The Digital Economy and Carbon Productivity: Evidence at China’s City Level
Abstract
:1. Introduction
2. Mechanism Analysis and Research Hypothesis
2.1. Digital Economy and Carbon Productivity
2.2. Digital Economy, Marketization and Carbon Productivity
2.3. Digital Economy, Human Capital and Carbon Productivity
3. Methodology and Data
3.1. Model Construction
3.1.1. Benchmark Model
3.1.2. Intermediary Model
3.1.3. Threshold Model
3.2. Variable Definition
3.2.1. Explained Variables
3.2.2. Explained Variables
3.2.3. Intermediary Variable
3.2.4. Threshold Variable
3.2.5. Control Variable
3.3. Data Sources and Descriptive Statistics
4. Empirical Result
4.1. Benchmark Regression
4.2. Robustness Test
4.2.1. Replace Explained Variable
4.2.2. Replace Explanatory Variable
4.2.3. Endogenous Treatment
4.3. Heterogeneity Test
4.3.1. Regional Heterogeneity
4.3.2. Urban Heterogeneity
4.3.3. Resources Heterogeneity
5. Further Analysis
5.1. Intermediary Mechanism Test
5.1.1. Technological Innovation
5.1.2. Energy Consumption Intensity
5.1.3. Urban Productivity
5.2. Threshold Mechanism Test
5.2.1. Marketization
5.2.2. Human Capital
6. Conclusions and Suggestions
6.1. Conclusions
6.2. Suggestions
- (1)
- Technological innovation, energy consumption intensity and urban productivity are three effective ways to improve carbon productivity in the digital economy. Therefore, the government should introduce various policies to encourage enterprises to innovate, improve energy use efficiency, make efforts to develop the economy and bring in talents to expand the size of cities and enhance urban productivity, and continuously improve the level of marketability and human capital so that the digital economy can give full play to the effect of enhancing carbon productivity.
- (2)
- In the process of strengthening digital innovation and research and development, focus on the development and application of green and low-carbon technologies. On the one hand, accelerate the research and development of data-processing hardware and software such as data computing, data storage and breakthroughs in core technologies, and improve the conditions of infrastructure such as 5G base stations, cloud platforms, and big data centers in each region to punch the dividends of digital economy development. On the other hand, use digital technology to change the energy consumption structure, improve energy utilization efficiency, continuously strengthen carbon capture, carbon sequestration, CCS and other carbon reduction technologies, and promote technological innovation to enhance carbon productivity.
- (3)
- Based on the regional differences in the digital economy’s impact on carbon productivity, a digital economy development strategy should be formulated according to local conditions. For central and western regions and non-urban clusters, the government should give more policy inclination, break the industry barriers and geographical restrictions, and promote the synergistic development of digital economy in each region. At the same time, the central and western regions and non-urban clusters should take advantage of their resources, continuously introduce talent, technology and capital, and strengthen experience exchange and technical cooperation with developed regions to improve carbon emission reduction performance and eventually form a coordinated development plan for carbon emission reduction among regions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Feng, C. Innovative and Low-carbon City: The Impact of Innovative City Construction on Carbon Emission Performance. South. Econ. 2021, 3, 36–53. [Google Scholar] [CrossRef]
- Zhang, X.L.; Huang, X.D.; Zhang, D. Research on the Pathway and Policies for China’s Energy and Economy Transformation toward Carbon Neutrality. Mang. World 2022, 1, 35–66. [Google Scholar] [CrossRef]
- Wu, C.X. Research on the Synergistic Effect of Low-carbon Economy in China. Manag. World 2021, 8, 105–117. [Google Scholar] [CrossRef]
- Shao, S.; Fan, M.T.; Yang, L.L. Economic Restructuring, Green Technical Progress, and Low-Carbon Transition Development in China: An Empirical Investigation Based on the Overall Technology Frontier and Spatial Spillover Effect. Mang. World 2022, 2, 46–69. [Google Scholar] [CrossRef]
- Song, D.Y.; Yi, Y.C. FDI and China’s Carbon Emissions. China Popul. Resour. Environ. 2011, 1, 49–52. [Google Scholar] [CrossRef]
- Yu, Z.X.; Chen, J.; Dong, J.M. The Road to a Low-carbon Economy: The Perspective of Industrial Plans. Econ. Res. 2020, 5, 116–132. [Google Scholar]
- Weigel, P.; Fischedick, M. Review and Categorization of Digital Applications in the Energy Sector. Appl. Sci. 2019, 9, 5350. [Google Scholar] [CrossRef]
- Lin, B.; Zhou, Y. Does the Internet development affect energy and carbon emission performance? Sustain. Prod. 2021, 28, 1–10. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.; Ramsey, T.S.; Hewings, G.J.D. Will researching digital technology really empower green development? Technol. Soc. 2021, 66, 101638. [Google Scholar] [CrossRef]
- Gai, Z.; Guo, Y.; Hao, Y. Can internet development help break the resource curse? Evidence from China. Resour. Pol. 2022, 75, 102519. [Google Scholar] [CrossRef]
- Moyer, J.D.; Hughes, B.B. ICTs: Do They Contribute to Increased Carbon Emissions? Technol. Forecast. Soc. Chang. 2012, 5, 919–931. [Google Scholar] [CrossRef]
- Shabani, Z.D.; Shahnazi, R. Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis. Energy 2019, 169, 1064–1078. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Wang, D.; Zhou, J. Digital economy and carbon emission performance: Evidence at China’s city level. Energy Policy 2022, 165, 112927. [Google Scholar] [CrossRef]
- Bai, X.; Sun, X. Impact of internet development on total factor carbon productivity: Induced by cost, innovation, or demand? China Popul. Resour. Environ. 2021, 10, 105–117. [Google Scholar]
- Liang, Q.; Xiao, S.; Li, M. Has the Development of Digital Economy Improved Urban Ecological Efficiency?—Based on the Perspective of Industrial Structure Upgrading. Econ. Inq. 2021, 6, 82–92. [Google Scholar]
- Han, D.; Ding, Y.; Shi, Z.; He, Y. The impact of digital economy on total factor carbon productivity: The threshold effect of technology accumulation. Environ. Sci. Pollut. Res. 2022, 29, 55691–55706. [Google Scholar] [CrossRef]
- Zhang, C.; Ji, W. Digital twin-driven carbon emission prediction and low-carbon control of intelligent manufacturing job-shop. Procedia CIRP 2019, 83, 624–629. [Google Scholar] [CrossRef]
- Ji, X.; Yang, Z. Analysis of carbon trading emission reduction effects and regional differences based on PSM-DID and SCM. Stats. Dec. 2021, 17, 154–158. [Google Scholar] [CrossRef]
- Bhujabal, P.; Sethi, N.; Padhan, P.C. ICT, foreign direct investment and environmental pollution in major Asia Pacific countries. Environ. Sci. Pollut. Res. 2021, 28, 42649–42669. [Google Scholar] [CrossRef]
- Li, Y.; Dai, J.; Cui, L. The impact of digital technologies on eco-nomic and environmental performance in the context of industry 4.0: A moderated mediation model. Int. J. Prod. Econ. 2020, 229, 107777. [Google Scholar] [CrossRef]
- Pan, W.; Xie, T.; Wang, Z.; Ma, L. Digital economy: An innovation driver for total factor productivity. J. Bus. Res. 2022, 139, 303–311. [Google Scholar] [CrossRef]
- Goldfarb, A.; Tucker, C. Digital economics. J. Econ. Lit. 2019, 57, 3–43. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, J.; Liu, C. The impact of digital economy on urban carbon emissions: Based on the analysis of spatial effects. Geogr. Res. 2022, 1, 111–129. [Google Scholar] [CrossRef]
- May, G.; Stahl, B.; Taisch, M.; Kiritsis, D. Energy management in manufacturing: From literature review to a conceptual framework. J. Clean. Prod. 2017, 161, 1464–1489. [Google Scholar] [CrossRef]
- Litvinenko, V.S. Digital Economy as a Factor in the Technological Development of the Mineral Sector. Nat. Resour. Res. 2020, 29, 1521–1541. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, G.; Guo, X.; Zhang, Y. Digital twin-driven service model and optimal allocation of manufacturing resources in shared manufacturing. J. Manuf. Syst. 2021, 59, 165–179. [Google Scholar] [CrossRef]
- Che, S.; Wang, J. Digital economy development and haze pollution: Evidence from China. Environ. Sci. Pollut. Res. 2022, 5. [Google Scholar] [CrossRef]
- Kohli, R.; Melville, N.P. Digital innovation: A review and synthesis. Inf. Syst. J. 2019, 29, 200–223. [Google Scholar] [CrossRef]
- Miao, C.; Fang, D.; Sun, L.; Luo, Q.; Yu, Q. Driving effect of technology innovation on energy utilization efficiency in strategic emerging industries. J. Clean. Prod. 2018, 170, 1177–1184. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, K.; Deng, H. Data-Driven R&D Transformation of New Product: A Case Study from the Perspective of Adaptive Change in Organizational Practices. Manag. World 2020, 3, 164–183. [Google Scholar] [CrossRef]
- Chen, Y. Improving market performance in the digital economy. China Econ. Rev. 2020, 62, 101482. [Google Scholar] [CrossRef]
- Khayyat, N.T.; Lee, J.; Heo, E. How ICT investment influences energy demand in South Korea and Japan. Energy Effic. 2016, 9, 563–589. [Google Scholar] [CrossRef]
- Pradhan, R.P.; Arvin, M.B.; Nair, M.; Bennett, S.E. Sustainable economic growth in the European Union: The role of ICT, venture capital, and innovation. Rev. Fin. Econ. 2020, 38, 34–62. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 64606–64629. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, Z.; Zhou, M. Provincial comparison and factor decomposition of energy carbon emissions in eastern China. Contemp. Econ. manag. 2011, 10, 48–52. [Google Scholar] [CrossRef]
- Xu, X.; Ren, X.; Chang, Z. Big Data and Green Development. China Ind. Econ. 2019, 4, 5–22. [Google Scholar] [CrossRef]
- Hong, J.; Fu, S. Information and Communication Technologies and the Geographical Concentration of Manufacturing Industries: Evidence from China. Urban Stud. 2011, 11, 2339–2354. [Google Scholar] [CrossRef]
- Yu, Y.; Rong, K.; Su, D.; Zhang, W. The Degree of Global Value Chain Embedment and Total Factor Productivity in Chinese Cities—Empirical Research from 230 Cities. China Soft Sci. 2019, 5, 80–96. [Google Scholar]
- Ali, M.A.; Hoque, M.R.; Alam, K. An empirical investigation of the relationship between e-government development and the digital economy: The case of Asian countries. J. Knowl. 2018, 5, 1176–1200. [Google Scholar] [CrossRef]
- Fan, G.; Wang, X.; Ma, G. Contribution of Marketization to China’s Economic Growth. Econ. Res. 2011, 9, 4–16. [Google Scholar]
- Liu, Z.; Kong, L. From Segmentation to Integration: The Resistance and Countermeasures to Promote the Construction of a Unified Domestic Market. China Ind. Econ. 2021, 8, 20–36. [Google Scholar] [CrossRef]
- Zeng, W.; Li, L.; Huang, Y. Industrial collaborative agglomeration, marketization, and green innovation: Evidence from China’s provincial panel data. J. Clean. Prod. 2021, 279, 123598. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, Y.; Qu, G. The Impact of Digital Economy on the Efficiency of Green Financial Investment in China’s Provinces. Int. J. Environ. Res. Public Health 2022, 14, 8884. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Ruan, A.; Peng, B.; Liu, S. Pay disparities within top management teams, marketization and firms’ innovation: Evidence from China. J. Asia Pac. Econ. 2020, 65, 248. [Google Scholar] [CrossRef]
- Pena, D.N.; Ruiz, V.R.L.; Navarro, J.L.A. An analysis of the key role of human and technological development in the smart specialization of smart European regions. Inf. Technol. Dev. 2020, 4, 728–741. [Google Scholar] [CrossRef]
- Korshunova, S.A. The Role and Specificity of Human Capital in the Formation of a Digital Economy. In Proceedings of the Scientific and Practical Forum on Industry, Science, Competences, Integration, Moscow, Russia, 28 November 2019. [Google Scholar] [CrossRef]
- Tuguskina, G.N.; Rozhkova, L.V.; Taktarova, S.V.; Salnikova, O.V. The Role of Human Capital in The Digital Economy. In Proceedings of the GCPMED, Samara, Russia, 6–8 December 2018. [Google Scholar] [CrossRef]
- Zhong, R.; He, Q.; Qi, Y. Digital Economy, Agricultural Technological Progress, and Agricultural Carbon Intensity: Evidence from China. Int. J. Environ. Res. Public Health 2022, 11, 6488. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, J. Carbon emissions and the development of the digital economy: A perspective spatial evolution. J. Environ. Prot. Ecol. 2022, 1, 409–416. [Google Scholar]
- Khan, M. CO2 emissions and sustainable economic development: New evidence on the role of human capital. Sus. Dev. 2020, 5, 1279–1288. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, K. Can environmental regulation promote industrial innovation and productivity? Based on the strong and weak Porter hypothesis. China Popul. Resour. Environ. 2017, 4, 322–336. [Google Scholar] [CrossRef]
- Kwon, D.B. Human capital and its measurement. In Proceedings of the 3rd OECD World Forum on “Statistics, Knowledge and Policy”, Busan, Korea, 27–30 October 2009. [Google Scholar]
- Jin, C.; Razzaq, A.; Saleem, F.; Sinha, A. Asymmetric effects of eco-innovation and human capital development in realizing environmental sustainability in China: Evidence from quantile ARDL framework. Econ. Res. 2021, 5, 598. [Google Scholar] [CrossRef]
- Yao, Z.; Liu, X. Factor endowment structural upgrading, heterogeneous human capital and farm environmental efficiency. Popul. Econ. 2018, 2, 37–47. [Google Scholar]
- Wen, Z.L.; Ye, B.J. Analyses of Mediating Effects: The Development of Methods and Models. Psychol. Sci. 2014, 5, 731–745. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J. The Dynamic Impact of Digital Economy on Carbon Emission Reduction: Evidence City-level Empirical Data in China. J. Clean. Prod. 2022, 351, 131570. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Zhang, Z.; Liang, S. Digital Economy, Entrepreneurship, and High-Quality Economic Development: Empirical Evidence from Urban China. Manag. World 2020, 10, 65–76. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y. Digital technology development, temporal and spatial effects, regional carbon emissions. Stud. Sci. 2022, 3, 1–17. [Google Scholar] [CrossRef]
- Sun, P.; Han, S.; Xu, Q. Dynamic effect of industrial agglomeration on labor productivity. World Econ. 2011, 3, 33–53. [Google Scholar]
- Wang, X.; Fan, G.; Hu, L. China Marketization Index Report by Province, 2nd ed.; Social Science Literature Press: Beijing, China, 2018; pp. 112–152. [Google Scholar]
- Moretti, E. Estimating the social return to higher education: Evidence from longitudinal and repeated cross-sectional data. J. Econom. 2004, 1, 175–212. [Google Scholar] [CrossRef]
- Yang, L.; Han, F. How Does Human Capital Become Dividends?—An Evidence from the Perspective of the Rising Export Value of Enterprises. China Soft Sci. 2022, 5, 123–133. [Google Scholar]
- Yin, J.; Zheng, M.; Chen, J. The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China. Energy Policy 2015, 77, 97–108. [Google Scholar] [CrossRef]
- Nosheen, M.; Abbasi, M.A.; Iqbal, J. Analyzing extended STIRPAT model of urbanization and CO2 emissions in Asian countries. Environ. Sci. Pollut. Res. 2020, 27, 45911–45924. [Google Scholar] [CrossRef] [PubMed]
- Nunn, N.; Qian, N. US Food Aid and Civil Conflict. Am. Econ. Rev. 2014, 6, 1630–1666. [Google Scholar] [CrossRef]
- Zhang, F.; Ning, Y.; Lou, X. Competitiveness and regional inequality of China’s mega-city regions. Geogr. Res. 2019, 7, 1664–1677. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, X.; Bi, C.; Ahmad, M.; Wang, J. Can sustainable development policy reduce carbon emissions? Empirical evidence from resource-based cities in China. Sci. Total Environ. 2022, 838, 156341. [Google Scholar] [CrossRef]
- Guo, J.; Wang, H. Do the standards of the integrated management system of informatization and industrialization spur corporate innovation? Ind. Econ. Res. 2022, 4, 101–113. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, K.; Liu, B. Can Digital Economy Promote Low-carbon Transformation of Cities from the Perspective of Dual Objective Constraint. Mod. Financ. 2022, 8, 3–23. [Google Scholar] [CrossRef]
- Yu, S.; Fan, X.F.; Jiang, H.W. Research on the Impact of Digital Economy Development on Carbon Productivity Improvement. J. Stats. Info. 2022, 7, 26–35. [Google Scholar]
- Cai, L.; Wang, P. Digital Economy and Urban Green Total Factor Productivity: Influencing Mechanism and Empirical Evidence. Stats. Dec. 2022, 9, 11–16. [Google Scholar] [CrossRef]
- Liang, Q.; Xiao, S.; Li, M. Digital Economy Development, Spatial Spillover and Innovation Quality Growth—The Threshold Effect Test of Market Efficiency. SH J. Econ. 2021, 9, 44–56. [Google Scholar] [CrossRef]
Primary Indicators | Secondary Indicators | Measurement Method | Unit | Attribute |
---|---|---|---|---|
Digital Infrastructure | Internet Penetration Rate | Internet broadband access subscribers per 10,000 population | Household | + |
Mobile Subscription | Mobile phone subscribers per 10,000 population | Household | + | |
Digital Industry | Information Industry Foundation | Number of employees in information transmission, computer services and software industry | Ten thousand | + |
Telecommunication Industry Development | Telecommunications revenue | Million | + | |
Digital Innovation | Foundations of Digital Innovation | Science and technology expenditure | Million | + |
Digital High-Tech Penetration | Level of penetration of digital high-tech applications in listed companies | Times | + | |
Digital Inclusive Finance | Coverage | Digital Inclusion Financial Breadth of Coverage Index | - | + |
Depth | Digital Inclusive Finance Usage Depth Index | - | + | |
Digitization | Digital Inclusive Finance Digitization Index | - | + |
Variables | Obs | Mean | Std | Min | Max |
---|---|---|---|---|---|
lnce | 2565 | 10.233 | 0.730 | 7.559 | 13.117 |
Dige | 2565 | 0.034 | 0.049 | 0.004 | 0.852 |
Innova | 2565 | 0.614 | 1.269 | 0.003 | 19.976 |
Energy | 2565 | 0.079 | 0.125 | 0.004 | 2.520 |
Efficiency | 2565 | 3.784 | 1.745 | 0.234 | 19.808 |
Market | 2565 | 6.886 | 1.719 | −0.230 | 11.400 |
HC | 2565 | 190.152 | 246.983 | 0.260 | 1445.798 |
Lnrgdp | 2565 | 10.719 | 0.591 | 8.773 | 15.675 |
Lnrgdp2 | 2565 | 115.25 | 12.815 | 76.964 | 245.712 |
IS | 2565 | 1.003 | 0.577 | 0.114 | 5.340 |
OPEN | 2565 | 0.197 | 0.344 | 0.000 | 6.915 |
GOV | 2565 | 0.249 | 0.269 | 0.044 | 6.041 |
UR | 2565 | 55.142 | 14.868 | 21.400 | 100 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
---|---|---|---|---|---|---|---|
Dige | 2.507 *** (6.29) | 2.500 *** (6.32) | 2.104 *** (5.37) | 2.145 *** (5.50) | 1.627 *** (4.12) | 1.617 *** (4.14) | 1.118 *** (2.86) |
Lnrgdp | −0.213 *** (−5.49) | −3.311 *** (−9.38) | −3.483 *** (−9.87) | −3.400 *** (−9.71) | −3.214 *** (−9.25) | −2.358 *** (−6.55) | |
Lnrgdp2 | 0.136 *** (8.82) | 0.142 *** (9.21) | 0.138 *** (9.05) | 0.130 *** (8.57) | 0.097 *** (6.22) | ||
IS | −0.149 *** (−4.95) | −0.149 *** (−5.00) | −0.109 *** (−3.63) | −0.109 *** (−3.68) | |||
OPEN | −0.281 *** (−6.45) | −0.232 *** (−5.31) | −0.219 *** (−5.08) | ||||
GOV | −0.271 *** (−6.93) | −0.282 *** (−7.30) | |||||
UR | −0.033 *** (−7.79) | ||||||
City FE | YES | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES |
R-squared | 0.4619 | 0.4690 | 0.4866 | 0.4921 | 0.5013 | 0.5116 | 0.5243 |
Observations | 2565 | 2565 | 2565 | 2565 | 2565 | 2565 | 2565 |
Variables | Replace Explained Variable | Replace Explanatory Variable | Tool Variable | |||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Dige | 3.062 *** (7.16) | 1.528 *** (3.91) | 0.047 *** (5.23) | 0.036 *** (4.08) | 4.721 *** (8.11) | 3.025 *** (4.19) |
Lnrgdp | −1.644 *** (−4.57) | −1.716 *** (−3.09) | −1.671 *** (−4.26) | |||
Lnrgdp2 | 0.107 *** (6.89) | 0.068 *** (2.96) | 0.068 *** (4.07) | |||
IS | −0.111 *** (−3.74) | −0.120 *** (−3.23) | −0.118 *** (−2.68) | |||
OPEN | −0.222 *** (−5.15) | −0.127 ** (−2.42) | −0.172 *** (−5.08) | |||
GOV | −0.274 *** (−7.10) | −0.132 *** (−3.14) | −0.248 ** (−2.22) | |||
UR | −0.041 *** (−9.65) | −0.090 *** (−6.62) | −0.029 *** (−6.03) | |||
Kleibergen–Paap rk LM statistic | 11.827 [0.001] | 12.278 [0.001] | ||||
Kleibergen–Paap rk Wald F statistic | 148.349 {16.38} | 125.108 {16.38} | ||||
City FE | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
R-squared | 0.4243 | 0.5594 | 0.5672 | 0.6077 | 0.0495 | 0.5089 |
Observations | 2565 | 2565 | 1132 | 1132 | 2142 | 2142 |
Variables | Eastern Regions | Central Regions | Western Regions | City Clusters | Non-City Clusters | Resource-Based Cities | Non- Resource-Based Cities |
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
Dige | 0.729 * (1.80) | 0.110 (0.06) | 1.833 (0.84) | 0.984 ** (2.58) | −0.743 (−0.26) | −2.405 (−0.39) | 1.148 *** (2.95) |
Lnrgdp | −3.221 *** (−3.01) | −8.553 *** (−7.64) | −0.858 (−1.40) | −2.363 *** (−5.27) | −3.651 *** (−3.59) | −2.685 *** (−5.52) | −2.799 *** (−3.90) |
Lnrgdp2 | 0.132 *** (2.76) | 0.387 *** (7.28) | 0.037 (1.48) | 0.095 *** (5.12) | 0.161 *** (3.35) | 0.107 *** (5.26) | 0.125 *** (3.80) |
IS | −0.114 (−1.62) | −0.065 * (−1.66) | −0.149 ** (−2.48) | −0.005 (−0.11) | −0.181 *** (−4.30) | −0.206 *** (−4.10) | −0.039 (−1.05) |
OPEN | −0.262 *** (−4.05) | −0.247 ** (−1.96) | −0.166 ** (−2.32) | −0.169 *** (−3.89) | −0.562 *** (−4.46) | −0.263 (−1.37) | −0.212 *** (−4.96) |
GOV | −0.557 *** (−3.86) | −0.174 *** (−3.68) | −0.471 *** (−5.38) | −0.440 *** (−6.66) | −0.158 *** (−3.03) | −0.204 *** (−3.48) | −0.378 *** (−6.38) |
UR | −0.045 *** (−6.15) | −0.026 *** (−4.66) | −0.037 *** (−3.88) | −0.030 *** (−5.72) | −0.038 *** (−5.53) | −0.030 *** (−4.51) | −0.033 *** (−6.11) |
City FE | YES | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES |
R-squared | 0.5183 | 0.5732 | 0.5600 | 0.5481 | 0.5168 | 0.5166 | 0.5416 |
Observations | 900 | 900 | 765 | 1413 | 1152 | 1026 | 1539 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Innova | Lncp | Energy | Lncp | Effciency | Lncp | |
Dige | 11.089 *** (19.31) | 0.699 * (1.66) | −0.158 * (−1.89) | 0.824 ** (2.30) | 2.458 ** (2.52) | 1.006 ** (2.59) |
Innova | 0.038 *** (2.65) | |||||
Energy | −1.858 *** (−20.64) | |||||
Efficiency | 0.046 *** (5.47) | |||||
Lnrgdp | −2.799 *** (−5.29) | −2.252 *** (−6.22) | −0.254 *** (−3.29) | −2.831 *** (−8.54) | 4.579 *** (5.09) | −2.568 *** (−7.13) |
Lnrgdp2 | 0.122 *** (5.32) | 0.092 *** (5.89) | 0.009 *** (2.64) | 0.113 *** (7.91) | −0.172 *** (−4.43) | 0.105 *** (6.74) |
IS | −0.333 *** (−7.63) | −0.097 *** (−3.22) | 0.036 *** (5.60) | −0.043 (−1.57) | −0.430 *** (−5.78) | −0.090 *** (−3.01) |
OPEN | −0.363 *** (−5.72) | −0.205 *** (−4.74) | 0.033 *** (3.57) | −0.158 *** (−3.98) | −0.413 *** (−3.83) | −0.200 *** (−4.66) |
GOV | 0.092 (1.62) | −0.286 *** (−7.40) | 0.242 *** (29.25) | 0.168 *** (4.03) | −0.654 *** (−6.78) | −0.252 *** (−6.51) |
UR | −0.015 ** (−2.36) | −0.032 *** (−7.66) | 0.004 *** (4.52) | −0.025 *** (−6.50) | 0.021 ** (1.99) | −0.034 *** (−8.07) |
City FE | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
R-squared | 0.3640 | 0.5258 | 0.5575 | 0.5997 | 0.5127 | 0.5306 |
Observations | 2565 | 2565 | 2565 | 2565 | 2565 | 2565 |
Sobel Test | 0.4196 *** (z = 2.624) | 0.2938 * (z = 1.881) | 0.1123 ** (z = 2.286) | |||
Goodman-1 | 0.4196 *** (z = 2.621) | 0.2938 * (z = 1.878) | 0.1123 ** (z = 2.255) | |||
Goodman-2 | 0.4196 *** (z = 2.627) | 0.2938 * (z = 1.883) | 0.1123 ** (z = 2.318) | |||
Indirect effect | 0.4196 *** (z = 2.624) | 0.2938 * (z = 1.881) | 0.1123 ** (z = 2.286) | |||
Direct effect | 0.6986 *** (z = 1.658) | 0.8243 ** (z = 2.296) | 1.0058 *** (z = 2.585) | |||
Total effect | 1.1182 *** (z = 2.860) | 1.1182 *** (z = 2.860) | 1.1182 *** (z = 2.860) | |||
Mediating effect | 0.3753 | 0.2628 | 0.1005 |
Variables | Threshold | F-Value | p-Value | Critical Value | Threshold Values | Confidence Interval | ||
---|---|---|---|---|---|---|---|---|
10% | 5% | 1% | ||||||
Market | Single threshold | 34.89 ** | 0.0167 | 23.0899 | 27.9212 | 37.5265 | 6.3100 | [6.2800, 6.3200] |
HC | Single threshold | 41.74 ** | 0.0367 | 31.2788 | 37.7905 | 453.9240 | 123.1431 | [120.0684, 124.2784] |
Threshold Variables | Mar | HC | ||
---|---|---|---|---|
Digeit × I(Marketit < 6.31) | −4.258 *** (−4.09) | |||
Digeit × I(Marketit ≥ 6.31) | 1.088 *** (2.80) | |||
Digeit × I(HCit < 123.14) | −5.717 *** (−4.81) | |||
Digeit × I(HCit ≥ 123.14) | 0.950 ** (2.44) | |||
Control | YES | YES | ||
City FE | YES | YES | ||
Year FE | YES | YES | ||
R-squared | 0.5308 | 0.5320 | ||
Observations | 2565 | 2565 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Dong, Y.; Gong, X. The Digital Economy and Carbon Productivity: Evidence at China’s City Level. Sustainability 2022, 14, 10642. https://doi.org/10.3390/su141710642
Zhao X, Dong Y, Gong X. The Digital Economy and Carbon Productivity: Evidence at China’s City Level. Sustainability. 2022; 14(17):10642. https://doi.org/10.3390/su141710642
Chicago/Turabian StyleZhao, Xian, Yiting Dong, and Xinshu Gong. 2022. "The Digital Economy and Carbon Productivity: Evidence at China’s City Level" Sustainability 14, no. 17: 10642. https://doi.org/10.3390/su141710642