Can Coordinated Development of Manufacturing and Information Communication Service Industries Boost Economic Resilience? An Empirical Study Based on China’s Provinces
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. Synergy between M&ICS Industries versus Regional Economic Resilience
2.2. Spatial Spillover Effect of the Synergy between M&ICS Industries
3. Research Design
3.1. Method of Estimating the Level of Synergy between M&ICS Industries
3.2. Construction of Spatial Durbin Model (SDM)
3.3. Description of Data and Variables
3.3.1. Explained Variable
3.3.2. Core Explanatory Variable
3.3.3. Control Variables
3.4. Data Sources
4. Results and Analysis
4.1. Level of Economic Resilience across China’s Provinces
4.2. Level of Synergy between M&ICS Industries
4.3. Empirical Test of Spatial Econometrics
4.3.1. Spatial Spillover Effect and Model Determination
4.3.2. Empirical Results of SDM
4.3.3. Robustness Test
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yu, H.; Liu, Y.; Liu, C.; Fan, F. Spatiotemporal variation and inequality in China’s economic resilience across cities and urban agglomerations. Sustainability 2018, 10, 4754. [Google Scholar] [CrossRef]
- Christopherson, S.; Michie, J.; Tyler, P. Regional resilience: Theoretical and empirical perspectives. Camb. J. Reg. Econ. Soc. 2010, 3, 3–10. [Google Scholar] [CrossRef]
- Martin, R. Regional economic resilience, hysteresis and recessionary shocks. J. Econ. Geogr. 2012, 12, 1–32. [Google Scholar] [CrossRef]
- Martin, R.; Sunley, P.; Gardiner, B.; Tyler, P. How regions react to recessions: Resilience and the role of economic structure. Reg. Stud. 2016, 50, 561–585. [Google Scholar] [CrossRef]
- Martin, R.; Sunley, P. Path dependence and regional economic evolution. J. Econ. Geogr. 2006, 6, 395–437. [Google Scholar] [CrossRef]
- Simmie, J.; Martin, R. The economic resilience of regions: Towards an evolutionary approach. Camb. J. Reg. Econ. Soc. 2010, 3, 27–43. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.; Mao, F. The synergy degree measurement and transformation path of China’s traditional manufacturing industry enabled by digital economy. Math. Biosci. Eng. 2022, 19, 5738–5753. [Google Scholar] [CrossRef]
- Khorasani, M.; Loy, J.; Ghasemi, A.H.; Sharabian, E.; Leary, M.; Mirafzal, H.; Cochrane, P.; Rolfe, B.; Gibson, I. A review of Industry 4.0 and additive manufacturing synergy. Rapid Prototyp. J. 2022, 28, 1462–1475. [Google Scholar] [CrossRef]
- Chen, X.; Teng, L.; Chen, W. How does FinTech affect the development of the digital economy? Evidence from China. N. Am. J. Econ. Financ. 2022, 61, 101697. [Google Scholar] [CrossRef]
- Li, T.; Wang, X. Digital economy empowers China’s dual cycle” strategy–Internal logic and practice path. Economist 2021, 5, 102–109. (In Chinese) [Google Scholar]
- Wu, B.; Yang, W. Empirical test of the impact of the digital economy on China’s employment structure. Financ. Res. Lett. 2022, 49, 103047. [Google Scholar] [CrossRef]
- Marie, V.; Mitra, A.; Sharma, C. Infrastructure, information & communication technology and firms’ productive performance of the Indian manufacturing. J. Policy Modeling 2016, 38, 353–371. [Google Scholar] [CrossRef]
- Kusiak, A. Smart manufacturing must embrace big data. Nature 2014, 544, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Li, M.; Kong, X.; Chen, J.; Huang, G.Q.; Wang, M. Synchronisation for smart factory—Towards IoT-enabled mechanisms. Int. J. Comput. Integr. Manuf. 2018, 31, 624–635. [Google Scholar] [CrossRef]
- Jere, S.; Saku, P.; Minna, L.; Katri, S.; Harri, N. Reconfigurable pilot lines enabling industry digitalization: An approach for transforming industry and academia needs to requirements specifications. Procedia CIRP 2022, 107, 1226–1231. [Google Scholar] [CrossRef]
- Sohal, A.; Moss, S.; Ng, L. Comparing IT success in manufacturing and service industries. Int. J. Oper. Prod. Manag. 2001, 21, 30–45. [Google Scholar] [CrossRef]
- Kelle, M. Crossing industry borders: German manufacturers as services exporters. World Econ. 2013, 36, 1494–1515. [Google Scholar] [CrossRef]
- Martin, R.; Sunley, P. On the notion of regional economic resilience: Conceptualization and explanation. J. Econ. Geogr. 2015, 15, 1–42. [Google Scholar] [CrossRef]
- Martin, R.; Sunley, P.; Tyler, P. Local growth evolutions: Recession, resilience and recovery. Camb. J. Reg. Econ. Soc. 2015, 8, 141–148. [Google Scholar] [CrossRef]
- Breathnach, P.; van Egeraat, C.; Curran, D. Regional economic resilience in Ireland: The roles of industrial structure and foreign inward investment. Reg. Stud. Reg. Sci. 2015, 2, 497–517. [Google Scholar] [CrossRef]
- Whitley, R. The institutional structuring of innovation strategies: Business systems, firm types and patterns of technical change in different market economies. Organ. Stud. 2016, 21, 855–886. [Google Scholar] [CrossRef]
- Cellini, R.; Torrisi, G. Regional resilience in Italy: A very long-run analysis. Reg. Stud. 2014, 48, 1779–1796. [Google Scholar] [CrossRef]
- Cho, M.; Hassink, R. Limits to locking-out through restructuring: The textile industry in Daegu, South Korea. Reg. Stud. 2009, 43, 1183–1198. [Google Scholar] [CrossRef]
- Mikheeva, N.N. Resilience of Russian regions to economic shocks. Stud. Russ. Econ. Dev. 2021, 32, 68–77. [Google Scholar] [CrossRef]
- Di Pietro, F.; Lecca, P.; Salotti, S. Regional economic resilience in the European Union: A numerical general equilibrium analysis. Spat. Econ. Anal. 2020, 16, 287–312. [Google Scholar] [CrossRef]
- Allam, Z.; Jones, D. Climate change and economic resilience through urban and cultural heritage: The case of emerging small island developing states economies. Economies 2019, 7, 62. [Google Scholar] [CrossRef]
- Gao, Y.; Song, Y. Research on the interactive relationship between information communication technology and manufacturing industry. Clust. Comput. 2017, 22, 5719–5729. [Google Scholar] [CrossRef]
- Malhotra, A.; Osiyevskyy, O. The changing value of firm resources during industry convergence: Market vs. technical assets. Acad. Manag. Annu. Meet. Proc. 2015, 2015, 18599. [Google Scholar] [CrossRef]
- Liu, Y.W.; Li, J.; Xu, Y. Quantitative evaluation of high-tech industry policies based on the PMC-Index model: A case study of China’s Beijing-Tianjin-Hebei region. Sustainability 2022, 14, 9338. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, X.; Li, Y. Dynamic coordination development in China’s manufacturingand manufacturing-related service industries. Econ. Res. J. 2018, 53, 79–93. (In Chinese) [Google Scholar]
- Nyström, K. Regional resilience to displacements. Reg. Stud. 2017, 52, 4–22. [Google Scholar] [CrossRef]
- Doran, J.; Fingleton, B. Employment resilience in Europe and the 2008 economic crisis: Insights from micro-level data. Reg. Stud. 2015, 50, 644–656. [Google Scholar] [CrossRef]
- Jung, S.; Nam, C.; Yang, D.-H.; Kim, S. Does corporate sustainability performance increase corporate financial performance? Focusing on the information and communication technology industry in Korea. Sustain. Dev. 2018, 26, 243–254. [Google Scholar] [CrossRef]
- Pan, W.; Xie, T.; Wang, Z.; Ma, L. Digital economy: An innovation driver for total factor productivity. J. Bus. Res. 2022, 139, 303–311. [Google Scholar] [CrossRef]
- Manca, C.; Grijalvo, M.; Palacios, M.; Kaulio, M. Collaborative workplaces for innovation in service companies: Barriers and enablers for supporting new ways of working. Serv. Bus. 2018, 12, 525–550. [Google Scholar] [CrossRef]
- Cataldo, S.D.; Lee, S.; Macii, E.; Vogel-Heuser, B. Leading information and communication technologies for smart manufacturing: Facing the new challenges and opportunities of the 4th industrial revolution. Proc. IEEE 2021, 109, 320–325. [Google Scholar] [CrossRef]
- Nwani, C.; Bekun, F.V.; Agboola, P.O.; Omoke, P.C.; Effiong, E.L. Industrial output, services and carbon emissions: The role of information and communication technologies and economic freedom in Africa. Environ. Dev. Sustain. 2022. [Google Scholar] [CrossRef]
- Singh, R.K.; Luthra, S.; Mangla, S.K.; Uniyal, S. Applications of information and communication technology for sustainable growth of SMEs in India food industry. Resour. Conserv. Recycl. 2019, 147, 10–18. [Google Scholar] [CrossRef]
- Li, R.; Rao, J.; Wan, L. The digital economy, enterprise digital transformation, and enterprise innovation. Manag. Decis. Econ. 2022, 10, 1–12. [Google Scholar] [CrossRef]
- Boschma, R. Towards an evolutionary perspective on regional resilience. Reg. Stud. 2014, 49, 733–751. [Google Scholar] [CrossRef]
- Canarella, G.; Miller, S.M. The determinants of growth in the U.S. information and communication technology (ICT) industry: A firm-level analysis. Econ. Model. 2018, 70, 259–271. [Google Scholar] [CrossRef]
- Giannakis, E.; Mamuneas, T.P. Labour productivity and regional labour markets resilience in Europe. Ann. Reg. Sci. 2022, 68, 691–712. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Sun, B.; Li, W.; Zhou, H. Information communication technology and manufacturing decentralisation in China. Pap. Reg. Sci. 2022, 101, 619–637. [Google Scholar] [CrossRef]
- Kutin, A.; Dolgov, V.; Sedykh, M. Information links between product life cycles and production system management in designing of digital manufacturing. Procedia CIRP 2016, 41, 423–426. [Google Scholar] [CrossRef]
- Yang, N.; Liu, Q.; Chen, Y. Does industrial agglomeration promote regional innovation convergence in China? Evidence from high-tech industries. IEEE Trans. Eng. Manag. 2021, 1–14. [Google Scholar] [CrossRef]
- Wu, J.; Jing, J. Producer services agglomeration, industrial convergence and technological innovation. Shanghai J. Econ. 2021, 7, 69–80. (In Chinese) [Google Scholar]
- Michaeli, T.; Wang, W.; Livescu, K. Nonparametric Canonical Correlation Analysis. In Proceedings of the 33rd International Conference on Machine Learning, PMLR, New York, NY, USA, 20–22 June 2016; Volume 48, pp. 1967–1976. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Li, H. Measurement of China’s macro economic resilience: A systemic risk perspective. Soc. Sci. China 2021, 1, 12–32. (In Chinese) [Google Scholar]
- Wu, J.; Li, Q. Spatial effect of digital transformation driving the integration of manufacturing and service industries. J. Stat. 2022, 3, 42–56. (In Chinese) [Google Scholar]
- Song, G.; Zhong, S.; Song, L. Spatial pattern evolution characteristics and influencing factors in county economic resilience in China. Sustainability 2022, 14, 8703. [Google Scholar] [CrossRef]
- Guo, J.; Xu, Z. Research on the influence of industrial related variety on regional economic resilience-Analysis of threshold effect based on regional innovation level. Sci. Technol. Prog. Policy 2019, 36, 39–47. (In Chinese) [Google Scholar]
- Wang, X.; Li, M. Determinants of regional economic resilience to economic crisis: Evidence from Chinese economies. Sustainability 2022, 14, 809. [Google Scholar] [CrossRef]
- Du, Z.; Zhang, H.; Ye, Y.; Jin, L.; Xu, Q. Urban shrinkage and growth: Measurement and determinants of economic resilience in the Pearl River Delta. J. Geogr. Sci. 2019, 29, 1331–1345. [Google Scholar] [CrossRef]
- Eraydin, A. Attributes and characteristics of regional resilience: Defining and measuring the resilience of Turkish regions. Reg. Stud. 2016, 50, 600–614. [Google Scholar] [CrossRef]
- Eppelsheimer, J.; Jahn, E.J.; Rust, C. The spatial decay of human capital externalities—A functional regression approach with precise geo-referenced data. Reg. Sci. Urban Econ. 2022, 95, 103785. [Google Scholar] [CrossRef]
- Pendall, R.; Theodos, B.; Franks, K. Vulnerable people, precarious housing, and regional resilience: An exploratory analysis. Hous. Policy Debate 2012, 22, 271–296. [Google Scholar] [CrossRef]
- Giannakis, E.; Bruggenman, A. Economic crisis and regional resilience: Evidence from Greece. Pap. Reg. Sci. 2017, 96, 451–476. [Google Scholar] [CrossRef]
Target Level | Primary Index | Secondary Index | Source | Attribute of Index | Weight |
---|---|---|---|---|---|
Economic resilience | Vulnerability | Unemployment rate (%) | CSY | − | 0.021 |
Growth rate of population (%) | CSY | + | 0.037 | ||
Proportion of direct foreign investments over GDP (%) | CSY | − | 0.022 | ||
Engel coefficient (%) | CSY | − | 0.046 | ||
Resistance | Growth rate of GDP (%) | CSY | + | 0.057 | |
Average wage of workers (CNY) | CSY | + | 0.097 | ||
Disposable income per capita (CNY) | CSY | + | 0.126 | ||
Proportion of the unemployed insured population over the unemployed population (%) | CSY | + | 0.018 | ||
Proportion of employees of state-owned units over the employed population (%) | CSY | − | 0.028 | ||
Adaptability | Proportion of fiscal expenditure on education over GDP (%) | CSY, CSYST | + | 0.056 | |
Proportion of fiscal expenditure on science and technology over GDP (%) | CSY, CSYST | + | 0.124 | ||
Number of patents licensed per 10 thousand people | CSYST | + | 0.168 | ||
Proportion of college students over total population (%) | CSY, CSYST | + | 0.039 | ||
Restorability | Urbanization rate (%) | CSY | + | 0.071 | |
Degree of fiscal decentralization (%) | CSY | + | 0.031 | ||
Proportion of the balance of loans of financial institutions over GDP (%) | CSY | + | 0.024 | ||
Density of population (number of people per km2) | CSY | + | 0.035 |
Industry | Primary Index | Secondary Index | Source | Weight |
---|---|---|---|---|
Manufacturing | Development scale | Size of the employed population (10 thousand) | CISY | 0.114 |
Business revenue (100 million CNY) | CISY | 0.123 | ||
Fixed-asset investment volume (100 million CNY) | CISY | 0.111 | ||
Development potential | Growth rate of main business (%) | CISY | 0.081 | |
Growth rate of licensed patents for invention | CISY, CSYST | 0.047 | ||
Growth rate of the employed population (%) | CISY | 0.065 | ||
Information communication service | Development scale | Size of the employed population (10 thousand) | CSYTI | 0.109 |
Business revenue (100 million CNY) | CSYTI | 0.121 | ||
Fixed-asset investment volume (100 million CNY) | CSYTI | 0.091 | ||
Development potential | Growth rate of the employed population (%) | CSYST | 0.056 | |
Growth rate of port number with internet broadband access (%) | CSYST | 0.043 | ||
Growth rate of mobile internet subscribers (%) | CSYST | 0.039 |
Variable | Mean | Std. Dev | Min | Max |
---|---|---|---|---|
Res | 0.299 | 0.341 | 0.170 | 0.764 |
Ind | 0.454 | 0.272 | 0.314 | 0.813 |
Gov | 0.239 | 0.231 | 0.108 | 0.539 |
Mar | 0.257 | 0.337 | 0.025 | 0.674 |
Inn | 0.048 | 0.079 | 0.004 | 0.151 |
Fin | 1.310 | 0.690 | 0.745 | 2.105 |
Per | 193 | 122 | 100 | 339 |
Correlation Test | Geographical Distance Matrix | Economic Distance Matrix |
---|---|---|
Hausman test | 182.26 *** | 181.92 *** |
LR test (spatial fixed effect) | 61.09 *** | 51.34 *** |
LR test (temporal fixed effect) | 59.39 *** | 58.84 *** |
LR test (SEM nested in SDM) | 43.37 *** | 47.57 *** |
LR test (SAR nested in SDM) | 384.54 *** | 369.19 *** |
Variable | SDM with Spatial and Temporal Fixed Effects | |
---|---|---|
Geographical Distance | Economic Distance | |
Ind | 0.576 *** (15.05) | 0.552 *** (14.21) |
Gov | −0.092 * (−1.95) | −0.104 ** (−2.26) |
Mar | −0.002 *** (−10.14) | −0.002 *** (−10.17) |
Inn | 0.714 *** (6.30) | 0.736 *** (6.86) |
Fin | 0.033 *** (3.69) | 0.039 *** (4.46) |
Per | 0.022 (0.28) | 0.033 (0.01) |
W×Res | 0.196 *** (2.49) | 0.211 *** (3.21) |
W×Ind | 0.118 (0.91) | 0.217 (0.64) |
W×Gov | −0.197 * (−1.89) | −0.523 * (−1.85) |
W×Mar | −0.002 * (−1.74) | −0.003 (−1.58) |
W×Inn | 1.234 *** (4.78) | 3.006 *** (4.79) |
W×Fin | 0.113 *** (5.26) | 0.299 *** (5.80) |
W×Per | −0.122 (−0.74) | −0.144 (−0.20) |
R2 | 0.579 | 0.522 |
Log-L | 953.819 | 953.728 |
Variable | Direct Effect | Indirect Effect | Total Effect | |||
---|---|---|---|---|---|---|
Geographical | Economic | Geographical | Economic | Geographical | Economic | |
Ind | 0.583 *** (14.68) | 0.563 *** (14.38) | −0.076 (−0.72) | −0.161 (−0.87) | 0.507 *** (4.86) | 0.402 ** (2.13) |
Gov | −0.085 * (−1.77) | −0.091 * (−1.93) | −0.132 (−1.62) | −0.249 (−1.56) | −0.217 *** (−2.86) | −0.339 (−2.24) |
Mar | −0.002 *** (−10.18) | −0.002 *** (−10.36) | −0.000 (−10.18) | −0.000 (−10.36) | −0.002 *** (−5.34) | −0.002 *** (−2.92) |
Inn | 0.645 *** (5.54) | 0.643 *** (5.74) | 0.774 *** (3.75) | 1.334 *** (3.73) | 1.419 *** (8.16) | 1.977 *** (6.14) |
Fin | 0.027 *** (3.08) | 0.028 *** (3.45) | 0.078 *** (4.70) | 0.151 *** (4.48) | 0.105 *** (6.33) | 0.179 *** (5.42) |
Per | 0.012 (0.39) | 0.023 (0.05) | −0.021 (−0.81) | −0.031 (−0.24) | −0.009 (−0.69) | −0.008 (−0.25) |
Variable | SDM | Variable | SDM |
---|---|---|---|
Ind | 0.669 *** (15.44) | W×Mar | −0.004 * (−1.97) |
Gov | −0.076 (−0.07) | W×Inn | 1.421 *** (4.78) |
Mar | −0.274 ** (−2.16) | W×Fin | 0.153 *** (5.26) |
Inn | 0.582 *** (4.62) | W×Per | −0.122 * (−2.82) |
Fin | 0.049 *** (4.88) | Hausman test | 140.46 *** |
Per | 0.021 * (2.08) | LR test (spatial fixed effect) | 43.09 *** |
W×Res | 0.673 *** (3.21) | LR test (temporal fixed effect) | 49.79 *** |
W×Ind | 0.203 (0.91) | LR test (SEM nested in SDM) | 49.67 *** |
W×Gov | −0.157 * (−2.02) | LR test (SAR nested in SDM) | 256.74 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Li, J.; Yan, Y.; Gao, P.; Xie, H. Can Coordinated Development of Manufacturing and Information Communication Service Industries Boost Economic Resilience? An Empirical Study Based on China’s Provinces. Sustainability 2022, 14, 10758. https://doi.org/10.3390/su141710758
Xu Y, Li J, Yan Y, Gao P, Xie H. Can Coordinated Development of Manufacturing and Information Communication Service Industries Boost Economic Resilience? An Empirical Study Based on China’s Provinces. Sustainability. 2022; 14(17):10758. https://doi.org/10.3390/su141710758
Chicago/Turabian StyleXu, Yi, Jian Li, Yongcan Yan, Pengcheng Gao, and Heng Xie. 2022. "Can Coordinated Development of Manufacturing and Information Communication Service Industries Boost Economic Resilience? An Empirical Study Based on China’s Provinces" Sustainability 14, no. 17: 10758. https://doi.org/10.3390/su141710758