Fast InSAR Time-Series Analysis Method in a Full-Resolution SAR Coordinate System: A Case Study of the Yellow River Delta
Abstract
:1. Introduction
2. InSAR Time-Series Analysis Method in the SAR Coordinate System
- (1)
- Baseline estimation and optimal interferometry network generation. Baselines were calculated for all interferometry pairs, and the baselines whose spatiotemporal baseline remained within a limited range were selected. Then, the optimal network was generated for all pairs (generally, the middle image of the time series was selected as the main reference image).
- (2)
- Burst offset calculation between each image and the reference image. By selecting the burst area of interest (AOI) in the reference image, the burst AOI of each slave image could be calculated and derived from the reference image.
- (3)
- Auxiliary data preparation. Precise orbit files and external DEM files for each image were assessed and prepared. If the corresponding orbit files were not available in the system, they were automatically downloaded online. The SRTM DEM with a resolution of 30 m was used [29].
- (4)
- Production of all differential interferograms. This step is very time-consuming, and we employed the GPU-assisted InSAR processing method to improve the processing efficiency including geometric coregistration, resampling, and ESD correction. This step constitutes the core of this algorithm and is described in Section 3.1.
- (5)
- Coregistration of the interferograms. The offsets of all interferograms were calculated between the reference and other images. Then, all of the interferograms were resampled according to the estimated offsets. The resampled interferograms were interpolated into a uniform SAR coordinate system.
- (6)
- (7)
- Orbital error and atmospheric delay removal. To reduce the orbital residual derived from possible inaccurate ephemeris parameters and tropospheric effects in the interferograms, we estimated a polynomial function to remove the estimated phase ramp [32].
- (8)
- Time-series analysis in the SAR coordinate system. With high- and low-pass filters, the average deformation rate was calculated by employing the linear least squares (LS) method, and the time-series cumulative deformation was then obtained via the singular value decomposition (SVD) algorithm.
- (9)
- Calculation of geographic coordinates. The deformation rate and deformation time series of each high-coherence point were transformed into a geographical coordinate system.
3. Central Methods for the InSAR Processing Workflow
3.1. GPU-Assisted InSAR Process
3.2. SHPS Phase Filtering
3.3. Full-Resolution SBAS Analysis in the SAR Coordinate System
4. Results and Analysis
4.1. Study Area
4.2. SAR Data
4.3. Results and Analysis
4.4. Deformation Analysis of Unstable Areas
4.4.1. Saltwork Exploitation
4.4.2. Hydrocarbon Extraction
4.4.3. Sediment Consolidation and Compaction
5. Discussion
5.1. Performance Analysis of GPU-Accelerated Modules
5.2. Scalability Analysis of the Method
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Higgins, S.; Overeem, I.; Tanaka, A.; Syvitski, J.P.M. Land subsidence at aquaculture facilities in the Yellow River delta, China. Geophys. Res. Lett. 2013, 40, 3898–3902. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, H.; Liu, Y.; Bi, H.; Zhang, Y.; Luo, Y. Monitoring of Land Subsidence and Impacts of Human Activities in the Yellow River Delta Using the Small Baseline Subset Method. Mar. Geol. Quat. Geol. 2016, 36, 173–180. [Google Scholar]
- Yang, Y.; Wang, R.; Zhou, Y.; Jiang, Y.; Wang, X. The interaction between land subsidence and urban development in China. In Proceedings of the Prevention and Mitigation of Natural and Anthropogenic Hazards due to Land Subsidence, Nagoya, Japan, 15–19 November 2015; pp. 471–474. [Google Scholar]
- Carlà, T.; Intrieri, E.; Raspini, F.; Bardi, F.; Farina, P.; Ferretti, A.; Colombo, D.; Novali, F.; Casagli, N. Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Sci. Rep. 2019, 9, 1–9. [Google Scholar]
- Chaussard, E.; Amelung, F. Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR. Geophys. Res. Lett. 2012, 39, gl053817. [Google Scholar] [CrossRef]
- Dong, J.; Liao, M.S.; Xu, Q.; Zhang, L.; Tang, M.G.; Gong, J.Y. Detection and displacement characterization of landslides using multi- temporal satellite SAR interferometry: A case study of Danba County in the Dadu River Basin. Eng. Geol. 2018, 240, 95–109. [Google Scholar] [CrossRef]
- Atzori, S.; Antonioli, A.; Tolomei, C.; De Novellis, V.; De Luca, C.; Monterroso, F. InSAR full-resolution analysis of the 2017-2018 M > 6 earthquakes in Mexico. Remote Sens. Environ. 2019, 234, 111461. [Google Scholar] [CrossRef]
- Zhang, L.; Ge, D.; Guo, X.; Liu, B.; Li, M.; Wang, Y. InSAR monitoring surface deformation induced by underground mining using Sentinel-1 images. Proc. IAHS 2020, 382, 237–240. [Google Scholar] [CrossRef]
- Lei, Y.; Gardner, A.; Agram, P. Autonomous Repeat Image Feature Tracking (autoRIFT) and Its Application for Tracking Ice Displacement. Remote Sens. 2021, 13, 749. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Xia, X.; Bi, H.; Huang, H.; Ding, R.; Zhao, L. Land subsidence of the Yellow River Delta in China driven by river sediment compaction. Sci. Total Environ. 2021, 750, 142165. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Zhao, X.; Motagh, M.; Bi, G.; Li, J.; Chen, M.; Chen, H.; Liao, M. Land subsidence and rebound in the Taiyuan basin, northern China, in the context of inter-basin water transfer and groundwater management. Remote Sens. Environ. 2022, 269, 112792. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Y.; Guo, N.; Chen, C. Research on deformation characteristics of the 2021 Qinghai Maduo MS7.4 earthquake through coseismic dislocation inversion. Adv. Space Res. 2022, 69, 3059–3070. [Google Scholar] [CrossRef]
- Arangio, S.; Calo, F.; Di Mauro, M.; Bonano, M.; Marsella, M.; Manunta, M. An application of the SBAS-DInSAR technique for the assessment of structural damage in the city of Rome. Struct. Infrastruct. Eng. 2014, 10, 1469–1483. [Google Scholar] [CrossRef]
- Drougkas, A.; Verstrynge, E.; Van Balen, K.; Shimoni, M.; Croonenborghs, T.; Hayen, R.; Declercq, P.-Y. Country-scale InSAR monitoring for settlement and uplift damage calculation in architectural heritage structures. Struct. Health Monit. Int. J. 2020, 2020, 1475921720942120. [Google Scholar] [CrossRef]
- Mele, A.; Vitiello, A.; Bonano, M.; Miano, A.; Lanari, R.; Acampora, G.; Prota, A. On the Joint Exploitation of Satellite DInSAR Measurements and DBSCAN-Based Techniques for Preliminary Identification and Ranking of Critical Constructions in a Built Environment. Remote Sens. 2022, 14, 1872. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geod. Geodyn. 2021, 13, 114–126. [Google Scholar] [CrossRef]
- Bonano, M.; Manunta, M.; Marsella, M.; Lanari, R. The extended sbas technique for generating full resolution ers/envisat deformation time-series. In Proceedings of the 30th IEEE International Geoscience and Remote Sensing Symposium (IGARSS) on Remote Sensing—Global Vision for Local Action, Honolulu, HI, USA, 25–30 June 2010; pp. 4616–4619. [Google Scholar]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Ojha, C.; Manunta, M.; Lanari, R.; Pepe, A. The Constrained-Network Propagation (C-NetP) Technique to Improve SBAS-DInSAR Deformation Time Series Retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4910–4921. [Google Scholar] [CrossRef]
- Manunta, M.; Yasir, M.; Buonanno, S.; Zinno, I.; Lanari, R.; Bonano, M. The parallel implementation of the full resolution SBAS-DInSAR processing chain for surface deformation analyses in extended urban areas. In Proceedings of the EGU General Assembly, Virtual Event, 4–8 May 2020; p. 20198. [Google Scholar]
- Nagler, T.; Rott, H.; Hetzenecker, M.; Wuite, J.; Potin, P. The Sentinel-1 Mission: New Opportunities for Ice Sheet Observations. Remote Sens. 2015, 7, 9371–9389. [Google Scholar] [CrossRef]
- Imperatore, P.; Pepe, A.; Sansosti, E. High Performance Computing in Satellite SAR Interferometry: A Critical Perspective. Remote Sens. 2021, 13, 4756. [Google Scholar] [CrossRef]
- Guerriero, A.; Anelli, V.W.; Pagliara, A.; Nutricato, R.; Nitti, D.O. Efficient implementation of InSAR time-consuming algorithm kernels on GPU environment. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4264–4267. [Google Scholar]
- Baier, G.; Rossi, C.; Lachaise, M.; Zhu, X.X.; Bamler, R. A Nonlocal InSAR Filter for High-Resolution DEM Generation from TanDEM-X Interferograms. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6469–6483. [Google Scholar] [CrossRef]
- Yu, Y.; Balz, T.; Luo, H.; Liao, M.; Zhang, L. GPU accelerated interferometric SAR processing for Sentinel-1 TOPS data. Comput. Geosci. 2019, 129, 12–25. [Google Scholar] [CrossRef]
- Bonano, M.; Buonanno, S.; Ojha, C.; Berardino, P.; Lanari, R.; Zeni, G.; Manunta, M. A new implementation of full resolution SBAS-DInSAR processing chain for the effective monitoring of structures and infrastructures. In Proceedings of the EGU General Assembly, Vienna, Austria, 8–13 April 2017; p. 17809. [Google Scholar]
- Reza, T.; Zimmer, A.; Delgado Blasco, J.M.; Ghuman, P.; Aasawat, T.K.; Ripeanu, M. Accelerating Persistent Scatterer Pixel Selection for InSAR Processing. IEEE Trans. Parallel Distrib. Syst. 2018, 29, 16–30. [Google Scholar] [CrossRef]
- Liu, Y. Research on the monitoring and inversion of different-scale complex surface deformation with multi-temporal InSAR. Ph.D. Thesis, Chang’an University, Xi’an, China, 2018. (In Chinese). [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, G22B–0214. [Google Scholar] [CrossRef]
- Jiang, M.; Ding, X.; Li, Z. Homogeneous pixel selection algorithm for multitemporal InSAR. Chin. J. Geophys. 2018, 61, 4767–4776. (In Chinese) [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Network approaches to two-dimensional phase unwrapping: Intractability and two new algorithms. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2000, 17, 401–414. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, W.; Li, Y.; Shen, W.; He, Z.; Li, B.; Li, Q.; Jiao, Q.; Tian, Y. Coseismic Rupture Model and Tectonic Implications of the January 7 2022, Menyuan Mw 6.6 Earthquake Constraints from InSAR Observations and Field Investigation. Remote Sens. 2022, 14, 2111. [Google Scholar] [CrossRef]
- Wu, W. TOPS Interferometry with Sentinel-1; Wuhan University: Wuhan, China, 2016. (In Chinese) [Google Scholar]
- Yague-Martinez, N.; Prats-Iraola, P.; Gonzalez, F.R.; Brcic, R.; Shau, R.; Geudtner, D.; Eineder, M.; Bamler, R. Interferometric Processing of Sentinel-1 TOPS Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2220–2234. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Y.; Deng, M.; Wu, H.a.; Kang, Y. Recent surface deformation analysis of the Yellow River Delta based on Sentinel-1A SAR images. Sci. Surv. Mapp. 2020, 45, 43–51. (In Chinese) [Google Scholar] [CrossRef]
- Prats-Iraola, P.; Scheiber, R.; Marotti, L.; Wollstadt, S.; Reigber, A. TOPS Interferometry with TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3179–3188. [Google Scholar] [CrossRef]
- Kampes, B.M.; Hanssen, R.F.; Perski, Z. Radar interferometry with public domain tools. In Proceedings of the FRINGE, Frascati, Italy, 1–5 December 2003. [Google Scholar]
- Sengupta, S.; Harris, M.; Zhang, Y.; Owens, J.D. Scan Primitives for GPU Computing. In Proceedings of the ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, San Diego, CA, USA, 4–5 August 2007; p. 97. [Google Scholar]
- Miranda, N. Definition of the TOPS SLC Deramping Function for Products Generated by the S-1 IPF; Technical Report; European Space Agency: Paris, France, 2014. [Google Scholar]
- Liu, G.; Chen, Q.; Luo, X.; Cai, G. InSAR Principles and Applications; Science Press: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Parizzi, A.; Brcic, R. Adaptive InSAR Stack Multilooking Exploiting Amplitude Statistics: A Comparison between Different Techniques and Practical Results. IEEE Geosci. Remote Sens. Lett. 2011, 8, 441–445. [Google Scholar] [CrossRef]
- Jiang, M.; Ding, X.; Li, Z. Hybrid Approach for Unbiased Coherence Estimation for Multitemporal InSAR. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2459–2473. [Google Scholar] [CrossRef]
- Jiang, M.; Ding, X.; Hanssen, R.F.; Malhotra, R.; Chang, L. Fast Statistically Homogeneous Pixel Selection for Covariance Matrix Estimation for Multitemporal InSAR. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1213–1224. [Google Scholar] [CrossRef]
- Papoulis, A.; Pillai, S.U. Probability, Random Variables and Stochastic Processes; McGraw-Hill Europe: New York, NY, USA, 2002. [Google Scholar]
- Baumgartner, W.; Weiss, P.; Schindler, H. A nonparametric test for the general two-sample problem. Biometrics 1998, 54, 1129–1135. [Google Scholar] [CrossRef]
- Li, Y. Surface Deformation, Co-Seismic and Post-Seismic Activity Constrained by Advanced in SAR Time Series Analysis; Institute of Engineering Mechanics, China Earthquake Administration: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Z.; Hu, J. Research Progress and Methods of InSAR for Deformation Monitoring. Acta Geod. Cartogr. Sin. 2017, 46, 1717–1733. [Google Scholar] [CrossRef]
- Liu, P.; Li, Z.; Hoey, T.; Kincal, C.; Zhang, J.; Zeng, Q.; Muller, J.-P. Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 253–264. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, L.; Ding, X.; Hu, J.; Li, Z.W.; Zhu, J.J. Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis. Remote Sens. Environ. 2015, 156, 45–57. [Google Scholar] [CrossRef]
- Liao, M.; Zhang, L.; Shi, X.; Jiang, Y.; Dong, J.; Liu, Y. Methodology and Practice of Landslide Deformation Monitoring with SAR Remote Sensing; Science Press: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Wang, R. Research on High-Resolution Ground Settlement Monitoring Technology Based on SBAS-InSAR; China University of Geosciences: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Samsonov, S.; van der Kooij, M.; Tiampo, K. A simultaneous inversion for deformation rates and topographic errors of DInSAR data utilizing linear least square inversion technique. Comput. Geosci. 2011, 37, 1083–1091. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Zhang, L.; Liao, M.; Dong, J.; Xu, Q.; Gong, J. Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry-A Case Study of Danba, Sichuan. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 2039–2049. (In Chinese) [Google Scholar] [CrossRef]
- Wright, T.; Parsons, B.; Fielding, E. Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry. Geophys. Res. Lett. 2001, 28, 2117–2120. [Google Scholar] [CrossRef]
- Xiao, R.; Yu, C.; Li, Z.; Song, C.; He, X. General Survey of Large-scale Land Subsidence by GACOS-Corrected InSAR Stacking: Case Study in North China Plain. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Huang, H. Characterization and mechanism of regional land subsidence in the Yellow River Delta, China. Nat. Hazards 2013, 68, 687–709. [Google Scholar] [CrossRef]
- Liu, G. Research on Characteristics of Land Subsidence and Storm Surge and the Environmental Effects in the Huanghe River Delta; China Institute of Oceanology, Chinese Academy of Science: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Zhang, J.; Huang, H.; Bi, H. Land subsidence in the modern Yellow River Delta based on InSAR time series analysis. Nat. Hazards 2015, 75, 2385–2397. [Google Scholar] [CrossRef]
- Liu, Y. Spatiotemporal Evolution of Land Subsidence and Mechanism Discussion in the Yellow River Delta; China Institute of Oceanology, Chinese Academy of Sciences: Beijing, China, 2013. [Google Scholar]
- Liu, Y. Land subsidence monitoring and correlation analysis with ground fluid exploitation using time series. In SAR Technique Over the Yellow River Delta (China); Institute of Oceanology, Chinese Academy of Sciences: Beijing, China, 2016. [Google Scholar]
- Mao, J.; Meng, L.; Su, Y.; Xu, J.; Ding, S. The study of ground settlement monitoring in Dongying area based on GPS. Geotech. Investig. Surv. 2014, 42, 56–59. (In Chinese) [Google Scholar]
- Liu, P.; Li, Q.; Li, Z.; Hoey, T.; Liu, Y.; Wang, C. Land Subsidence over Oilfields in the Yellow River Delta. Remote Sens. 2015, 7, 1540–1564. [Google Scholar] [CrossRef]
- Liu, G.; Huang, H.; Du, T.; Bie, J.; Chen, J. Effective factors of l and subsidence in the Yellow River Delta. Mar. Sci. 2011, 35, 43–50. [Google Scholar]
- Chen, J.; Zeng, Q.; Jiao, J.; Zhao, B. SBAS time series analysis technique based on Sentinel-1A TOPS SAR images: A case study of Yellow River Delta. Remote Sens. Land Resour. 2017, 29, 82–87. (In Chinese) [Google Scholar]
- Wang, H.; Zeng, Q.; Jiao, J.; Chen, J. InSAR Time Series Analysis Technique Combined with Sequential Adjustment Method for Monitoring of Surface Deformation. Acta Sci. Nat. Univ. Pekin. 2021, 57, 241–249. [Google Scholar]
- Shi, C.; Zhang, D.; You, L.; Li, B.; Zhang, Z.; Zhang, O. Land subsidence as a result of sediment consolidation in the Yellow River delta. J. Coast. Res. 2007, 23, 173–181. [Google Scholar] [CrossRef]
- Liu, Y.; Du, T.; Huang, H.; Liu, Y.; Zhang, Y. Estimation of sediment compaction and its relationship with river channel distributions in the Yellow River delta, China. Catena 2019, 182, 104113. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, H.; Bi, H.; Wang, Q. Monitoring Ground Subsidence in the Modern Yellow River Delta Based on SBAS Time-series Analysis. Geomat. Inf. Sci. Wuhan Univ. 2016, 41, 242–248. (In Chinese) [Google Scholar]
- Zhang, Y.; Huang, H.; Liu, Y.; Liu, Y.; Bi, H. Spatial and temporal variations in subsidence due to the natural consolidation and compaction of sediment in the Yellow river delta, China. Mar. Georesour. Geotechnol. 2018, 37, 152–163. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, H.; Liu, Y.; Liu, Y. Self-weight consolidation and compaction of sediment in the Yellow River Delta, China. Phys. Geogr. 2018, 39, 84–98. [Google Scholar] [CrossRef]
- Ao, M.; Zhang, L.; Shi, X.; Liao, M.; Dong, J. Measurement of the three-dimensional surface deformation of the Jiaju landslide using a surface-parallel flow model. Remote Sens. Lett. 2019, 10, 776–785. [Google Scholar] [CrossRef]
- Dong, J.; Lai, S.; Wang, N.; Wang, Y.; Zhang, L.; Liao, M. Multi-scale deformation monitoring with Sentinel-1 InSAR analyses along the Middle Route of the South-North Water Diversion Project in China. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102324. [Google Scholar] [CrossRef]
- Fan, H.; Wang, L.; Wen, B.; Du, S. A New Model for three-dimensional Deformation Extraction with Single-track InSAR Based on Mining Subsidence Characteristics. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102223. [Google Scholar] [CrossRef]
Platform | Geometric Coregistration | Interferogram Generation |
---|---|---|
ISCE | 30 min | 60 min |
GAMMA | 15 min | 30 min |
GPU-based | 3 min | 18 min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, H.; Li, Y.; Li, B.; Li, H. Fast InSAR Time-Series Analysis Method in a Full-Resolution SAR Coordinate System: A Case Study of the Yellow River Delta. Sustainability 2022, 14, 10597. https://doi.org/10.3390/su141710597
Duan H, Li Y, Li B, Li H. Fast InSAR Time-Series Analysis Method in a Full-Resolution SAR Coordinate System: A Case Study of the Yellow River Delta. Sustainability. 2022; 14(17):10597. https://doi.org/10.3390/su141710597
Chicago/Turabian StyleDuan, Huizhi, Yongsheng Li, Bingquan Li, and Hao Li. 2022. "Fast InSAR Time-Series Analysis Method in a Full-Resolution SAR Coordinate System: A Case Study of the Yellow River Delta" Sustainability 14, no. 17: 10597. https://doi.org/10.3390/su141710597
APA StyleDuan, H., Li, Y., Li, B., & Li, H. (2022). Fast InSAR Time-Series Analysis Method in a Full-Resolution SAR Coordinate System: A Case Study of the Yellow River Delta. Sustainability, 14(17), 10597. https://doi.org/10.3390/su141710597