A.; Kassou, A.; El Yousfi, Y.; van Griensven, A.; Chawanda, C.J.; Van Rompaey, A. Water Erosion Monitoring and Prediction in Response to the Effects of Climate Change Using RUSLE and SWAT Equations: Case of R’Dom Watershed in Morocco. Land 2022, 11, 93. [Google Scholar] [CrossRef]
- Berni, I.; Menouni, A.; El Ghazi, I.; Godderis, L.; Duca, R.-C.; Jaafari, S.E. Health and Ecological Risk Assessment Based on Pesticide Monitoring in Saïss Plain (Morocco) Groundwater. Environ. Pollut. 2021, 276, 116638. [Google Scholar] [CrossRef] [PubMed]
- Boufala, M.; El Hmaidi, A.; Essahlaoui, A.; Chadli, K.; El Ouali, A.; Lahjouj, A. Assessment of the Best Management Practices under a Semi-Arid Basin Using SWAT Model (Case of M’dez Watershed, Morocco). Model. Earth Syst. Environ. 2022, 8, 713–731. [Google Scholar] [CrossRef]
- El Hafyani, M.; Essahlaoui, A.; Van Rompaey, A.; Mohajane, M.; El Hmaidi, A.; El Ouali, A.; Moudden, F.; Serrhini, N.-E. Assessing Regional Scale Water Balances through Remote Sensing Techniques: A Case Study of Boufakrane River Watershed, Meknes Region, Morocco. Water 2020, 12, 320. [Google Scholar] [CrossRef]
- Bouslihim, Y.; Kacimi, I.; Brirhet, H.; Khatati, M.; Rochdi, A.; Pazza, N.E.A.; Miftah, A.; Yaslo, Z. Hydrologic Modeling Using SWAT and GIS, Application to Subwatershed Bab-Merzouka (Sebou, Morocco). J. Geogr. Inf. Syst. 2016, 8, 20–27. [Google Scholar] [CrossRef]
- Briak, H.; Mrabet, R.; Moussadek, R.; Aboumaria, K. Use of a Calibrated SWAT Model to Evaluate the Effects of Agricultural BMPs on Sediments of the Kalaya River Basin (North of Morocco). Int. Soil Water Conserv. Res. 2019, 7, 176–183. [Google Scholar] [CrossRef]
- Fadil, A.; Rhinane, H.; Kaoukaya, A.; Kharchaf, Y.; Bachir, O.A. Hydrologic Modeling of the Bouregreg Watershed (Morocco) Using GIS and SWAT Model. J. Geogr. Inf. Syst. 2011, 3, 279–289. [Google Scholar] [CrossRef]
- Semlali, I.; Ouadif, L.; Baba, K.; Akhssas, A.; Bahi, L. Using GIS and SWAT Model for Hydrological Modelling of Oued Laou Watershed (Morocco). ARPN J. Eng. Appl. Sci. 2017, 12, 11. [Google Scholar]
- Bouslihim, Y.; Rochdi, A.; El Amrani Paaza, N.; Liuzzo, L. Understanding the Effects of Soil Data Quality on SWAT Model Performance and Hydrological Processes in Tamedroust Watershed (Morocco). J. Afr. Earth Sci. 2019, 160, 103616. [Google Scholar] [CrossRef]
- Jayakrishnan, R.; Srinivasan, R.; Santhi, C.; Arnold, J.G. Advances in the Application of the SWAT Model for Water Resources Management. Hydrol. Process. 2005, 19, 749–762. [Google Scholar] [CrossRef]
- Dechmi, F.; Burguete, J.; Skhiri, A. SWAT Application in Intensive Irrigation Systems: Model Modification, Calibration and Validation. J. Hydrol. 2012, 470, 227–238. [Google Scholar] [CrossRef]
- Rostamian, R.; Jaleh, A.; Afyuni, M.; Mousavi, S.F.; Heidarpour, M.; Jalalian, A.; Abbaspour, K.C. Application of a SWAT Model for Estimating Runoff and Sediment in Two Mountainous Basins in Central Iran. Hydrol. Sci. J. 2008, 53, 977–988. [Google Scholar] [CrossRef]
- Saleh, A.; Arnold, J.G.; Gassman, P.W.A.; Hauck, L.M.; Rosenthal, W.D.; Williams, J.R.; McFarland, A.M.S. Application of SWAT for the Upper North Bosque River Watershed. Trans. ASAE 2000, 43, 1077–1087. [Google Scholar] [CrossRef]
- Tomy, T.; Sumam, K.S. Determining the Adequacy of CFSR Data for Rainfall-Runoff Modeling Using SWAT. Procedia Technol. 2016, 24, 309–316. [Google Scholar] [CrossRef]
- Santhi, C.; Muttiah, R.S.; Arnold, J.G.; Srinivasan, R. A Gis-based regional planning tool for irrigation demand assessment and savings using swat. Trans. ASAE 2005, 48, 137–147. [Google Scholar] [CrossRef]
- Ben-Daoud, M.; Mahrad, B.E.; Elhassnaoui, I.; Moumen, A.; Sayad, A.; ELbouhadioui, M.; Moroșanu, G.A.; Mezouary, L.E.; Essahlaoui, A.; Eljaafari, S. Integrated Water Resources Management: An Indicator Framework for Water Management System Assessment in the R’Dom Sub-Basin, Morocco. Environ. Chall. 2021, 3, 100062. [Google Scholar] [CrossRef]
- Betrie, G.D.; Mohamed, Y.A.; van Griensven, A.; Srinivasan, R. Sediment Management Modelling in the Blue Nile Basin Using SWAT Model. Hydrol. Earth Syst. Sci. 2011, 15, 807–818. [Google Scholar] [CrossRef]
- Leon, L.F.; George, C. WaterBase: SWAT in an Open Source GIS. Open Hydrol. J. 2008, 2, 1–6. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Xie, X.; Cui, Y. Development and Test of SWAT for Modeling Hydrological Processes in Irrigation Districts with Paddy Rice. J. Hydrol. 2011, 396, 61–71. [Google Scholar] [CrossRef]
- Del, O. SWAT+ INPUT DATA. 2016, p. 222. Available online: https://swat.tamu.edu/media/116078/inputs_swatplus.pdf (accessed on 23 May 2022).
- Guug, S.S.; Abdul-Ganiyu, S.; Kasei, R.A. Application of SWAT Hydrological Model for Assessing Water Availability at the Sherigu Catchment of Ghana and Southern Burkina Faso. HydroResearch 2020, 3, 124–133. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and Environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Hargreaves, G.H.; Allen, R.G. History and Evaluation of Hargreaves Evapotranspiration Equation. J. Irrig. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Ayivi, F.; Jha, M.K. Estimation of Water Balance and Water Yield in the Reedy Fork-Buffalo Creek Watershed in North Carolina Using SWAT. Int. Soil Water Conserv. Res. 2018, 6, 203–213. [Google Scholar] [CrossRef]
- El Yousfi, Y.; Himi, M.; El Ouarghi, H.; Elgettafi, M.; Benyoussef, S.; Gueddari, H.; Aqnouy, M.; Salhi, A.; Alitane, A. Hydrogeochemical and Statistical Approach to Characterize Groundwater Salinity in the Ghiss-Nekkor Coastal Aquifers in the Al Hoceima Province, Morocco. Groundw. Sustain. Dev. 2022, 19, 100818. [Google Scholar] [CrossRef]
- Blanco-Gómez, P.; Jimeno-Sáez, P.; Senent-Aparicio, J.; Pérez-Sánchez, J. Impact of Climate Change on Water Balance Components and Droughts in the Guajoyo River Basin (El Salvador). Water 2019, 11, 2360. [Google Scholar] [CrossRef]
- Yin, Z.; Feng, Q.; Zou, S.; Yang, L. Assessing Variation in Water Balance Components in Mountainous Inland River Basin Experiencing Climate Change. Water 2016, 8, 472. [Google Scholar] [CrossRef]
- Khalid, C. Hydrological Modeling of the Mikkés Watershed (Morocco) Using ARCSWAT Model. Sustain. Water Resour. Manag. 2018, 4, 105–115. [Google Scholar] [CrossRef]
- Terink, W.; Hunink, J.; Droogers, P.; Reuter, H.; van Lynden, G.; Kauffman, J. Impacts of Land Management Options in the Sebou Basin: Using the Soil and Water Assessment Tool-SWAT. Theor. Appl. Genet. 2011, 1. Available online: https://www.isric.org/sites/default/files/isric_gwc_report_m1.pdf (accessed on 23 May 2022).
- Ait M’Barek, S.; Rochdi, A.; Bouslihim, Y.; Miftah, A. Multi-Site Calibration and Validation of SWAT Model for Hydrologic Modeling and Soil Erosion Estimation: A Case Study in El Grou Watershed, Morocco. Ecol. Eng. Environ. Technol. 2021, 22, 45–52. [Google Scholar] [CrossRef]
Data Type | Source | Spatial Resolution | Temporal Resolution |
---|---|---|---|
Digital elevation map (DEM) | Shuttle Radar Topography Mission (SRTM), https://earthexplorer.usgs.gov, (accessed on 3 August 2021) | 30 m | - |
Land use | sentinel-2 image, 2016 https://scihub.copernicus.eu/dhus/#/home (accessed on 18 May 2021) | 10 m | - |
Soil | National Institute of Agronomic Research | 30 m | – |
Climate data | Sebou Hydraulic Basin Agency (SHBA) | Point dataset | Daily |
River discharge | Sebou Hydraulic Basin Agency (SHBA) | Point dataset | Monthly |
Irrigated areas | Food and Agriculture Organization | 0.000992° | – |
Statistical Indicators | Calibration Period (2002–2009) | Validation Period (2010–2016) | ||
---|---|---|---|---|
Observed | Simulated | Observed | Simulated | |
Mean (m3/s) | 3.55 | 1.80 | 3.95 | 3.06 |
STDEV (m3/s) | 5.03 | 4.84 | 4.62 | 5.85 |
NSE | 0.70 | 0.65 | ||
R2 | 0.84 | 0.81 | ||
Pearson Correlation Coefficient | 0.69 | 0.71 |
Parameter | Mean Values for Calibration (mm) | % | Mean Values for Validation (mm) | % | Average | % | |
---|---|---|---|---|---|---|---|
Input | Precipitation | 435 | 100 | 484 | 100 | 459.5 | 100 |
Irrigation | 5.94 | 5.75 | 5.85 | ||||
Output | Surface runoff | 56.43 | 12.70 | 59.7 | 12.04 | 58.02 | 12.73 |
Lateral flow | 37.2 | 8.46 | 58.3 | 11.90 | 47.75 | 10.26 | |
Percolation | 10.6 | 2.40 | 20.3 | 4.14 | 15.45 | 3.32 | |
Evapotranspiration | 331 | 75.06 | 354 | 72.28 | 342.5 | 73.60 | |
Balance | Input–Output | 5.71 | 1.28 | −5.55 | −1.12 | 0.08 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alitane, A.; Essahlaoui, A.; Van Griensven, A.; Yimer, E.A.; Essahlaoui, N.; Mohajane, M.; Chawanda, C.J.; Van Rompaey, A. Towards a Decision-Making Approach of Sustainable Water Resources Management Based on Hydrological Modeling: A Case Study in Central Morocco. Sustainability 2022, 14, 10848. https://doi.org/10.3390/su141710848
Alitane A, Essahlaoui A, Van Griensven A, Yimer EA, Essahlaoui N, Mohajane M, Chawanda CJ, Van Rompaey A. Towards a Decision-Making Approach of Sustainable Water Resources Management Based on Hydrological Modeling: A Case Study in Central Morocco. Sustainability. 2022; 14(17):10848. https://doi.org/10.3390/su141710848
Chicago/Turabian StyleAlitane, Abdennabi, Ali Essahlaoui, Ann Van Griensven, Estifanos Addisu Yimer, Narjisse Essahlaoui, Meriame Mohajane, Celray James Chawanda, and Anton Van Rompaey. 2022. "Towards a Decision-Making Approach of Sustainable Water Resources Management Based on Hydrological Modeling: A Case Study in Central Morocco" Sustainability 14, no. 17: 10848. https://doi.org/10.3390/su141710848