The Assessment of Future Air Temperature and Rainfall Changes Based on the Statistical Downscaling Model (SDSM): The Case of the Wartburg Community in KZN Midlands, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Climate Data
2.3. Statistical Downscaling Model (SDSM)
2.4. Methodology
2.5. Screening of Predictors
2.6. Bias Correction
3. Results
3.1. Screening of Predictors Results
3.2. Calibration of the SDSM
3.3. Validation of the SDSM Results
3.4. Validation Results after Bias Correction
3.5. Projected Trend of Average Maximum and Minimum Air Temperature and Annual Rainfall
4. Discussion
4.1. Projected Air Temperature
4.2. Projected Rainfall
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013–The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Giorgi, F.; Raffaele, F.; Coppola, E. The response of precipitation characteristics to global warming from global and regional climate projections. Earth Syst. Dyn. 2019, 10, 73–89. [Google Scholar] [CrossRef]
- Stagl, J.; Mayr, E.; Koch, H.; Hattermann, F.F.; Huang, S. Effects of climate change on the hydrological cycle in Central and Eastern Europe. In Managing Protected Areas in Central and Eastern Europe under Climate Change; Rannow, S., Neubert, M., Eds.; Advances in Global Change Research; Springer: Dordrecht, The Netherlands, 2014; Volume 58, pp. 31–43. [Google Scholar]
- New, M.; Hewitson, B.; Stephenson, D.B.; Tsiga, A.; Kruger, A.; Manhique, A.; Gomez, B.; Coelho, C.A.S.; Masisi, D.N.; Kululanga, E. Evidence of trends in daily climate extremes over southern and West Africa. J. Geophys. Res. Atmos. 2006, 111, D14102. [Google Scholar] [CrossRef]
- Ujeneza, E.L.; Abiodun, B.J. Drought regimes in Southern Africa and how well GCMs simulate them. Clim. Dyn. 2015, 44, 1595–1609. [Google Scholar] [CrossRef]
- Abiodun, B.J.; Makhanya, N.; Petja, B.; Abatan, A.A.; Oguntunde, P.G. Future projection of droughts over major river basins in Southern Africa at specific global warming levels. Theor. Appl. Climatol. 2019, 139, 1785–1799. [Google Scholar] [CrossRef]
- Kruger, A.C. Observed trends in daily precipitation indices in South Africa: 1910–2004. Int. J. Climatol. 2006, 26, 2275–2285. [Google Scholar] [CrossRef]
- Kruger, A.C.; Shongwe, S. Temperature trends in South Africa: 1960–2003. Int. J. Climatol. 2004, 24, 1929–1945. [Google Scholar] [CrossRef]
- Edossa, D.C.; Woyessa, E.E.; Welderufael, W.A. Analysis of droughts in the central region of South Africa and their association with SST anomalies. Int. J. Atmos. Sci. 2014, 2014, 508953. [Google Scholar] [CrossRef]
- Gbetibouo, G.; Hassan, R. Measuring the economic impact of climate change on major South African field crops: A Ricardian approach. Glob. Planet. Change 2005, 47, 143–152. [Google Scholar] [CrossRef]
- Mackellar, N.; New, M.; Jack, C. Observed and modelled trends in rainfall and temperature for South Africa: 1960—2010. S. Afr. J. Sci. 2014, 110, 51–63. [Google Scholar] [CrossRef]
- Kruger, A.C.; Nxumalo, M. Historical rainfall trends in South Africa: 1921–2015. Water SA 2017, 43, 285–297. [Google Scholar] [CrossRef] [Green Version]
- Wilby, R.; Dawson, C.; Murphy, C.; O’Connor, P.; Hawkins, E. The Statistical DownScaling Model—Decision Centric (SDSM-DC): Conceptual basis and applications. Clim. Res. 2014, 61, 259–276. [Google Scholar] [CrossRef]
- Dorji, S.; Herath, S.; Mishra, B. Future climate of Colombo downscaled with SDSM-neural network. Climate 2017, 5, 24. [Google Scholar] [CrossRef]
- Li, D.; Zou, L.; Zhou, T. Extreme climate event changes in China in the 1.5 and 2 °C warmer climates: Results from statistical and dynamical downscaling. J. Geophys. Res. Atmos. 2018, 123, 215–230. [Google Scholar] [CrossRef]
- Boé, J.; Terray, L.; Habets, F.; Martin, E. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol. 2007, 27, 1643–1655. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kwon, H.-H.; Jang, H.-W.; Kim, T.-W. Future changes in drought characteristics under extreme climate change over South Korea. Adv. Meteorol. 2016, 2016, 9164265. [Google Scholar] [CrossRef]
- Jang, D. Assessment of meteorological drought indices in Korea using RCP 8.5 scenario. Water 2018, 10, 283. [Google Scholar] [CrossRef]
- Saymohammadi, S.; Zarafshani, K.; Tavakoli, M.; Mahdizadeh, H.; Amiri, F. Prediction of climate change induced temperature and precipitation: The case of Iran. Sustainability 2017, 9, 146. [Google Scholar] [CrossRef]
- Leng, G.; Tang, Q.; Rayburg, S. Climate change impacts on meteorological, agricultural and hydrological droughts in China. Glob. Planet. Change 2015, 126, 23–34. [Google Scholar] [CrossRef]
- Feyissa, G.; Zeleke, G.; Bewket, W.; Gebremariam, E. Downscaling of future temperature and precipitation extremes in Addis Ababa under climate change. Climate 2018, 6, 58. [Google Scholar] [CrossRef]
- Emami, F.; Koch, M. Evaluation of statistical-downscaling/bias-correction methods to predict hydrologic responses to climate change in the Zarrine River Basin, Iran. Climate 2018, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, R.; Babel, M.S. Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum basin, Pakistan and India. Theor. Appl. Climatol. 2013, 113, 27–44. [Google Scholar] [CrossRef]
- Pinto, I.; Lennard, C.; Tadross, M.; Hewitson, B.; Dosio, A.; Nikulin, G.; Panitz, H.-J.; Shongwe, M.E. Evaluation and projections of extreme precipitation over southern Africa from two CORDEX models. Clim. Change 2016, 135, 655–668. [Google Scholar] [CrossRef]
- Dookie, N.; Chadee, X.T.; Clarke, R.M. Trends in extreme temperature and precipitation indices for the Caribbean small islands: Trinidad and Tobago. Theor. Appl. Climatol. 2018, 136, 31–44. [Google Scholar] [CrossRef]
- Dennis, I.; Dennis, R. Climate Change Vulnerability Index for South African Aquifers. Water SA 2012, 38, 417–426. [Google Scholar] [CrossRef]
- Stats, S.A. Statistical Release: Mid-Year Population Estimates; Statistics South Africa: Pretoria, South Africa, 2016. [Google Scholar]
- Hitayezu, P.; Zegeye, E.W.; Ortmann, G.F. Some aspects of agricultural vulnerability to climate change in the KwaZulu-Natal Midlands, South Africa: A systematic review. J. Hum. Ecol. 2014, 48, 347–356. [Google Scholar] [CrossRef]
- Hitayezu, P.; Wale, E.; Ortmann, G. Assessing farmers’ perceptions about climate change: A double-hurdle approach. Clim. Risk Manag. 2017, 17, 123–138. [Google Scholar] [CrossRef]
- Kollongei, K.J.; Lorentz, S.A. Connectivity influences on nutrient and sediment migration in the Wartburg catchment, KwaZulu-Natal Province, South Africa. Phys. Chem. Earth Parts A/B/C 2014, 67, 12–22. [Google Scholar] [CrossRef]
- Bureau for Food and Agricultural Policy (BFAP). Understanding the Factors That Have Impacted on Cane Production in the South African Sugar Industry. Retrieved April 26, 2019. 2014. Available online: https://www.bfap.co.za/wp-content/uploads/2018/08/2014_Understanding-the-Factors-That-Have-Impacted-on-Cane-Production.pdf (accessed on 19 July 2018).
- Mahlangu, I.; Lewis, F. Social and institutional constraints to the production of sugarcane by small-scale growers in the Amatikulu catchment. Proc. S. Afr. Sugar Technol. Assoc. 2008, 81, 128–132. [Google Scholar]
- Stöckle, C.O.; Campbell, G.S.; Nelson, R. ClimGen manual. In Biological Systems Engineering Department; Washington State University: Pullman, WA, USA, 1999. [Google Scholar]
- Gebremeskel, S.; Liu, Y.B.; De Smedt, F.; Hoffmann, L.; Pfister, L. Analysing the effect of climate changes on streamflow using statistically downscaled GCM scenarios. Int. J. River Basin Manag. 2004, 2, 271–280. [Google Scholar] [CrossRef]
- Government of Canada. HadCM3 Predictors: A2(a) and B2(a) Experiments. 2019. Available online: http://climate-scenarios.canada.ca/?page=pred-hadcm3#archived (accessed on 15 March 2018).
- Wilby, R.; Dawson, C.; Barrow, E. SDSM—A decision support tool for the assessment of regional climate change impacts. Environ. Model. Softw. 2002, 17, 145–157. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dawson, C.W. The Statistical DownScaling Model: Insights from one decade of application. Int. J. Climatol. 2013, 33, 1707–1719. [Google Scholar] [CrossRef]
- Mahmood, R.; Babel, M.S.; Shaofeng, J.I.A. Assessment of temporal and spatial changes of future climate in the Jhelum river basin, Pakistan and India. Weather Clim. Extrem. 2015, 10, 40–55. [Google Scholar] [CrossRef]
- Chu, J.T.; Xia, J.; Xu, C.-Y.; Singh, V.P. Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theor. Appl. Climatol. 2010, 99, 149–161. [Google Scholar] [CrossRef]
- Nury, A.H.; Alam, M.J.B. Performance study of global circulation model HadCM3 using SDSM for temperature and rainfall in North-Eastern Bangladesh. J. Sci. Res. 2013, 6, 87–96. [Google Scholar] [CrossRef]
- Mirgol, B.; Nazari, M. Possible scenarios of winter wheat yield reduction of dryland Qazvin Province, Iran, based on prediction of temperature and precipitation till the end of the century. Climate 2018, 6, 78. [Google Scholar] [CrossRef]
- Tahir, T.; Hashim, A.M.; Yusof, K.W. Statistical downscaling of rainfall under transitional climate in Limbang River Basin by using SDSM. In IOP Conference Series: Earth Environmental Sciences; IOP Publishing: Bristol, UK, 2018; Volume 140, p. 012037. [Google Scholar] [CrossRef]
- Liu, J.; Chen, S.; Li, L.; Li, J. Statistical downscaling and projection of future air temperature changes in Yunnan Province, China. Adv. Meteorol. 2017, 2017, 2175904. [Google Scholar] [CrossRef]
- Salzmann, N.; Frei, C.; Vidale, P.-L.; Hoelzle, M. The application of Regional Climate Model output for the simulation of high-mountain permafrost scenarios. Glob. Planet. Change 2007, 56, 188–202. [Google Scholar] [CrossRef]
- Schär, C.; Vidale, P.L.; Lüthi, D.; Frei, C.; Häberli, C.; Liniger, M.A.; Appenzeller, C. The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427, 332–336. [Google Scholar] [CrossRef]
- Hashmi, M.Z.; Shamseldin, A.Y.; Melville, B.W. Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stoch. Environ. Res. Risk Assess. 2011, 25, 475–484. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, D05109. [Google Scholar] [CrossRef] [Green Version]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef]
- James, R.; Washington, R. Changes in African temperature and precipitation associated with degrees of global warming. Clim. Change 2013, 117, 859–872. [Google Scholar] [CrossRef]
- Engelbrecht, F.; Adegoke, J.; Bopape, M.-J.; Naidoo, M.; Garland, R.; Thatcher, M.; McGregor, J.; Katzfey, J.; Werner, M.; Ichoku, C. Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ. Res. Lett. 2015, 10, 085004. [Google Scholar] [CrossRef]
- Dosio, A. Projection of temperature and heat waves for Africa with an ensemble of CORDEX Regional Climate Models. Clim. Dyn. 2017, 49, 493–519. [Google Scholar] [CrossRef]
- Kruger, A.C.; Nxumalo, M. Surface temperature trends from homogenized time series in South Africa: 1931–2015. Int. J. Climatol. 2017, 37, 2364–2377. [Google Scholar] [CrossRef]
- Kidanemariam, S.; Goitom, H.; Desta, Y. Coupled application of R and WetSpa models for assessment of climate change impact on streamflow of Werie Catchment, Tigray, Ethiopia. J. Water Clim. Change 2021, 12, 916–936. [Google Scholar] [CrossRef]
- Climate Change 2014–Impacts, Adaptation, and Vulnerability: Regional Aspects; Field, C.B. (Ed.) Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Swayimana Small-Scale Farmers. Personal Communication, 2019.
- Nhamo, L.; Mabhaudhi, T.; Modi, A.T. Preparedness or Repeated Short-Term Relief Aid? Building Drought Resilience through Early Warning in Southern AFRICA. Water SA 2019, 45, 75–85. [Google Scholar]
- Botai, C.M.; Botai, J.O.; Zwane, N.N.; Hayombe, P.; Wamiti, E.K.; Makgoale, T.; Murambadoro, M.D.; Adeola, A.M.; Ncongwane, K.P.; de Wit, J.P.; et al. Hydroclimatic Extremes in the Limpopo River Basin, South Africa, under Changing Climate. Water 2020, 12, 3299. [Google Scholar] [CrossRef]
- Trenberth, K.E. The impact of climate change and variability on heavy precipitation, floods, and droughts. In Encyclopedia of Hydrological Sciences; Anderson, M.G., Ed.; Wiley: Hoboken, NJ, USA, 2006; pp. 1–11. [Google Scholar] [CrossRef]
- Abiodun, B.J.; Adegoke, J.; Abatan, A.A.; Ibe, C.A.; Egbebiyi, T.S.; Engelbrecht, F.; Pinto, I. Potential impacts of climate change on extreme precipitation over four African coastal cities. Clim. Change 2017, 143, 399–413. [Google Scholar] [CrossRef]
- Fowler, H.J.; Wasko, C.; Prein, A.F. Intensification of short-duration rainfall extremes and implications for flood risk: Current state of the art and future directions. Philos. Trans. R. Soc. A 2021, 379, 20190541. [Google Scholar] [CrossRef]
- Lenderink, G.; Barbero, R.; Loriaux, J.M.; Fowler, H.J. Super-Clausius-Clapeyron scaling of extreme hourly convective precipitation and its relation to large-scale atmospheric conditions. J. Clim. 2017, 30, 6037–6052. [Google Scholar] [CrossRef]
- Li, Y.; Fowler, H.J.; Argüeso, D.; Blenkinsop, S.; Evans, J.P.; Lenderink, G.; Yan, X.; Guerreiro, S.B.; Lewis, E.; Li, X.F. Strong intensification of hourly rainfall extremes by urbanization. Geophys. Res. Lett. 2020, 47, e2020GL088758. [Google Scholar] [CrossRef]
- Calow, R.C.; MacDonald, A.M.; Nicol, A.L.; Robins, N.S. Ground water security and drought in Africa: Linking availability, access, and demand. Groundwater 2010, 48, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Ngcamu, B.S.; Chari, F. Drought influences on food insecurity in Africa: A Systematic literature review. Int. J. Environ. Res. Public Health 2020, 17, 5897. [Google Scholar] [CrossRef] [PubMed]
Tmin | Tmax | Precipitation | ||||||
NCEP_NCAR Predictors | Partial r | p Value | NCEP_NCAR Predictors | Partial r | p Value | NCEP_NCAR Predictors | Partial r | p Value |
Mean temperature at 2 m height (temp) | 0.476 | 0.00 | Mean temperature at 2 m height (temp) | 0.637 | 0.00 | Surface-specific humidity (shum) | 0.199 | 0.00 |
Surface-specific humidity (shum) | 0.437 | 0.00 | 850 hPa zonal velocity (p_8u) | 0.377 | 0.00 | 500 hPa wind direction (p5th) | 0.110 | 0.00 |
Surface airflow strength (p_f) | 0.059 | 0.00 | Surface divergence (p_zh) | 0.338 | 0.00 | 850 hPa airflow strength (p_8f) | 0.107 | 0.00 |
Surface vorticity (p_z) | 0.023 | 0.05 | Mean sea level pressure (mslp) | 0.027 | 0.020 | Surface meridional velocity (p_v) | 0.094 | 0.00 |
NCEP Predictors | NCEP Predictors | NCEP Predictors | ||||||
Mean temperature at 2 m height (temp) | 0.611 | 0.00 | 850 hPa zonal velocity (p_8u) | 0.511 | 0.00 | Surface meridional velocity (p_v) | 0.151 | 0.00 |
Surface-specific humidity (shum) | 0.458 | 0.00 | Surface-specific humidity (shum) | 0.388 | 0.00 | Surface-specific humidity (shum) | 0.143 | 0.00 |
Surface airflow strength (p_f) | 0.253 | 0.00 | Mean temperature at 2 m height (temp) | 0.308 | 0.00 | 500 hPa relative humidity (r500) | 0.116 | 0.00 |
Surface vorticity (p_z) | 0.173 | 0.00 | Mean sea level pressure (mslp) | 0.249 | 0.00 | 850 hPa airflow strength (p_8f) | 0.043 | 0.03 |
Tmax | Tmin | Rainfall | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std dev | RMSE | R2 | NSE | Mean | Std dev | RMSE | R2 | NSE | Mean | Std dev | RMSE | R2 | NSE | |
(°C) | (°C) | (°C) | (°C) | (°C) | (°C) | (mm) | (mm) | (mm) | |||||||
Observed | 23.59 | 2.06 | 11.09 | 4.11 | 72.76 | 43.56 | |||||||||
CanEMS2 | 22.55 | 1.63 | 1.35 | 0.79 | 0.51 | 11.62 | 2.82 | 1.43 | 0.97 | 0.87 | 81.60 | 49.95 | 32.76 | 0.57 | 0.30 |
NCEP | 22.99 | 2.28 | 0.87 | 0.93 | 0.82 | 11.73 | 3.42 | 0.98 | 0.99 | 0.94 | 57.84 | 27.92 | 28.53 | 0.69 | 0.39 |
NCEP_NCAR | 23.02 | 1.99 | 0.82 | 0.92 | 0.84 | 11.65 | 3.31 | 0.97 | 0.99 | 0.94 | 91.04 | 55.77 | 40.05 | 0.76 | 0.53 |
Tmax | Tmin | Rainfall | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean (°C) | Std Dev (°C) | RMSE (°C) | R2 | NSE | Mean (°C) | Std Dev (°C) | RMSE (°C) | R2 | NSE | Mean (mm) | Std Dev (mm) | RMSE (mm) | R2 | NSE | |
Observed | 23.59 | 2.06 | 11.04 | 4.22 | 72.76 | 43.56 | |||||||||
CanEMS2 | 23.77 | 2.09 | 0.20 | 0.99 | 0.99 | 11.03 | 4.23 | 0.08 | 0.99 | 1.00 | 72.83 | 43.69 | 1.15 | 0.99 | 0.99 |
NCEP | 23.76 | 2.11 | 0.19 | 0.99 | 0.99 | 10.99 | 4.20 | 0.10 | 0.99 | 0.99 | 72.79 | 43.28 | 1.16 | 0.99 | 0.99 |
NCEP_NCAR | 23.78 | 2.10 | 0.22 | 0.99 | 0.98 | 10.97 | 4.18 | 0.13 | 1.00 | 0.99 | 72.68 | 43.34 | 1.38 | 0.99 | 0.99 |
GCM Scenarios | Periods | Overall Tmax Change | Slope (annum−1) | Significance < 0.05 |
---|---|---|---|---|
Observed | 1966–1996 | 22.96 | ||
RCP 4.5 | 2020s (P1) | 23.94 | ||
2040s (P2) | 24.15 | |||
2080s (P3) | 25.13 | |||
°C change P1 vs. obs | 0.98 | 0.066 | p < 0.05 | |
°C change P2 vs. obs | 1.19 | 0.167 | p < 0.05 | |
°C change P3 vs. obs | 2.17 | 0.012 | p > 0.05 | |
RCP 8.5 | 2020s (P1) | 24.17 | ||
2040s (P2) | 24.63 | |||
2080s (P3) | 26.80 | |||
°C change P1 vs. obs | 1.21 | 0.022 | p > 0.05 | |
°C change P2 vs. obs | 1.67 | 0.074 | p < 0.05 | |
°C change P3 vs. obs | 3.84 | 0.057 | p < 0.05 |
GCM Scenarios | Periods | Overall Tmin Change | Slope (annum−1) | Significance < 0.05 |
---|---|---|---|---|
Observed | 1966–1996 | 11.53 | ||
RCP 4.5 | 2020s (P1) | 13.13 | ||
2040s (P2) | 13.59 | |||
2080s (P3) | 13.87 | |||
°C change P1 vs. obs | 1.60 | 0.049 | p < 0.05 | |
°C change P2 vs. obs | 2.06 | 0.025 | p < 0.05 | |
°C change P3 vs. obs | 2.34 | 0.065 | p < 0.05 | |
RCP 8.5 | 2020s (P1) | 13.33 | ||
2040s (P2) | 13.95 | |||
2080s (P3) | 15.19 | |||
°C change P1 vs. obs | 1.80 | 0.055 | p < 0.05 | |
°C change P2 vs. obs | 2.42 | 0.012 | p < 0.05 | |
°C change P3 vs. obs | 3.66 | 0.070 | p < 0.05 |
GCM Scenarios | Periods | Overall Rainfall Change | Slope (annum−1) | Significance < 0.05 |
---|---|---|---|---|
Observed | 1966–1996 | 960.37 | ||
RCP 4.5 | 2020s (P1) | 782.61 | ||
2040s (P2) | 1063.49 | |||
2080s (P3) | 907.44 | |||
% change P1 vs. obs | −18.51 | 0.687 | p > 0.05 | |
% change P2 vs. obs | 10.74 | 1.979 | p > 0.05 | |
% change P3 vs. obs | −5.66 | −12.730 | p < 0.05 | |
RCP 8.5 | 2020s (P1) | 799.27 | ||
2040s (P2) | 1138.85 | |||
2080s (P3) | 951.48 | |||
% change P1 vs. obs | −16.77 | 2.842 | p > 0.05 | |
% change P2 vs. obs | 18.58 | 4.373 | p > 0.05 | |
% change P3 vs. obs | −1.44 | −19.678 | p < 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ncoyini-Manciya, Z.; Savage, M.J. The Assessment of Future Air Temperature and Rainfall Changes Based on the Statistical Downscaling Model (SDSM): The Case of the Wartburg Community in KZN Midlands, South Africa. Sustainability 2022, 14, 10682. https://doi.org/10.3390/su141710682
Ncoyini-Manciya Z, Savage MJ. The Assessment of Future Air Temperature and Rainfall Changes Based on the Statistical Downscaling Model (SDSM): The Case of the Wartburg Community in KZN Midlands, South Africa. Sustainability. 2022; 14(17):10682. https://doi.org/10.3390/su141710682
Chicago/Turabian StyleNcoyini-Manciya, Zoleka, and Michael J. Savage. 2022. "The Assessment of Future Air Temperature and Rainfall Changes Based on the Statistical Downscaling Model (SDSM): The Case of the Wartburg Community in KZN Midlands, South Africa" Sustainability 14, no. 17: 10682. https://doi.org/10.3390/su141710682
APA StyleNcoyini-Manciya, Z., & Savage, M. J. (2022). The Assessment of Future Air Temperature and Rainfall Changes Based on the Statistical Downscaling Model (SDSM): The Case of the Wartburg Community in KZN Midlands, South Africa. Sustainability, 14(17), 10682. https://doi.org/10.3390/su141710682