The Influence of Content Presentation on Users’ Intention to Adopt mHealth Applications: Based on the S-O-R Theoretical Model
Abstract
:1. Introduction
2. Theoretical Background
2.1. Content Presentation and User Adoption Behavior of mHealth Apps
2.2. Platform Information Presentation
2.3. Guidance Information Presentation
2.4. Relational Information Presentation
2.5. Perceived Value and Trust
2.6. Intention of Adoption
3. Methods
3.1. Questionnaire Design
3.2. Sample Selection and Data Collection
4. Empirical Analysis
4.1. Reliability and Validity Test
4.2. Hypothesis Test
4.3. Mediating Effect Test
5. Discussion
5.1. Theoretical Contributions
5.2. Management Suggestions
5.3. Limitations and Future Research
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vo, V.; Auroy, L.; Sarradon-Eck, A. Patients’ perceptions of mHealth apps: Meta-ethnographic review of qualitative studies. JMIR mHealth uHealth 2019, 7, e13817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, M.; Tayyab, S.M.U.; Xu, X.Y.; Jia, S.W.; Wu, C.L. The investigation of mobile health stickiness: The role of social support in a sustainable health approach. Sustainability 2021, 13, 1693. [Google Scholar] [CrossRef]
- Siristatidis, C.; Pouliakis, A.; Karageorgiou, V.; Vogiatzi, P. Mobile Apps for Helping Patient-Users: Is It Still Far-Fetched? Sustainability 2019, 12, 106. [Google Scholar] [CrossRef] [Green Version]
- Floch, J.; Vilarinho, T.; Zettl, A.; Ibanez-Sanchez, G.; Calvo-Lerma, J.; Stav, E.; Haro, P.; Aalberg, A.; Fides-Valero, A.; Bayo Montón, J. Users’ Experiences of a Mobile Health Self-Management Approach for the Treatment of Cystic Fibrosis: Mixed Methods Study. JMIR mHealth uHealth 2020, 8, e15896. [Google Scholar] [CrossRef]
- Liu, F.; Ngai, E.; Ju, X. Understanding mobile health service use: An investigation of routine and emergency use intentions. Int. J. Inform. Manag. 2019, 45, 107–117. [Google Scholar] [CrossRef]
- Roosan, D.; Li, Y.; Law, A.; Truong, H.; Karim, M.; Chok, J.; Roosan, M. Improving medication information presentation through interactive visualization in mobile apps: Human factors design. JMIR mHealth uHealth 2019, 7, e15940. [Google Scholar] [CrossRef]
- Al-Hazmi, N.M. Social Networks Apps and their Role in Tourism Marketing in the Kingdom of Saudi Arabia. Int. J. Interact. Mob. Technol. 2021, 16, 161–170. [Google Scholar] [CrossRef]
- Lovejoy, K.; Saxton, G.D. Information, Community, and Action: How Nonprofit Organizations Use Social Media. J. Comput Mediat. Comm. 2012, 17, 337–353. [Google Scholar] [CrossRef] [Green Version]
- Daly, L.M.; Boyle, F.M.; Gibbons, K.; Le, H.; Roberts, J.; Flenady, V. Mobile applications providing guidance about decreased fetal movement: Review and content analysis. Women Birth 2019, 32, e289–e296. [Google Scholar] [CrossRef]
- Alhudaithy, A.I.; Kitchen, P.J. Rethinking models of technology adoption for internet banking: The role of website features. J. Financ. Serv. Mark. 2009, 14, 56–69. [Google Scholar] [CrossRef]
- Chi, O.H.; Denton, G.; Gursoy, D. Interactive effects of message framing and information content on carbon offsetting behaviors. Tour. Manag. 2021, 83, 104244. [Google Scholar] [CrossRef]
- Zhang, D.; Yoon, S. Social media, information presentation, consumer involvement, and cross-border adoption of pop culture products. Electron. Commer. Res. Appl. 2018, 27, 129–138. [Google Scholar] [CrossRef]
- Van Berkel, N.; Goncalves, J.; Russo, D.; Hosio, S.; Skov, M.B. Effect of Information Presentation on Fairness Perceptions of Machine Learning Predictors. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–13. [Google Scholar]
- Cudjoe, J.; Gallo, J.J.; Sharps, P.; Budhathoki, C.; Roter, D.; Han, H.R. The role of sources and types of health information in shaping health literacy in cervical cancer screening among African immigrant women: A mixed-methods study. HLRP Health Lit. Res. Pract. 2021, 5, e96–e108. [Google Scholar] [CrossRef]
- Gao, Y. Linking Information Content, Presentation Attributes, and System Design Features with Consumer Attitudes in Hyper-Media Commercial Presentations; City University of New York: New York, NY, USA, 2002. [Google Scholar]
- Kelton, A.S.; Pennington, R.R. Internet financial reporting: The effects of information presentation format and content differences on investor decision making. Comput. Hum. Behav. 2012, 28, 1178–1185. [Google Scholar] [CrossRef]
- Sayed, W.S.; Noeman, A.M.; Abdellatif, A.; Abdelrazek, M.; Badawy, M.G.; Hamed, A.; El-Tantawy, S. AI-based adaptive personalized content presentation and exercises navigation for an effective and engaging E-learning platform. Multimed. Tools Appl. 2022, 1–31. [Google Scholar] [CrossRef]
- Babel, F.; Kraus, J.; Miller, L.; Kraus, M.; Wagner, N.; Minker, W.; Baumann, M. Small talk with a robot? The impact of dialog content, talk initiative, and gaze behavior of a social robot on trust, acceptance, and proximity. Int. J. Soc. Robot. 2021, 13, 1485–1498. [Google Scholar] [CrossRef]
- Detenber, B.H.; Han, J.; Lang, A. The influence of form and presentation attributes of traditional media on emotion. Routledge Int. Handb. Emot. Media 2021, 147–163. [Google Scholar]
- Kim, M.; Lee, S.M.; Choi, S.; Kim, S.Y. Impact of visual information on online consumer review behavior: Evidence from a hotel booking website. J. Retail. Consum. Serv. 2021, 60, 102494. [Google Scholar] [CrossRef]
- Aboelmaged, M.; Hashem, G.; Mouakket, S. Predicting subjective well-being among mHealth users: A readiness—Value model. Int. J. Inform. Manag. 2021, 56, 102247. [Google Scholar] [CrossRef]
- Alam, M.Z.; Hoque, M.R.; Hu, W.; Barua, Z. Factors influencing the adoption of mHealth services in a developing country: A patient-centric study. Int. J. Inform. Manag. 2020, 50, 128–143. [Google Scholar] [CrossRef]
- Ng, S.; David, M.E.; Dagger, T.S. Generating positive word-of-mouth in the service experience. Manag. Serv. Qual. Int. J. 2011, 21, 133–151. [Google Scholar] [CrossRef]
- Alam, M.Z.; Hu, W.; Kaium, A.; Hoque, R.; Didarul Alam, M.M. Understanding the determinants of mHealth apps adoption in Bangladesh: A SEM-Neural network approach. Technol. Soc. 2020, 61, 101255. [Google Scholar] [CrossRef]
- Octavius, G.S.; Antonio, F. Antecedents of intention to adopt mobile health (mHealth) application and its impact on intention to recommend: An evidence from Indonesian customers. Int. J. Telemed. Appl. 2021, 9, 6698627. [Google Scholar] [CrossRef]
- Hajesmaeel-Gohari, S.; Khordastan, F.; Fatehi, F.; Samzadeh, H.; Bahaadinbeigy, K. The most used questionnaires for evalu-ating satisfaction, usability, acceptance, and quality outcomes of mobile health. BMC Med. Inform. Decis. Mak. 2022, 22, 22. [Google Scholar] [CrossRef]
- Samsuri, A.S.; Hussin, S.M.; Badaruddin, M.N.A.; Arifin, T.R.T.; Zainol, S.S.; Mohamad, Z.Z. Antecedents of User Satisfaction and Continuance Usage of Mobile Health Applications: A Study on MySejahtera Apps in Malaysia. Asian J. Behav. Sci. 2022, 4, 91–105. [Google Scholar]
- Byrd IV, T.F.; Kim, J.S.; Yeh, C.; Lee, J.; O’Leary, K.J. Technology acceptance and critical mass: Development of a consolidated model to explain the actual use of mobile health care communication tools. J. Biomed. Inform. 2021, 117, 103749. [Google Scholar] [CrossRef]
- Semiz, B.B.; Semiz, T. Examining consumer use of mobile health applications by the extended UTAUT model. Bus. Manag. Stud. Int. J. 2021, 9, 267–281. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, R.; Zhu, X.; Liu, M. Factors Influencing Continued Usage Behavior on Mobile Health Applications. Healthcare 2022, 10, 208. [Google Scholar] [CrossRef]
- Nezamdoust, S.; Abdekhoda, M.; Rahmani, A. Determinant factors in adopting mobile health application in healthcare by nurses. BMC Med. Inform. Decis. Mak. 2022, 22, 47. [Google Scholar] [CrossRef]
- Nadal, C.; Sas, C.; Doherty, G. Technology acceptance in mobile health: Scoping review of definitions, models, and measurement. J. Med. Internet Res. 2020, 22, e17256. [Google Scholar] [CrossRef]
- AlBar, A.M.; Hoque, M.R. Patient acceptance of e-health services in Saudi Arabia: An integrative perspective. Telemed. E-Health 2019, 25, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Mehrabian, A.; Russell, J.A. An Approach to Environmental Psychology; MIT Press: Cambridge, MA, USA, 1974; pp. 24–30. [Google Scholar]
- Lin, S.W.; Lo, Y.S. Evoking Online Consumer Impulse Buying Through Virtual Layout Schemes. Behav. Inform. Technol. 2016, 35, 38–56. [Google Scholar] [CrossRef]
- Lorenzoromero, C.; Gómezborja, M. Analyzing the User Behavior Toward Electronic Commerce Stimuli. Front. Behav. Neurosci. 2016, 10, 224. [Google Scholar]
- Hewei, T.; Youngsook, L. Factors affecting continuous purchase intention of fashion products on social E-commerce: SOR model and the mediating effect. Entertain. Comput. 2022, 41, 100474. [Google Scholar] [CrossRef]
- Karim, M.W.; Chowdhury, M.A.M.; Al Masud, M.A.; Arifuzzaman, M. Analysis of Factors influencing Impulse Buying be-havior towards e-tailing sites: An application of SOR model. Contemp. Manag. Res. 2021, 17, 97–126. [Google Scholar] [CrossRef]
- Sultan, P.; Wong, H.Y.; Azam, M.S. How perceived communication source and food value stimulate purchase intention of organic food: An examination of the stimulus-organism-response (SOR) model. J. Clean. Prod. 2021, 312, 127807. [Google Scholar] [CrossRef]
- Le, T.Q.; Wu, W.Y.; Liao, Y.K.; Phung, T.T.T. The Extended SOR Model Investigating Consumer Impulse Buying Behavior in Online Shopping: A Meta-Analysis. J. Distrib. Sci. 2022, 20, 1–9. [Google Scholar]
- Vergura, D.T.; Zerbini, C.; Luceri, B. Consumers’ attitude and purchase intention towards organic personal care products. An application of the SOR model. Sinergie Ital. J. Manag. 2020, 38, 121–137. [Google Scholar]
- Perumal, S.; Ali, J.; Shaarih, H. Exploring nexus among sensory marketing and repurchase intention: Application of SOR Model. Manag. Sci. Lett. 2021, 11, 1527–1536. [Google Scholar] [CrossRef]
- Zhu, B.; Kowatthanakul, S.; Satanasavapak, P. Generation Y consumer online repurchase intention in Bangkok: Based on Stimulus-Organism-Response (SOR) model. Int. J. Retail Distrib. Manag. 2020, 48, 53–69. [Google Scholar] [CrossRef]
- Tak, P.; Gupta, M. Examining travel mobile app attributes and its impact on consumer engagement: An application of SOR framework. J. Internet Commer. 2021, 20, 293–318. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, C.K.; Jung, T. Exploring consumer behavior in virtual reality tourism using an extended stimu-lus-organism-response model. J. Travel. Res. 2020, 59, 69–89. [Google Scholar] [CrossRef] [Green Version]
- Luqman, A.; Cao, X.; Ali, A.; Masood, A.; Yu, L. Empirical investigation of Facebook discontinues usage intentions based on SOR paradigm. Comput. Hum. Behav. 2017, 70, 544–555. [Google Scholar] [CrossRef]
- Tuncer, İ. The relationship between IT affordance, flow experience, trust, and social commerce intention: An exploration using the SOR paradigm. Technol. Soc. 2021, 65, 101567. [Google Scholar] [CrossRef]
- Cao, Y.; Li, J.; Qin, X.; Hu, B. Examining the effect of overload on the mHealth application resistance behavior of elderly users: An SOR perspective. Int. J. Environ. Res. Public Health 2020, 17, 6658. [Google Scholar] [CrossRef]
- Kwon, J.; Kudrowitz, B. Good idea! Or good presentation? Examining the effect of presentation on perceived quality of concepts. AIEDAM 2018, 32, 380–389. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Xu, Y. The Promoting Role of Internet on the Upgrading of Consumption Structure in Rural Areas of Shandong. In IEIS2019: Proceedings of the 6th International Conference on Industrial Economics System and Industrial Security Engineering; Springer Nature: Singapore, 2020; pp. 245–256. [Google Scholar]
- Voramontri, D.; Klieb, L. Impact of social media on consumer behaviour. Int. J. Inf. Decis. Sci. 2019, 11, 209–233. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Chen, Y.; Chow, W.S. Key values driving continued interaction on brand pages in social media: An examination across genders. Comput. Hum. Behav. 2016, 62, 578–589. [Google Scholar] [CrossRef]
- Li, D.; Fast-Berglund, Å.; Paulin, D.; Thorvald, P. Exploration of digitalized presentation of information for Operator 4.0: Five industrial cases. Comput. Ind. Eng. 2022, 168, 108048. [Google Scholar] [CrossRef]
- Sima, V.; Gheorghe, I.G.; Subić, J.; Nancu, D. Influences of the industry 4.0 revolution on the human capital development and consumer behavior: A systematic review. Sustainability 2020, 12, 4035. [Google Scholar] [CrossRef]
- Dabbous, A.; Barakat, K.A. Bridging the online offline gap: Assessing the impact of brands’ social network content quality on brand awareness and purchase intention. J. Retail. Consum. Serv. 2020, 53, 101966. [Google Scholar] [CrossRef]
- Rahman, A.; Crouch, G.I.; Laing, J.H. Tourists’ temporal booking decisions: A study of the effect of contextual framing. Tour. Manag. 2018, 65, 55–68. [Google Scholar] [CrossRef]
- Resnik, A.; Stern, B.L. Information Content in Television Advertising: A Replication and Extension. J. Advert. Res. 1991, 31, 36–46. [Google Scholar]
- Bettman, J.R.; Kakkar, P. Effects of Information Presentation Format on Consumer Information Acquisition Strategies. J. Consum. Res. 1977, 3, 233–240. [Google Scholar] [CrossRef]
- Benbasat, I.; Dexter, A.S. An Investigation of the Effectiveness of Color and Graphical Information Presentation Under Varying Time Constraints. Mis Quart. 1986, 10, 59–81. [Google Scholar] [CrossRef]
- Tractinsky, N.; Meyer, J. Chartjunk or Goldgraph? Effects of Presentation Objectives and Content Desirability on Information Presentation. Mis Quart. 1999, 23, 397–420. [Google Scholar] [CrossRef]
- Alamäki, A.; Pesonen, J.; Dirin, A. Triggering effects of mobile video marketing in nature tourism: Media richness perspective. Inf. Process. Manag. 2019, 56, 756–770. [Google Scholar] [CrossRef]
- TM, A.; Kaur, P.; Ferraris, A.; Dhir, A. What motivates the adoption of green restaurant products and services? A systematic review and future research agenda. Bus. Strategy Environ. 2021, 30, 2224–2240. [Google Scholar]
- Holbrook, M.B.; Batra, R. Assessing the role of emotions as mediators of consumer responses to advertising. J. Consum. Res. 1987, 14, 404–420. [Google Scholar] [CrossRef]
- Kim, J. The influence of graphical versus numerical information representation modes on the compromise effect. Market. Lett. 2017, 28, 379–409. [Google Scholar] [CrossRef]
- Maciaszczyk, M.; Kwasek, A.; Kocot, M.; Kocot, D. Determinants of Purchase Behavior of Young E-Consumers of Eco-Friendly Products to Further Sustainable Consumption Based on Evidence from Poland. Sustainability 2022, 14, 2343. [Google Scholar] [CrossRef]
- Yao, P.; Osman, S.; Sabri, M.F.; Zainudin, N. Consumer Behavior in Online-to-Offline (O2O) Commerce: A Thematic Review. Sustainability 2022, 14, 7842. [Google Scholar] [CrossRef]
- Asamoah, D.A.; Sharda, R. What should I believe? Exploring information validity on social network platforms. J. Bus. Res. 2021, 122, 567–581. [Google Scholar] [CrossRef]
- Ren, X.; Zhai, Y.; Song, X.; Wang, Z.; Dou, D.; Li, Y. The application of mobile telehealth system to facilitate patient information presentation and case discussion. Telemed. E-Health 2020, 26, 725–733. [Google Scholar] [CrossRef]
- Fisher, K.C.; Haegeli, P.; Mair, P. Impact of information presentation on interpretability of spatial hazard information: Lessons from a study in avalanche safety. Nat. Hazards Earth Syst. Sci. 2021, 21, 3219–3242. [Google Scholar] [CrossRef]
- Qiu, C.B.; Sun, K.; Gu, A.W. Research on Theoretical Model of Effect of Brand Information Content Display on Consumer Participation in the Mobile Internet Context. Libr. Inf. Serv. 2016, 60, 40–46. (In Chinese) [Google Scholar] [CrossRef]
- Quintero Johnson, J.M.; Yilmaz, G.; Najarian, K. Optimizing the presentation of mental health information in social media: The effects of health testimonials and platform on source perceptions, message processing, and health outcomes. Health Commun. 2017, 32, 1121–1132. [Google Scholar] [CrossRef]
- Veltri, G.A.; Lupiáñez-Villanueva, F.; Folkvord, F.; Theben, A.; Gaskell, G. The impact of online platform transparency of information on consumers’ choices. Behav. Public Policy 2020, 1–28. [Google Scholar] [CrossRef]
- Wang, Z.; Bai, X.; Zhang, S.; He, W.; Zhang, X.; Yan, Y.; Han, D. Information-level real-time AR instruction: A novel dynamic assembly guidance information representation assisting human cognition. Int. J. Adv. Manuf. Technol. 2020, 107, 1463–1481. [Google Scholar] [CrossRef]
- Heycke, T.; Gawronski, B. Co-occurrence and relational information in evaluative learning: A multinomial modeling approach. J. Exp. Psychol. Gen. 2020, 149, 104. [Google Scholar] [CrossRef]
- Córdova, N.I.; Turk-Browne, N.B.; Aly, M. Focusing on what matters: Modulation of the human hippocampus by relational attention. Hippocampus 2019, 29, 1025–1037. [Google Scholar] [CrossRef]
- Chang, C. Health-care Product Advertising: The Influences of Message Framing and Perceived Product Characteristics. Psychol. Mark. 2010, 24, 143–169. [Google Scholar] [CrossRef]
- Kramer, T.; Kim, H.M. Processing Fluency Versus Novelty Effects in Deal Perceptions. J. Prod. Brand Manag. 2007, 16, 142–147. [Google Scholar] [CrossRef]
- Kim, S.; Park, H. Effects of various characteristics of social commerce (s-commerce) on consumers’ trust and trust performance. Int. J. Inf. Manag. 2013, 33, 318–332. [Google Scholar] [CrossRef]
- Nisar, T.M.; Whitehead, C. Brand interactions and social media: Enhancing user loyalty through social networking sites. Comput. Hum. Behav. 2016, 62, 743–753. [Google Scholar] [CrossRef]
- Wang, X.; Yu, C.; Wei, Y. Social media peer communication and impacts on purchase intentions: A consumer socialization framework. J. Interact. Mark. 2012, 26, 198–208. [Google Scholar] [CrossRef]
- You, K.H.; Cho, J. Investigation of the Influential Factors in Leading People to Seek Mobile Information for the Promotion of Health-Related Behaviors. Sustainability 2020, 12, 10512. [Google Scholar]
- Li, F.; Liu, X.M.; Wang, S. Psychological distance and Information Presentation of personalized recommendation on consumer’s willingness to accept: Based on the perspective of constrution level theory. Enterp. Econ. 2018, 5, 109–115. [Google Scholar]
- Xie, H.F.; Zhao, X.F. A Research on the Mechanism of How the Customer Retention Strategy Influences Customer Loyalty in Service Industry—A analysis model based on customer trust, value and satisfactio. Manag. Rev. 2010, 22, 63–73. [Google Scholar]
- Chae, H.; Kim, S.; Lee, J.; Park, K. Impact of product characteristics of limited edition shoes on perceived value, brand trust, and purchase intention; focused on the scarcity message frequency. J. Bus. Res. 2020, 120, 398–406. [Google Scholar] [CrossRef]
- Kim, H.J.; Cho, S.H. The effect of trust and authenticity on a consumer’s complaining behavior and repurchase intention in a discount department store. J. Prod. Res. 2017, 35, 117–125. [Google Scholar]
- Yurcu, G.; Yilmaz, Y.; Aybar, D. Clinical trust, perceived value and behavioral intention of medical tourists: Moderating effect of optimism and pessimism. Eur. J. Tour. Res. 2022, 30, 3009. [Google Scholar] [CrossRef]
- Wu, H.C.; Li, T.; Li, M.Y. A study of behavioral intentions, patient satisfaction, perceived value, patient trust and experiential quality for medical tourists. J. Qual. Assur. Hosp. Tour. 2016, 17, 114–150. [Google Scholar] [CrossRef]
- Maxham, J.G., III. Service recovery’s influence on consumer satisfaction, positive word-of-mouth, and purchase intentions. J. Bus. Res. 2001, 54, 11–24. [Google Scholar] [CrossRef]
- Chen, C.F.; Tsai, D. How destination image and evaluative factors affect behavioral intentions? Tour. Manag. 2007, 28, 1115–1122. [Google Scholar] [CrossRef]
- Chiang, C.C.; Lee, L.Y. An examination of perceived value dimensions of hotel visitors: Using exploratory and confirmatory factor analyses. J. Manag. Stud. 2013, 8, 167–174. [Google Scholar]
- Kim, H.W.; Xu, Y.; Gupta, S. Which is more important in Internet shopping, perceived price or trust? Electron. Commer. Res. Appl. 2012, 11, 241–252. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, J.U.; Park, S.C. The effects of perceived value, website trust and hotel trust on online hotel booking intention. Sustainability 2017, 9, 2262. [Google Scholar] [CrossRef] [Green Version]
- Gan, C.; Wang, W. The influence of perceived value on purchase intention in social commerce context. Internet Res. 2017, 27, 772–785. [Google Scholar] [CrossRef]
- Jayashankar, P.; Nilakanta, S.; Johnston, W.J.; Gill, P.; Burres, R. IoT adoption in agriculture: The role of trust, perceived value and risk. J. Bus. Ind. Mark. 2018, 33, 804–821. [Google Scholar] [CrossRef]
- Mayer, R.C.; Davis, J.H.; Schoorman, F.D. An integrative model of organizational trust. Acad. Manag. Rev. 1995, 20, 709–734. [Google Scholar] [CrossRef]
- Doney, P.M.; Cannon, J.P. An examination of the nature of trust in buyer-seller relationships. J. Mark. 1997, 61, 35–51. [Google Scholar]
- Akter, S.; D’Ambra, J.; Ray, P. Trustworthiness in mHealth information services: An assessment of a hierarchical model with mediating and moderating effects using partial least squares (PLS). J. Am. Soc. Inf. Sci. Technol. 2011, 62, 100–116. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Zhang, X.; Sun, Y. The privacy–personalization paradox in mHealth services acceptance of different age groups. Electron. Commer. Res. Appl. 2016, 16, 55–65. [Google Scholar] [CrossRef]
- Zhao, Y.; Ni, Q.; Zhou, R. What factors influence the mobile health service adoption? A meta-analysis and the moderating role of age. Int. J. Inform. Manag. 2018, 43, 342–350. [Google Scholar] [CrossRef]
- Negsah, S.; Ryan, T.; Igbaria, M. Quality and effectiveness in Web-based customer support systems. Inform. Manag. 2003, 40, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Laugesen, J.; Hassanein, K.; Yuan, Y. The Impact of Internet Health Information on Patient Compliance: A Research Model and an Empirical Study. J. Med. Internet Res. 2015, 17, e143. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y. Developing a scale to measure the interactivity of websites. J. Advert. Res. 2003, 43, 207–216. [Google Scholar] [CrossRef]
- Kim, H.W.; Chan, H.C.; Gupta, S. Value-based adoption of mobile internet:A empirical investigation. Decis. Support. Syst. 2007, 4, 111–126. [Google Scholar] [CrossRef]
- Pavlou, P.A.; David, G. Building effective online marketplaces with institution-based trust. Inform. Syst. Res. 2004, 15, 37–59. [Google Scholar] [CrossRef] [Green Version]
- Dodds, W.B.; Monroe, K.B.; Grewal, D. Effects of price, brand, and store information on buyers’ product evaluations. J. Mark. Res. 1991, 28, 307–319. [Google Scholar]
- Sun, T.; Youn, S.; Wu, G.; Kuntaraporn, M. Online word-of-mouth (or mouse): An exploration of its antecedents and conse-quences. J. Comput. Mediat. Comm. 2006, 11, 1104–1127. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef]
- Lian, J.W. Understanding cloud-based BYOD information security protection behaviour in smart business: In perspective of perceived value. Enterp. Inf. Syst. 2021, 15, 1216–1237. [Google Scholar] [CrossRef]
- Farooq, A.; Laato, S.; Islam, A.N. Impact of online information on self-isolation intention during the COVID-19 pandemic: Cross-sectional study. J. Med. Internet Res. 2020, 22, e19128. [Google Scholar] [CrossRef]
- Cheng, H.F.; Wang, R.; Zhang, Z.; O’Connell, F.; Gray, T.; Harper, F.M.; Zhu, H. Explaining Decision-Making Algorithms Through UI: Strategies to Help Non-Expert Stakeholders. In Proceedings of the 2019 Chi Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–12. [Google Scholar]
- Sullivan, Y.W.; Kim, D.J. Assessing the effects of consumers’ product evaluations and trust on repurchase intention in e-commerce environments. Int. J. Inf. Manag. 2018, 39, 199–219. [Google Scholar] [CrossRef]
- Alshurideh, M.; Salloum, S.A.; Al Kurdi, B.; Monem, A.A.; Shaalan, K. Understanding the quality determinants that influence the intention to use the mobile learning platforms: A practical study. Int. J. Interact. Mob. Technol. 2019, 13, 157–183. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, L.; Zhang, M.; Yang, J. Central or peripheral? Cognition elaboration cues’ effect on users’ continuance intention of mobile health applications in the developing markets. Int. J. Med. Inform. 2018, 116, 33–45. [Google Scholar] [CrossRef]
- King, W.R.; He, J. A meta-analysis of the technology acceptance model. Inform. Manag. 2006, 43, 740–755. [Google Scholar] [CrossRef]
Factor | Relational Information Presentation | Trust | Willingness to Recommend | Perceived Value | Guidance Information Presentation | Platform Information Presentation | Willingness to Participate |
---|---|---|---|---|---|---|---|
GIP1 | 0.135 | −0.033 | 0.231 | 0.561 | 0.552 | 0.002 | −0.056 |
GIP2 | 0.103 | 0.045 | 0.211 | 0.537 | 0.486 | 0.092 | −0.105 |
GIP3 | 0.142 | 0.188 | 0.106 | 0.119 | 0.758 | 0.119 | 0.052 |
GIP4 | 0.121 | 0.180 | 0.054 | −0.018 | 0.792 | 0.162 | 0.119 |
WTR1 | 0.102 | 0.235 | 0.838 | 0.109 | 0.129 | 0.204 | 0.147 |
WTR2 | 0.133 | 0.225 | 0.807 | 0.072 | 0.190 | 0.226 | 0.129 |
WTR3 | 0.074 | 0.294 | 0.808 | 0.152 | 0.049 | 0.137 | 0.102 |
T1 | 0.196 | 0.749 | 0.196 | 0.116 | 0.077 | 0.042 | 0.052 |
T2 | 0.078 | 0.749 | 0.066 | 0.211 | 0.129 | 0.127 | 0.104 |
T3 | 0.150 | 0.745 | 0.293 | 0.183 | 0.119 | 0.125 | 0.032 |
T4 | 0.015 | 0.754 | 0.193 | 0.000 | 0.117 | 0.139 | 0.030 |
RIP1 | 0.840 | 0.154 | 0.128 | 0.070 | 0.174 | 0.125 | 0.104 |
RIP2 | 0.829 | 0.191 | 0.127 | 0.079 | 0.139 | 0.112 | 0.107 |
RIP3 | 0.835 | 0.082 | 0.046 | 0.128 | 0.071 | 0.031 | 0.140 |
RIP4 | 0.753 | 0.002 | 0.014 | 0.201 | 0.037 | 0.076 | −0.077 |
PV1 | 0.174 | 0.225 | 0.129 | 0.742 | 0.050 | 0.129 | 0.229 |
PV2 | 0.224 | 0.256 | 0.011 | 0.691 | 0.056 | 0.178 | 0.274 |
PV3 | 0.157 | 0.165 | 0.077 | 0.655 | 0.021 | 0.404 | 0.236 |
WTP1 | −0.031 | 0.055 | 0.029 | 0.183 | 0.089 | 0.207 | 0.805 |
WTP2 | 0.176 | 0.041 | 0.226 | 0.121 | 0.023 | −0.057 | 0.814 |
WTP3 | 0.341 | 0.349 | 0.225 | 0.194 | −0.009 | 0.191 | 0.449 |
PIP1 | 0.077 | 0.237 | 0.323 | 0.207 | 0.185 | 0.562 | 0.196 |
PIP2 | 0.259 | 0.187 | 0.231 | 0.229 | 0.011 | 0.682 | 0.038 |
PIP3 | 0.061 | 0.095 | 0.154 | 0.120 | 0.225 | 0.803 | 0.063 |
Variable | Item | Loading | Cronbach’s α | CR | AVE |
---|---|---|---|---|---|
Platform Information Presentation | 3 | 0.74 0.71 0.64 | 0.687 | 0.740 | 0.487 |
Guidance Information Presentation | 4 | 0.69 0.66 0.65 0.61 | 0.712 | 0.748 | 0.427 |
Relational Information Presentation | 4 | 0.90 0.90 0.77 0.61 | 0.795 | 0.877 | 0.646 |
Perceived Value | 3 | 0.80 0.81 0.76 | 0.769 | 0.833 | 0.625 |
Trust | 4 | 0.72 0.71 0.84 0.68 | 0.798 | 0.828 | 0.548 |
Willingness to Participate | 3 | 0.59 0.64 0.72 | 0.803 | 0.688 | 0.425 |
Willingness to Recommend | 3 | 0.94 0.87 0.81 | 0.719 | 0.907 | 0.766 |
Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1. Platform Information Presentation | 0.698 | ||||||
2. Guidance Information Presentation | 0.463 | 0.653 | |||||
3. Relational Information Presentation | 0.360 | 0.362 | 0.804 | ||||
4. Perceived Value | 0.534 | 0.457 | 0.412 | 0.791 | |||
5. Trust | 0.473 | 0.384 | 0.330 | 0.441 | 0.740 | ||
6. Willingness to Participate | 0.441 | 0.268 | 0.364 | 0.530 | 0.386 | 0.652 | |
7. Willingness to Recommend | 0.553 | 0.409 | 0.293 | 0.393 | 0.540 | 0.432 | 0.875 |
Fit Index | x2/df | GFI | AGFI | CFI | IFI | RMSEA |
---|---|---|---|---|---|---|
Recommended Value | <2 | >0.90 | >0.80 | >0.90 | >0.90 | <0.08 |
Actual value | 1.763 | 0.874 | 0.841 | 0.932 | 0.933 | 0.058 |
Hypothesis | Standardized Path Coefficient | Standard Error | T Value | Conclusion |
---|---|---|---|---|
H1: Platform Information Presentation→Perceived Value | 0.49 *** | 0.146 | 4.387 | Support |
H2: Platform Information Presentation→Trust | 0.48 *** | 0.159 | 3.481 | Support |
H3: Guidance Information Presentation→Perceived Value | 0.20 * | 0.104 | 1.987 | Support |
H4: Guidance Information Presentation→Trust | 0.10 | 0.096 | 0.945 | Fail |
H5: Relational Information Presentation→Perceived Value | 0.19 * | 0.061 | 2.559 | Support |
H6: Relational Information Presentation→Trust | 0.13 | 0.057 | 1.699 | Fail |
H7: Perceived Value→Trust | 0.08 | 0.101 | 0.654 | Fail |
H8: Perceived Value→Willingness to Participate | 0.59 *** | 0.075 | 5.377 | Support |
H9: Perceived Value→Willingness to Recommend | 0.21 ** | 0.076 | 2.763 | Support |
H10: Trust→Willingness to Participate | 0.23 ** | 0.071 | 2.512 | Support |
H11: Trust→Willingness to Recommend | 0.52 *** | 0.097 | 6.065 | Support |
IV | MV | DV | IV→DV | IV + MV→DV | Test Results | ||
---|---|---|---|---|---|---|---|
IV→MV | IV→DV | MV→DV | |||||
Platform Information Presentation | Perceived Value | Willingness to Participate | 0.441 ** | 0.595 *** | 0.314 * | 0.276 *** | Partial mediating |
Platform Information Presentation | Perceived Value | Willingness to Recommend | 0.553 ** | 0.595 *** | 0.695 *** | 0.104 | Not significant |
Platform Information Presentation | Trust | Willingness to Participate | 0.441 ** | 0.489** | 0.314 * | 0.095 | Not significant |
Platform Information Presentation | Trust | Willingness to Recommend | 0.553 ** | 0.489 ** | 0.695 *** | 0.345 *** | Partial mediating |
Guidance Information Presentation | Perceived Value | Willingness to Participate | 0.268 ** | 0.245 * | 0.171 * | 0.276 *** | Partial mediating |
Guidance Information Presentation | Perceived Value | Willingness to Recommend | 0.409 ** | 0.245 * | 0.063 | 0.104 | Not significant |
Guidance Information Presentation | Trust | Willingness to Participate | 0.268 ** | 0.077 | 0.171 * | 0.095 | Not significant |
Guidance Information Presentation | Trust | Willingness to Recommend | 0.409 ** | 0.077 | 0.063 | 0.345 *** | Not significant |
Relational Information Presentation | Perceived Value | Willingness to Participate | 0.364 ** | 0.148 * | 0.099 * | 0.276 *** | Partial mediating |
Relational Information Presentation | Perceived Value | Willingness to Recommend | 0.293 ** | 0.148 * | 0.013 | 0.104 | Not significant |
Relational Information Presentation | Trust | Willingness to Participate | 0.364 ** | 0.091 | 0.099 * | 0.095 | Not significant |
Relational Information Presentation | Trust | Willingness to Recommend | 0.293 ** | 0.091 | 0.013 | 0.345 *** | Not significant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Lu, X.; Li, C.; Zhao, G. The Influence of Content Presentation on Users’ Intention to Adopt mHealth Applications: Based on the S-O-R Theoretical Model. Sustainability 2022, 14, 9900. https://doi.org/10.3390/su14169900
Liu Y, Lu X, Li C, Zhao G. The Influence of Content Presentation on Users’ Intention to Adopt mHealth Applications: Based on the S-O-R Theoretical Model. Sustainability. 2022; 14(16):9900. https://doi.org/10.3390/su14169900
Chicago/Turabian StyleLiu, Yizhi, Xuan Lu, Chengjiang Li, and Gang Zhao. 2022. "The Influence of Content Presentation on Users’ Intention to Adopt mHealth Applications: Based on the S-O-R Theoretical Model" Sustainability 14, no. 16: 9900. https://doi.org/10.3390/su14169900