Absorption Capacity and Development of Photocatalyst Green Ceramic Products with Moderation of Green Environment for Sustainability Performance of Developing Industries
Abstract
:1. Introduction
2. Literature Review
2.1. Absorption Capacity Absorption
2.2. Green Product Development (Photocatalyst)
2.3. Green Environment
2.4. Sustainable Business
2.5. Green Product Absorption Has a Positive Effect on Green Product Development and Encourages Green Business Sustainability
2.6. Green Environment Moderates Green Product Development and Sustainable Business
3. Research Methods
4. Results and Discussion
4.1. Results
- Validity and Reliability Test
- Structural Model Test
4.2. Discussion
4.2.1. Absorbing Capacity for Green Product Development
4.2.2. Absorption Capacity for Business Sustainability
4.2.3. Green Product Development towards Business Sustainability
4.2.4. Indirect Relationships
4.2.5. Absorption Capacity Development to Business Sustainability through Mediation of Green Product Development
4.2.6. Moderation of a Green
5. Conclusions and Suggestions
5.1. Conclusions
5.2. Limitation
5.3. Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, L.; Ma, S.; Chen, M.; Yang, J.; Wang, Y.; Li, R.; Yao, L.; Bai, H.; Cai, Z.; Yang, B.X.; et al. Impact on mental health and perceptions of psychological care among medical and nursing staff in Wuhan during the 2019 novel coronavirus disease outbreak: A cross-sectional study. Brain Behav. Immun. 2020, 87, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Ahi, P.; Searcy, C. A comparative literature analysis of definitions for green and sustainable supply chain management. J. Clean. Prod. 2013, 52, 329–341. [Google Scholar] [CrossRef]
- Guo, Y.; Jia, Y.; Pan, X.; Liu, L.; Wichmann, H.-E. The association between fine particulate air pollution and hospital emergency room visits for cardiovascular diseases in Beijing, China. Sci. Total Environ. 2009, 407, 4826–4830. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, J.; Basu, P. Air quality and environmental injustice in India: Connecting particulate pollution to social disadvantages. Int. J. Environ. Res. Public Health 2021, 18, 304. [Google Scholar] [CrossRef]
- Xu, N.; Fan, X.; Hu, R. Adoption of Green Industrial Internet of Things to Improve Organizational Performance: The Role of Institutional Isomorphism and Green Innovation Practices. Front. Psychol. 2022, 13, 917533. [Google Scholar] [CrossRef]
- Gonzalez-Martin, J.; Kraakman, N.J.R.; Pérez, C.; Lebrero, R.; Muñoz, R. A state-of-the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere 2021, 262, 128376. [Google Scholar] [CrossRef]
- Zhu, Z.; Cai, H.; Sun, D.-W. Titanium dioxide (TiO2) photocatalysis technology for nonthermal inactivation of microorganisms in foods. Trends Food Sci. Technol. 2018, 75, 23–35. [Google Scholar] [CrossRef]
- Angelo, J.; Andrade, L.; Madeira, L.M.; Mendes, A. An overview of photocatalysis phenomena applied to NOx abatement. J. Environ. Manag. 2013, 129, 522–539. [Google Scholar] [CrossRef]
- Niu, K.; Chen, P.; Zhang, X.; Tan, W.-S. Enhanced enzymatic hydrolysis of rice straw pretreated by alkali assisted with photocatalysis technology. J. Chem. Technol. Biotechnol. 2009, 84, 1240–1245. [Google Scholar] [CrossRef]
- Long, Z.; Li, Q.; Wei, T.; Zhang, G.; Ren, Z. Historical development and prospects of photocatalysts for pollutant removal in water. J. Hazard. Mater. 2020, 395, 122599. [Google Scholar] [CrossRef]
- Aryani, A.S.; Jalaludin, J.; Kurnia, A.D. Analisis Jual Beli Keramik Hias Dalam Perspektif Ekonomi Syariah (Studi Kasus Pada UPTD Pengembangan Keramik Hias Di Desa Anjun Kecamatan Plered Purwakarta). EKSISBANK Ekon. Syariah Bisnis Perbank. 2022, 6, 16–40. [Google Scholar] [CrossRef]
- Liu, P.; Yao, Z.; Zhou, J.; Yang, Z.; Kong, L.B. Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 2016, 4, 9738–9749. [Google Scholar] [CrossRef]
- Chauvet, V. Absorptive Capacity: Scale Development and Implications for Future Research. Manag. Int. 2015, 19, 113–129. [Google Scholar]
- Zou, B.; Guo, F.; Guo, J. Absorptive capacity, technological innovation, and product life cycle: A system dynamics model. Springerplus 2016, 5, 1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogbe, C.S.K.; Bamfo, B.A.; Pomegbe, W.W.K. Market Orientation and New Product Success Relationship: The Role of Innovation Capability, Absorptive Capacity, Green Brand Positioning. Int. J. Innov. Manag. 2020, 25, 2150033. [Google Scholar] [CrossRef]
- Benhayoun, L.; Le-Dain, M.-A.; Dominguez-Péry, C. Characterising Absorptive Capacity Supporting SMEs’ Learnings within Collaborative Innovation Networks: Insights from Multi-Level Case Studies. Int. J. Innov. Manag. 2020, 25, 2150047. [Google Scholar] [CrossRef]
- Vlačić, E.; Dabić, M.; Daim, T.; Vlajčić, D. Exploring the impact of the level of absorptive capacity in technology development firms. Technol. Forecast. Soc. Chang. 2019, 138, 166–177. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Zheng, R.; Deng, H.; Zhou, Y. Green supply chain collaborative innovation, absorptive capacity and innovation performance: Evidence from China. J. Clean. Prod. 2019, 241, 118377. [Google Scholar] [CrossRef]
- Galbreath, J. Drivers of green innovations: The impact of export intensity, women leaders, and absorptive capacity. J. Bus. Ethics 2019, 158, 47–61. [Google Scholar] [CrossRef]
- Wang, M.; He, Y.; Zhou, J.; Ren, K. Evaluating the Effect of Chinese Environmental Regulation on Corporate Sustainability Performance: The Mediating Role of Green Technology Innovation. Int. J. Environ. Res. Public Health 2022, 19, 6882. [Google Scholar] [CrossRef]
- Zia, S.; Rahman, M.U.; Noor, M.H.; Khan, M.K.; Bibi, M.; Godil, D.I.; Quddoos, M.U.; Anser, M.K. Striving towards environmental sustainability: How natural resources, human capital, financial development, and economic growth interact with ecological footprint in China. Environ. Sci. Pollut. Res. 2021, 28, 52499–52513. [Google Scholar] [CrossRef] [PubMed]
- Darwish, S.; Shah, S.M.M.; Ahmed, U. The role of green supply chain management practices on environmental performance in the hydrocarbon industry of Bahrain: Testing the moderation of green innovation. Uncertain Supply Chain. Manag. 2021, 9, 265–276. [Google Scholar] [CrossRef]
- Xing, X.; Liu, T.; Shen, L.; Wang, J. Linking Environmental Regulation and Financial Performance: The Mediating Role of Green Dynamic Capability and Sustainable Innovation. Sustainability 2020, 12, 1007. [Google Scholar] [CrossRef] [Green Version]
- Weng, H.-H.; Chen, J.-S.; Chen, P.-C. Effects of Green Innovation on Environmental and Corporate Performance: A Stakeholder Perspective. Sustainability 2015, 7, 4997–5026. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Huang, L.; Ren, A.; Li, Q.; Zeng, X. The Effect of Production Structure Roundaboutness on the Innovation Capability of High-Tech Enterprises—The Mediating Role of Technology Absorption Path. Sustainability 2022, 14, 5116. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, Y.; Wang, K.; Xu, H.; Yi, X. An Analysis on the Spatial Effect of Absorptive Capacity on Regional Innovation Ability Based on Empirical Research in China. Sustainability 2020, 12, 3021. [Google Scholar] [CrossRef] [Green Version]
- Koskinen, K.U. Problem absorption as an organizational learning mechanism in project-based companies: Process thinking perspective. Int. J. Proj. Manag. 2012, 30, 308–316. [Google Scholar] [CrossRef]
- Atiase, V.Y.; Dzansi, D.Y.; Ameh, J.K. Technology absorption capacity and firm growth in Africa. View Proj. 2020, 341655891. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Chang, Y.-Y.; Tsao, Y.-C.; Kraus, S. The power of knowledge management: How top management team bricolage boosts ambidexterity and performance. J. Knowl. Manag. 2022, 26, 188–213. [Google Scholar] [CrossRef]
- Gölgeci, I.; Kuivalainen, O. Does social capital matter for supply chain resilience? The role of absorptive capacity and marketing-supply chain management alignment. Ind. Mark. Manag. 2020, 84, 63–74. [Google Scholar] [CrossRef]
- Xie, X.; Zou, H.; Qi, G. Knowledge absorptive capacity and innovation performance in high-tech companies: A multi-mediating analysis. J. Bus. Res. 2018, 88, 289–297. [Google Scholar] [CrossRef]
- Imran, A.; Ata Ul, M.; Murad, A. Impact of knowledge sharing and absorptive capacity on project performance: The moderating role of social processes. J. Knowl. Manag. 2018, 22, 453–477. [Google Scholar]
- Wang, Q.; Zhang, Y.; Wangjin, X.; Wang, Y.; Meng, G.; Chen, Y. The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation. J. Environ. Sci. 2020, 87, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Tzokas, N.; Kim, Y.-A.; Akbar, H.; Al-Dajani, H. Absorptive capacity and performance: The role of customer relationship and technological capabilities in high-tech SMEs. Ind. Mark. Manag. 2015, 47, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Ma, W.; Wang, X.; Xing, Y.; Hao, S.; Xu, X. Self-water-absorption-type two-dimensional composite photocatalyst with high-efficiency water absorption and overall water-splitting performance. Adv. Powder Mater. 2022, 1, 100008. [Google Scholar] [CrossRef]
- Khan, A.; Tao, M.; Li, C. Knowledge absorption capacity’s efficacy to enhance innovation performance through big data analytics and digital platform capability. J. Innov. Knowl. 2022, 7, 100201. [Google Scholar] [CrossRef]
- García-Villaverde, P.M.; Rodrigo-Alarcón, J.; Ruiz-Ortega, M.J.; Parra-Requena, G. The role of knowledge absorptive capacity on the relationship between cognitive social capital and entrepreneurial orientation. J. Knowl. Manag. 2018, 22, 1015–1036. [Google Scholar] [CrossRef]
- Juárez, L.E.V.; Escobar, E.A.R.; Guzmán, G.M. The Effects of Absorptive Capacity, Intellectual Property and Innovation in SMEs. J. Manag. Sustain. 2017, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Shams, S.M.R. Capacity building for sustained competitive advantage: A conceptual framework. Mark. Intell. Plan. 2016, 34, 671–691. [Google Scholar] [CrossRef]
- Heckmann, N.; Steger, T.; Dowling, M. Organizational capacity for change, change experience, and change project performance. J. Bus. Res. 2016, 69, 777–784. [Google Scholar] [CrossRef]
- Akbar, H.; Kim, Y.A.; Tzokas, N. Absorptive capacity and performance: The role of customer relationship and technological capabilities. In Proceedings of the Academy of Marketing Conference 2012, Southampton, UK, 3–5 July 2012. [Google Scholar]
- Gray, C. Absorptive capacity, knowledge management and innovation in entrepreneurial small firms. Int. J. Entrep. Behav. Res. 2006, 12, 345–360. [Google Scholar] [CrossRef]
- Fernando, Y.; Jabbour, C.J.C.; Wah, W.-X. Pursuing green growth in technology firms through the connections between environmental innovation and sustainable business performance: Does service capability matter? Resour. Conserv. Recycl. 2019, 141, 8–20. [Google Scholar] [CrossRef]
- Ding, W.; Ding, J. New venture’s product innovativeness strategy, institutional environment and new product performance. Technol. Forecast. Soc. Chang. 2022, 174, 121211. [Google Scholar] [CrossRef]
- Luan, N.T.; Hau, D.N.D.; Thu, N.T.A. The Influence of Green Product Development Performance to Enhance Enterprise Effectiveness and Innovation. Economies 2022, 10, 113. [Google Scholar] [CrossRef]
- Chen, Y.S.; Lin, S.; Lin, C.; Hung, S.; Chang, C.; Huang, C. Improving green product development performance from green vision and organizational culture perspectives. Corp. Soc. Responsib. Environ. Manag. 2019, 27, 222–231. [Google Scholar] [CrossRef]
- Ogiemwonyi, O.; Bin Harun, A.; Alam, M.N.; Karim, A.M.; Tabash, M.I.; Hossain, M.I.; Aziz, S.; Abbasi, B.A.; Ojuolape, M.A. Green product as a means of expressing green behaviour: A cross-cultural empirical evidence from Malaysia and Nigeria. Environ. Technol. Innov. 2020, 20, 101055. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, X.; Yan, J. Green Product Pricing and Order Strategies in a Supply Chain under Demand Forecasting. Sustainability 2020, 12, 713. [Google Scholar] [CrossRef] [Green Version]
- Asih, D.; Setini, M.; Soelton, M.; Muna, N.; Putra, I.G.C.; Darma, D.C.; Judiarni, J.A. Predicting green product consumption using theory of planned behavior and reasoned action. Manag. Sci. Lett. 2020, 10, 3367–3374. [Google Scholar] [CrossRef]
- Paul, J.; Modi, A.; Patel, J. Predicting green product consumption using theory of planned behavior and reasoned action. J. Retail. Consum. Serv. 2016, 29, 123–134. [Google Scholar] [CrossRef]
- Jabbour, C.J.C.; Jugend, D.; de Sousa Jabbour, A.B.L.; Gunasekaran, A.; Latan, H. Green product development and performance of Brazilian firms: Measuring the role of human and technical aspects. J. Clean. Prod. 2015, 87, 442–451. [Google Scholar] [CrossRef]
- Cheung, R.; Lam, A.Y.C.; Lau, M.M. Drivers of green product adoption: The role of green perceived value, green trust and perceived quality. J. Glob. Sch. Mark. Sci. 2015, 25, 232–245. [Google Scholar] [CrossRef]
- Wong, S.K.-S. The influence of green product competitiveness on the success of green product innovation Empirical evidence from the Chinese electrical and electronics industry. Eur. J. Innov. Manag. 2012, 15, 24. [Google Scholar]
- Ciambelli, P.; la Guardia, G.; Vitale, L. Nanotechnology for green materials and processes. Stud. Surf. Sci. Catal. 2020, 179, 97–116. [Google Scholar]
- Gröttrup, J.; Schütt, F.; Smazna, D.; Lupan, O.; Adelung, R.; Mishra, Y.K. Porous ceramics based on hybrid inorganic tetrapodal networks for efficient photocatalysis and water purification. Ceram. Int. 2017, 43, 14915–14922. [Google Scholar] [CrossRef]
- Chang, Y.; Bermejo, R.; Messing, G.L. Improved Fracture Behavior of Alumina Microstructural Composites with Highly Textured Compressive Layers. J. Am. Ceram. Soc. 2014, 97, 3643–3651. [Google Scholar] [CrossRef]
- Wang, H.; Khan, M.A.S.; Anwar, F.; Shahzad, F.; Adu, D.; Murad, M. Green Innovation Practices and Its Impacts on Environmental and Organizational Performance. Front. Psychol. 2020, 11, 553625. [Google Scholar] [CrossRef]
- Chen, J.; Liu, L. Profiting from Green Innovation: The Moderating Effect of Competitive Strategy. Sustainability 2018, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Zheng, M.; Cao, C.; Chen, X.; Ren, S.; Huang, M. The impact of legitimacy pressure and corporate profitability on green innovation: Evidence from China top 100. J. Clean. Prod. 2017, 141, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Handayani, R.; Wahyudi, S.; Suharnomo, S. The effects of corporate social responsibility on manufacturing industry performance: The mediating role of social collaboration and green innovation. Bus. Theory Pract. 2017, 18, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Albort-Morant, G.; Leal-Millán, A.; Cepeda-Carrión, G. The antecedents of green innovation performance: A model of learning and capabilities. J. Bus. Res. 2016, 69, 4912–4917. [Google Scholar] [CrossRef]
- Bennett, N.J.; Dearden, P. Why local people do not support conservation: Community perceptions of marine protected area livelihood impacts, governance and management in Thailand. Mar. Policy 2014, 44, 107–116. [Google Scholar] [CrossRef]
- Tinungki, G.M.; Hartono, P.G.; Robiyanto, R.; Hartono, A.B.; Jakaria, J.; Simanjuntak, L.R. The COVID-19 Pandemic Impact on Corporate Dividend Policy of Sustainable and Responsible Investment in Indonesia: Static and Dynamic Panel Data Model Comparison. Sustainability 2022, 14, 6152. [Google Scholar] [CrossRef]
- Bocken, N.; Short, S.; Rana, P.; Evans, S. A value mapping tool for sustainable business modelling. Corp. Gov. Int. J. Bus. Soc. 2013, 13, 482–497. [Google Scholar] [CrossRef]
- Wu, K.-J.; Liao, C.-J.; Tseng, M.-L.; Chou, P.-J. Understanding Innovation for Sustainable Business Management Capabilities and Competencies under Uncertainty. Sustainability 2015, 7, 13726–13760. [Google Scholar] [CrossRef] [Green Version]
- Voronkova, O.Y.; Iakimova, L.; Frolova, I.; Shafranskaya, C.; Kamolov, S.; Prodanova, N. Sustainable development of territories based on the integrated use of industry, resource and environmental potential. Int. J. Econ. Bus. Adm. 2019, VII, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Soto-Acosta, P.; Cismaru, D.-M.; Vătămănescu, E.-M.; Ciochină, R.S. Sustainable Entrepreneurship in SMEs: A Business Performance Perspective. Sustainability 2016, 8, 342. [Google Scholar] [CrossRef] [Green Version]
- Gross-Gołacka, E.; Kusterka-Jefmańska, M.; Jefmański, B. Can Elements of Intellectual Capital Improve Business Sustainability?—The Perspective of Managers of SMEs in Poland. Sustainability 2020, 12, 1545. [Google Scholar] [CrossRef] [Green Version]
- Koengkan, M.; Fuinhas, J.A.; Santiago, R. The relationship between CO2 emissions, renewable and non-renewable energy consumption, economic growth, and urbanisation in the Southern Common Market. J. Environ. Econ. Policy 2020, 9, 383–401. [Google Scholar] [CrossRef]
- Raugei, M.; Hutchinson, A.; Morrey, D. Can electric vehicles significantly reduce our dependence on non-renewable energy? Scenarios of compact vehicles in the UK as a case in point. J. Clean. Prod. 2018, 201, 1043–1051. [Google Scholar] [CrossRef]
- Falck, O.; Heblich, S. Corporate social responsibility: Doing well by doing good. Bus. Horiz. 2007, 50, 247–254. [Google Scholar] [CrossRef]
- Aras, G.; Crowther, D. Sustainable Practice: The Real Triple Bottom Line. Gov. Risk Dev. Corp. Gov. Responsib. 2013, 7, 169–183. [Google Scholar]
- Xu, Y.; Li, X.; Tao, C.; Zhou, X. Connected knowledge spillovers, technological cluster innovation and efficient industrial structure. J. Innov. Knowl. 2022, 7, 100195. [Google Scholar] [CrossRef]
- Richnák, P.; Fidlerová, H. Impact and Potential of Sustainable Development Goals in Dimension of the Technological Revolution Industry 4.0 within the Analysis of Industrial Enterprises. Energies 2022, 15, 3697. [Google Scholar] [CrossRef]
- Kjellberg, H.; Azimont, F.; Reid, E. Market innovation processes: Balancing stability and change. Ind. Mark. Manag. 2015, 44, 4–12. [Google Scholar] [CrossRef]
- Cohen, W.M.; Levinthal, D.A. Absorptive capacity a new perspective on learning and innovation. Adm. Sci. Q. 1990, 35, 128–152. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, F.; Wang, X. How Green Transformational Leadership Affects Green Creativity: Creative Process Engagement as Intermediary Bond and Green Innovation Strategy as Boundary Spanner. Sustainability 2020, 12, 3841. [Google Scholar] [CrossRef]
- Zaman, U.; Nadeem, R.D.; Nawaz, S. Cross-country evidence on project portfolio success in the Asia-Pacific region: Role of CEO transformational leadership, portfolio governance and strategic innovation orientation. Cogent Bus. Manag. 2020, 7, 1727681. [Google Scholar] [CrossRef]
- Yun, J.J.; Zhao, X.; Park, K.; Shi, L. Sustainability Condition of Open Innovation: Dynamic Growth of Alibaba from SME to Large Enterprise. Sustainability 2020, 12, 4379. [Google Scholar] [CrossRef]
- Yun, J.J.; Zhao, X.; Jung, K.H.; Yigitcanlar, T. The Culture for Open Innovation Dynamics. Sustainability 2020, 12, 5076. [Google Scholar] [CrossRef]
- Yun, J.J.; Zhao, X. Business Model Innovation through a Rectangular Compass: From the Perspective of Open Innovation with Mechanism Design. J. Open Innov. Technol. Mark. Complex. 2020, 6, 131. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Nguyen, H.T.T. Do green business initiatives enhance firm performance? Evidence from an emerging market. Int. J. Soc. Sci. Econ. Invent. 2020, 6, 278–291. [Google Scholar] [CrossRef]
- Nazarko, L. Responsible Research and Innovation in Enterprises: Benefits, Barriers and the Problem of Assessment. J. Open Innov. Technol. Mark. Complex. 2020, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Muafi, M.; Diamastuti, E.; Pambudi, A. Service Innovation Strategic Consensus: A Lesson from the Islamic Banking Industry in Indonesia. J. Asian Financ. Econ. Bus. 2020, 7, 401–411. [Google Scholar] [CrossRef]
- Kurniawati, E.; Sumarmi, S.; Aliman, M. Participation of Green Environmental Group and Ulur-Ulur Local Wisdom on Buret Lake Ecotourism Management in Karst Area of Tulungagung, Indonesia. Geo J. Tour. Geosites 2020, 30 (Suppl. S2), 889–895. [Google Scholar] [CrossRef]
- Setyadi, A. Does green supply chain integration contribute towards sustainable performance? Uncertain Supply Chain. Manag. 2019, 7, 121–132. [Google Scholar] [CrossRef]
- Redante, R.C.; de Medeiros, J.F.; Vidor, G.; Cruz, C.M.L.; Ribeiro, J.L.D. Creative approaches and green product development: Using design thinking to promote stakeholders’ engagement. Sustain. Prod. Consum. 2019, 19, 247–256. [Google Scholar] [CrossRef]
- Lamond, J.; Everett, G. Sustainable Blue-Green Infrastructure: A social practice approach to understanding community preferences and stewardship. Landsc. Urban Plan. 2019, 191, 103639. [Google Scholar] [CrossRef]
- Qing, L.; Chun, D.; Ock, Y.-S.; Dagestani, A.A.; Ma, X. What Myths about Green Technology Innovation and Financial Performance’s Relationship? A Bibliometric Analysis Review. Economies 2022, 10, 92. [Google Scholar] [CrossRef]
- Green, S.G.; Gavin, M.B.; Aiman-Smith, L. Assessing a multidimensional measure of radical technological innovation. IEEE Trans. Eng. Manag. 1995, 42, 203–214. [Google Scholar] [CrossRef]
- Nair, S.; Paulose, H. Emergence of green business models: The case of algae biofuel for aviation. Energy Policy 2014, 65, 175–184. [Google Scholar] [CrossRef]
- Reim, W.; Yli-Viitala, P.; Arrasvuori, J.; Parida, V. Tackling business model challenges in SME internationalization through digitalization. J. Innov. Knowl. 2022, 7, 100199. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, H.; Lin, P.-C. The environmental impact of distribution to retail channels: A case study on packaged beverages. Transp. Res. Part D Transp. Environ. 2016, 43, 17–27. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R. Multivariate Data Analysis, 7th ed.; Pearson Prentice Hall: Hoboken, NJ, USA, 2010. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Guozhu, J.; Mubarik, S.; Khan, M.; Khan, E. Intellectual capital and business performance: The role of dimensions of absorptive capacity. J. Intellect. Cap. 2019, 21, 23–39. [Google Scholar] [CrossRef]
- Aribi, A.; Dupouët, O. Absorptive capacity: A non-linear process. Knowl. Manag. Res. Pract. 2016, 14, 15–26. [Google Scholar] [CrossRef]
- Ghozali, I. Model Persamaan Structural, Konsep dan Aplikasi Dengan Program AMOS 21.0; Badan Penerbit Universitas Diponegoro: Semarang, Indonesia, 2013. [Google Scholar]
- Albino, V.; Balice, A.; Dangelico, R.M. Environmental strategies and green product development: An overview on sustainability-driven companies. Bus. Strategy Environ. 2009, 18, 83–96. [Google Scholar] [CrossRef]
- Rodrigues, V.P.; Pigosso, D.C.A.; McAloone, T.C. Process-related key performance indicators for measuring sustainability performance of ecodesign implementation into product development. J. Clean. Prod. 2016, 139, 416–428. [Google Scholar] [CrossRef] [Green Version]
- Albort-Morant, G.; Henseler, J.; Cepeda-Carrión, G.; Leal-Rodríguez, A.L. Potential and Realized Absorptive Capacity as Complementary Drivers of Green Product and Process Innovation Performance. Sustainability 2018, 10, 381. [Google Scholar] [CrossRef] [Green Version]
- Ibnou-Laaroussi, S.; Rjoub, H.; Wong, W.-K. Sustainability of Green Tourism among International Tourists and Its Influence on the Achievement of Green Environment: Evidence from North Cyprus. Sustainability 2020, 12, 5698. [Google Scholar] [CrossRef]
- Srivastava, V.; Goel, G.; Thakur, V.K.; Singh, R.P.; de Ferreira Araujo, A.S.; Singh, P. Analysis and advanced characterization of municipal solid waste vermicompost maturity for a green environment. J. Environ. Manag. 2020, 255, 109914. [Google Scholar] [CrossRef]
- Deliana, Y.; Rum, I.A. How does perception on green environment across generations affect consumer behaviour? A neural network process. Int. J. Consum. Stud. 2019, 43, 358–367. [Google Scholar] [CrossRef]
- Prasanna, R.; Jayasundara, J.; Gamage, S.K.N.; Ekanayake, E.; Rajapakshe, P.; Abeyrathne, G. Sustainability of SMEs in the Competition: A Systemic Review on Technological Challenges and SME Performance. J. Open Innov. Technol. Mark. Complex. 2019, 5, 100. [Google Scholar] [CrossRef] [Green Version]
- Rousson, V.; Goşoniu, N.F. An R-square coefficient based on final prediction error. Stat. Methodol. 2007, 4, 331–340. [Google Scholar] [CrossRef]
- Muthén, B.O. Goodness of Fit with Categorical. Test. Struct. Equ. Models 1993, 154, 205. [Google Scholar]
- Zhao, Y.; Fan, B. Exploring open government data capacity of government agency: Based on the resource-based theory. Gov. Inf. Q. 2018, 35, 1–12. [Google Scholar] [CrossRef]
Variable | Dimensions and Indicators | Items | Ref. | Loading Factor | Cronbach’s Alpha | Composite Realibility | AVE |
---|---|---|---|---|---|---|---|
Absorption Capacity (X) | [96,97] | 0.892 | 0.911 | 0.463 | |||
Information and terms (X1) | 0.886 | 0.805 | 0.885 | 0.720 | |||
X11 | Prior knowledge | 0.880 | |||||
X12 | Commitment in gathering knowledge | 0.803 | |||||
X13 | Direction of acquired knowledge | 0.861 | |||||
Analytical interpretation (X2) | 0.882 | 0733 | 0.850 | 0.654 | |||
X21 | The magnitude of the interpretation | 0.874 | |||||
X22 | The magnitude of understanding | 0.793 | |||||
X23 | Formalization | 0754 | |||||
Internalization (X3) | 0.865 | 0.650 | 0.812 | 0.592 | |||
X31 | Summing up again | 0.776 | |||||
X32 | How big are the questions that arise | 0.847 | |||||
X33 | Adaptation rate | 0.676 | |||||
Facilitation Expand (X4) | 0.668 | 0.839 | 0.903 | 0.757 | |||
X41 | Resource usage | 0.824 | |||||
X42 | Getting results | 0.888 | |||||
X43 | Implement | 0.896 | |||||
Green Product Development (Y1) | [99,100,101] | 0.810 | 0.875 | 0.637 | |||
Y11 | Improved material eco-efficiency | 0.836 | |||||
Y12 | Energy efficiency improvement | 0.756 | |||||
Y13 | Green management implementation | 0.822 | |||||
Y14 | Green supply chain management implementation | 0.776 | |||||
Green Environment (M) | [102,103,104] | 0.818 | 0.877 | 0.596 | |||
M1 | The level of concern for the environment | 0.655 | |||||
M2 | Concern for the environment | 0.835 | |||||
M3 | Environmental protection | 0.793 | |||||
M4 | Responsible behavior | 0.875 | |||||
M5 | Pro-environmental behavior | 0.802 | |||||
Business Sustainability (Y2) | [20,105] | 0.860 | 0.899 | 0.641 | |||
Y21 | Profits allocated for the empowerment of the surrounding community and the environment | 0.830 | |||||
Y22 | Adequacy of capital in increasing productivity | 0.818 | |||||
Y23 | Production asset quality ratio | 0.757 | |||||
Y24 | Environmentally friendly increase profits | 0.858 | |||||
Y25 | Green products support market spread | 0.734 |
Variable | R Square | R Square Adjusted |
---|---|---|
Green Product Development | 0.288 | 0.281 |
Sustainability Business | 0.707 | 0.698 |
Direct Relationship Hypothesis | ||||||
---|---|---|---|---|---|---|
Original Sample | Sample Means | Standard Deviation | T-Statistic | p-Value | Description | |
Absorption Capacity → Green Product Development | 0.539 | 0.544 | 0.081 | 6.614 | 0.000 | Significant |
Absorption Capacity → Business Sustainability | 0.062 | 0.050 | 0.055 | 1.123 | 0.262 | Not Significant |
Green Product Development → Business Sustainability | 0.617 | 0.619 | 0.070 | 8.812 | 0.000 | Significant |
Indirect Relationship Hypothesis | |||
---|---|---|---|
T-Statistic | p-Value | Description | |
Green Product Development Mediation | 6.614 | 0.000 | Significant; a |
8.812 | 0.000 | Significant; b | |
1.123 | 0.262 | Not Significant; c | |
Full Mediation | |||
Green Environment Moderation | 1.280 | −0.201 | Not Moderate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Normal, I.N.; Setini, M. Absorption Capacity and Development of Photocatalyst Green Ceramic Products with Moderation of Green Environment for Sustainability Performance of Developing Industries. Sustainability 2022, 14, 10457. https://doi.org/10.3390/su141710457
Normal IN, Setini M. Absorption Capacity and Development of Photocatalyst Green Ceramic Products with Moderation of Green Environment for Sustainability Performance of Developing Industries. Sustainability. 2022; 14(17):10457. https://doi.org/10.3390/su141710457
Chicago/Turabian StyleNormal, I Nyoman, and Made Setini. 2022. "Absorption Capacity and Development of Photocatalyst Green Ceramic Products with Moderation of Green Environment for Sustainability Performance of Developing Industries" Sustainability 14, no. 17: 10457. https://doi.org/10.3390/su141710457