Attitude, Self-Control, and Prosocial Norm to Predict Intention to Use Social Media Responsibly: From Scale to Model Fit towards a Modified Theory of Planned Behavior
Abstract
:1. Introduction
1.1. Literature Review and Hypothesis Development
1.1.1. Responsible Use of Social Media
1.1.2. Theory of Planned Behavior and its Modification
1.1.3. Intention
1.1.4. Attitude
1.1.5. Perceived Behavioral Control Versus Self-Control
1.1.6. Subjective Norms Versus Prosocial Norms
1.1.7. Interrelationships among Attitudes, Self-Control, and Prosocial Norms
1.1.8. Attitude and Behavioral Intention
1.1.9. Self-Control and Behavioral Intention
1.1.10. Prosocial Norms and Intention
2. Materials and Methods
2.1. Identification of Items, Face Validity, and Experts’ Content Validity
2.2. Questionnaire Design and Pretest
2.3. Sample and Data Collection
2.4. Data Analysis
3. Results
3.1. Social Media Users’ Profile
3.2. Results for the Measurement Model
3.3. Results for the Structural Model and Hypotheses Test
3.4. Model Fit
3.5. PLSpredict, Artificial Neural Network, and Importance-Performance Map Analysis
Artificial Neural Network (ANN) Analysis
4. Discussion
4.1. General Discussion of the Findings
4.2. Theoretical Implications
4.3. Practical Implications
4.4. Limitations and Direction for Future Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
DV * IV | Between Groups | Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|---|
ATT * SCA | (Combined) | 74.617 | 17 | 4.389 | 11.332 | 0.000 |
Linearity | 50.780 | 1 | 50.780 | 131.099 | 0.000 | |
Deviation from Linearity | 23.836 | 16 | 1.490 | 3.846 | 0.000 | |
ATT * PPN | (Combined) | 75.974 | 15 | 5.065 | 13.428 | 0.000 |
Linearity | 51.365 | 1 | 51.365 | 136.177 | 0.000 | |
Deviation from Linearity | 24.609 | 14 | 1.758 | 4.660 | 0.000 | |
SCA * ATT | (Combined) | 82.753 | 11 | 7.523 | 12.438 | 0.000 |
Linearity | 69.433 | 1 | 69.433 | 114.798 | 0.000 | |
Deviation from Linearity | 13.320 | 10 | 1.332 | 2.202 | 0.019 | |
SCA * PPN | (Combined) | 107.432 | 15 | 7.162 | 14.358 | 0.000 |
Linearity | 83.257 | 1 | 83.257 | 166.902 | 0.000 | |
Deviation from Linearity | 24.175 | 14 | 1.727 | 3.462 | 0.000 | |
PPN * ATT | (Combined) | 71.782 | 11 | 6.526 | 10.727 | 0.000 |
Linearity | 66.850 | 1 | 66.850 | 109.888 | 0.000 | |
Deviation from Linearity | 4.932 | 10 | 0.493 | 0.811 | 0.619 | |
PPN * SCA | (Combined) | 114.120 | 17 | 6.713 | 15.894 | 0.000 |
Linearity | 79.247 | 1 | 79.247 | 187.635 | 0.000 | |
Deviation from Linearity | 34.873 | 16 | 2.180 | 5.161 | 0.000 | |
IUSR * ATT | (Combined) | 86.182 | 11 | 7.835 | 19.335 | 0.000 |
Linearity | 78.514 | 1 | 78.514 | 193.760 | 0.000 | |
Deviation from Linearity | 7.669 | 10 | 0.767 | 1.893 | 0.048 | |
IUSR * SCA | (Combined) | 119.036 | 17 | 7.002 | 27.040 | 0.000 |
Linearity | 87.136 | 1 | 87.136 | 336.496 | 0.000 | |
Deviation from Linearity | 31.900 | 16 | 1.994 | 7.699 | 0.000 | |
IUSR * PPN | (Combined) | 113.539 | 15 | 7.569 | 26.779 | 0.000 |
Linearity | 87.128 | 1 | 87.128 | 308.243 | 0.000 | |
Deviation from Linearity | 26.411 | 14 | 1.886 | 6.674 | 0.000 |
Appendix B
References
- Aichner, T.; Grünfelder, M.; Maurer, O.; Jegeni, D. Twenty-Five Years of social media: A Review of Social Media Applications and Definitions from 1994 to 2019. Cyberpsychol. Behav. Soc. Netw. 2021, 24, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, K.K.; Tamilmani, K.; Rana, N.P.; Patil, P.; Dwivedi, Y.K.; Nerur, S. Advances in Social Media Research: Past, Present and Future. Inf. Syst. Front. 2018, 20, 531–558. [Google Scholar] [CrossRef]
- Carr, C.T.; Hayes, R.A. Social Media: Defining, Developing, and Divining. Atl. J. Commun. 2015, 23, 46–65. [Google Scholar] [CrossRef]
- Bishop, M. Healthcare Social Media for Consumer Informatics. In Consumer Informatics and Digital Health; Springer International Publishing: Cham, Switzerland, 2019; pp. 61–86. [Google Scholar] [CrossRef]
- Cohen-Almagor, R. Social Responsibility on the Internet: Addressing the Challenge of Cyberbullying. Aggress. Violent Behav. 2018, 39, 42–52. [Google Scholar] [CrossRef]
- Cohen-Almagor, R. Cyberbullying, Moral Responsibility, and Social Networking. Eur. J. Anal. Philos. 2020, 16, 75–98. [Google Scholar] [CrossRef]
- Cohen-Almagor, R.; Stamile, N. Freedom of Expression v. Social Responsibility on the Internet: Vivi Down Association v. Google. Seattle J. Technol. Environ. Innov. Law 2021, 11, 350–389. [Google Scholar]
- Loomba, S.; de Figueiredo, A.; Piatek, S.J.; de Graaf, K.; Larson, H.J. Measuring the Impact of COVID-19 Vaccine Misin-formation on Vaccination Intent in the UK and USA. Nat. Hum. Behav. 2021, 5, 337–348. [Google Scholar] [CrossRef]
- Marcial, D.E.; dela Peña, L.; Montemayor, J.; Dy, J. The Design of a Gamified Responsible Use of Social Media. Front. Educ. 2021, 6, 635278. [Google Scholar] [CrossRef]
- Bleize, D.N.M.; Anschütz, D.J.; Tanis, M.; Buijzen, M. The Effects of Group Centrality and Accountability on Conformity to Cyber Aggressive Norms: Two Messaging App Experiments. Comput. Hum. Behav. 2021, 120, 106754. [Google Scholar] [CrossRef]
- Zhong, J.; Qiu, J.; Sun, M.; Jin, X.; Zhang, J.; Guo, Y.; Qiu, X.; Xu, Y.; Huang, J.; Zheng, Y. To Be Ethical and Responsible Digital Citizens or Not: A Linguistic Analysis of Cyberbullying on Social Media. Front. Psychol. 2022, 13, 861823. [Google Scholar] [CrossRef]
- Dorner, S.C.; Swanson, M.B.; Zucker, S.M. The Responsible Use of Social Media among Medical Students and Resi-dents. AEM Educ. Train. 2020, 4, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, I.; Billieux, J.; Esposito, G.; Corazza, O. Assessing problematic use of social media: Where do we stand and what can be improved? Curr. Opin. Behav. Sci. 2022, 45, 101145. [Google Scholar] [CrossRef]
- Servidio, R.; Koronczai, B.; Griffiths, M.D.; Demetrovics, Z. Problematic Smartphone Use and Problematic Social Media Use: The Predictive Role of Self-Construal and the Mediating Effect of Fear Missing Out. Front. Public Health 2022, 10, 814468. [Google Scholar] [CrossRef]
- Hinduja, S.; Patchin, J.W. Digital Dating Abuse among a National Sample of U.S. Youth. J. Interpers. Violence 2020, 36, 11088–11108. [Google Scholar] [CrossRef]
- Belotti, F.; Ieracitano, F.; Donato, S.; Comunello, F. Towards ‘Romantic Media Ideologies’: Digital Dating Abuse Seen through the Lens of Social Media and/or Dating in Teenage Narratives. Commun. Rev. 2022, 25, 30–53. [Google Scholar] [CrossRef]
- Social Media & Technology Abuse Tearmann Society for Abused Women. Available online: http://tearmann.ca/about-abuse/digital-abuse/ (accessed on 22 July 2022).
- Chand, A.A. Abuse of social media during COVID-19 pandemic in Fiji. Int. J. Surg. 2021, 92, 106012. [Google Scholar] [CrossRef]
- Smerdon, D.; Offerman, T.; Gneezy, U. ‘Everybody’s Doing It’: On the Persistence of Bad Social Norms. Exp. Econ. 2020, 23, 392–420. [Google Scholar] [CrossRef]
- Chan, A.K.M.; Nickson, C.P.; Rudolph, J.W.; Lee, A.; Joynt, G.M. Social Media for Rapid Knowledge Dissemination: Early Experience from the COVID-19 Pandemic. Anaesthesia 2020, 75, 1579–1582. [Google Scholar] [CrossRef]
- Al-Zaman, M.S.; Sife, S.A.; Sultana, M.; Akbar, M.; Ahona, K.T.S.; Sarkar, N. Social Media Rumors in Bangladesh. J. Inf. Sci. Theory Pract. 2020, 8, 77–90. [Google Scholar] [CrossRef]
- Amit, S.; Barua, L.; Kafy, A.-A. Countering Violent Extremism Using Social Media and Preventing Implementable Strategies for Bangladesh. Heliyon 2021, 7, e07121. [Google Scholar] [CrossRef]
- Haque, M.M.; Yousuf, M.; Alam, A.S.; Saha, P.; Ahmed, S.I.; Hassan, N. Combating Misinformation in Bangladesh: Roles and Responsibilities as Perceived by Journalists, Fact-Checkers, and Users. Proc. ACM Hum. Comput. Interact. 2020, 4, 130. [Google Scholar] [CrossRef]
- Meggs, J.; Ahmed, W. Applying Cognitive Analytic Theory to Understand the Abuse of Athletes on Twitter. Manag. Sport Leis. 2021, 1–10. [Google Scholar] [CrossRef]
- Paat, Y.-F.; Markham, C. Digital Crime, Trauma, and Abuse: Internet Safety and Cyber Risks for Adolescents and Emerging Adults in the 21st Century. Soc. Work. Ment. Health 2021, 19, 18–40. [Google Scholar] [CrossRef]
- When Social Media Is Used for Abuse|Dhaka Tribune. Available online: https://archive.dhakatribune.com/opinion/op-ed/2020/02/15/when-social-media-is-used-for-abuse (accessed on 22 July 2022).
- Missimer, M.; Robèrt, K.-H.; Broman, G. A Strategic Approach to Social Sustainability—Part 2: A Principle-Based Definition. J. Clean. Prod. 2017, 140, 42–52. [Google Scholar] [CrossRef]
- Eizenberg, E.; Jabareen, Y. Social Sustainability: A New Conceptual Framework. Sustainability 2017, 9, 68. [Google Scholar] [CrossRef]
- Abed, A.; Al-Jokhadar, A. Common Space as a Tool for Social Sustainability. J. Housing Built Environ. 2022, 37, 399–421. [Google Scholar] [CrossRef]
- Talan, A.; Tyagi, R.D.; Surampalli, R.Y. Social Dimensions of Sustainability. In Sustainability: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2020; pp. 183–206. [Google Scholar]
- Rogge, N.; Theesfeld, I.; Strassner, C. Social Sustainability through Social Interaction—A National Survey on Community Gardens in Germany. Sustainability 2018, 10, 1085. [Google Scholar] [CrossRef]
- Munzel, A.; Meyer-Waarden, L.; Galan, J.-P. The Social Side of Sustainability: Well-Being as a Driver and an Outcome of Social Relationships and Interactions on Social Networking Sites. Technol. Forecast. Soc. Chang. 2018, 130, 14–27. [Google Scholar] [CrossRef]
- Schoormann, T.; Kutzner, K. Towards Understanding Social Sustainability: An Information Systems Research-Perspective. ICIS, India 2020. Available online: https://www.researchgate.net/profile/Thorsten-Schoormann/publication/344476023_Towards_Understanding_Social_Sustainability_An_Information_Systems_Research-Perspective/links/5fb62319458515b79750e72c/Towards-Understanding-Social-Sustainability-An-Information-Systems-Research-Perspective.pdf (accessed on 22 July 2022).
- Deeming, C. The ‘Social’in the Age of Sustainability. In The Struggle for Social Sustainability; Policy Press: Bristol, UK, 2021; pp. 1–36. [Google Scholar] [CrossRef]
- Bailey, E.R.; Matz, S.C.; Youyou, W.; Iyengar, S.S. Authentic Self-Expression on Social Media Is Associated with Greater Subjective Well-Being. Nat. Commun. 2020, 11, 4889. [Google Scholar] [CrossRef]
- Trivedi, V.; Pandey, K.K.; Trivedi, A. Prosumption for Social Sustainability: Social-Media Posting of DIY-Cooking Outcomes during COVID-19. J. Reliab. Stat. Stud. 2022, 15, 381–410. [Google Scholar] [CrossRef]
- Brenner, B.; Hartl, B. The Perceived Relationship between Digitalization and Ecological, Economic, and Social Sustainability. J. Clean. Prod. 2021, 315, 128128. [Google Scholar] [CrossRef]
- Islam, M.S.; Sujan, M.S.H.; Tasnim, R.; Ferdous, M.Z.; Masud, J.H.B.; Kundu, S.; Mosaddek, A.S.M.; Choudhuri, M.S.K.; Kircaburun, K.; Griffiths, M.D. Problematic Internet Use among Young and Adult Population in Bangladesh: Correlates with Lifestyle and Online Activities during the COVID-19 Pandemic. Addict. Behav. Rep. 2020, 12, 100311. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Sujan, M.S.H.; Tasnim, R.; Mohona, R.A.; Ferdous, M.Z.; Kamruzzaman, S.; Toma, T.Y.; Sakib, M.N.; Pinky, K.N.; Islam, M.R.; et al. Problematic Smartphone and Social Media Use among Bangladeshi College and University Students amid COVID-19: The Role of Psychological Well-Being and Pandemic Related Factors. Front. Psychiatry 2021, 12, 647386. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Khan, M.N.; Hoque, M.N.; Khan, M.M.A. Projection of Female Urban Population in Bangladesh: Projection of Female Urban Population. In Population Change and Public Policy; Springer International Publishing: Cham, Switzerland, 2020; pp. 433–444. [Google Scholar]
- Islam, M.M.; Islam, M.M.; Ahmed, F.; Rumana, A.S. Creative Social Media Use for COVID-19 Prevention in Bangladesh: A Structural Equation Modeling Approach. Soc. Netw. Anal. Min. 2021, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Hassan, T.; Alam, M.M.; Wahab, A.; Hawlader, M.D. Prevalence and Associated Factors of Internet Addiction among Young Adults in Bangladesh. J. Egypt. Public Health Assoc. 2020, 95, 3. [Google Scholar] [CrossRef]
- Social Network Users in Selected Countries in 2021 and 2025. Statista. Available online: https://www.statista.com/statistics/278341/number-of-social-network-users-in-selected-countries/ (accessed on 6 June 2022).
- Sayeed, A.; Hassan, M.N.; Rahman, M.H.; El Hayek, S.; Banna, M.H.A.; Mallick, T.; Hasan, A.-R.; Meem, A.E.; Kundu, S. Facebook Addiction Associated with Internet Activity, Depression and Behavioral Factors among University Students of Bangladesh: A Cross-Sectional Study. Child. Youth Serv. Rev. 2020, 118, 105424. [Google Scholar] [CrossRef]
- Kemp, S. Digital in Bangladesh: All the statistics you need in 2021—Data Reportal—Global Digital Insights. Available online: https://datareportal.com/reports/digital-2021-bangladesh (accessed on 6 June 2020).
- Sheldon, P.; Antony, M.G.; Sykes, B. Predictors of Problematic Social Media Use: Personality and Life-Position Indicators. Psychol. Rep. 2021, 124, 1110–1133. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.K. Online Activism, Social Movements and Mediated Politics in Contemporary Bangladesh. Soc. Cult. S. Asia 2019, 5, 193–215. [Google Scholar] [CrossRef]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Ajzen, I. The Theory of Planned Behavior: Frequently Asked Questions. Hum. Behav. Emerg. Tech. 2020, 2, 314–324. [Google Scholar] [CrossRef]
- Li, L.; Bautista, J.R. Incorporating Communication Factors in the Theory of Planned Behavior to Predict Chinese University Students’ Intention to Consume Genetically Modified Foods. Int. J. Commun. 2020, 14, 22. [Google Scholar]
- Lin, C.-Y.; Cheung, M.K.T.; Hung, A.T.F.; Poon, P.K.K.; Chan, S.C.C.; Chan, C.C.H. Can a Modified Theory of Planned Behavior Explain the Effects of Empowerment Education for People with Type 2 Diabetes? Ther. Adv. Endocrinol. Metab. 2020, 11, 2042018819897522. [Google Scholar] [CrossRef] [PubMed]
- Oteng-Peprah, M.; de Vries, N.; Acheampong, M.A. Households’ Willingness to Adopt Greywater Treatment Technologies in a Developing Country—Exploring a Modified Theory of Planned Behavior (TPB) Model Including Personal Norm. J. Environ. Manag. 2020, 254, 109807. [Google Scholar] [CrossRef]
- Casaló, L.V.; Flavián, C.; Ibáñez-Sánchez, S. Understanding Consumer Interaction on Instagram: The Role of Satisfaction, Hedonism, and Content Characteristics. Cyberpsychol. Behav. Soc. Netw. 2017, 20, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Hussein, R.S.; Mohamed, H.; Kais, A. Antecedents of Level of Social Media Use: Exploring the Mediating Effect of Usefulness, Attitude and Satisfaction. J. Mark. Commun. 2021, 1–22. [Google Scholar] [CrossRef]
- Sánchez-Fernández, R.; Jiménez-Castillo, D. How Social Media Influencers Affect Behavioral Intentions towards Recom-mended Brands: The Role of Emotional Attachment and Information Value. J. Mark. Manag. 2021, 37, 1123–1147. [Google Scholar] [CrossRef]
- Hagger, M.S.; Cameron, L.D.; Hamilton, K.; Hankonen, N.; Lintunen, T. The Handbook of Behavior Change the Handbook of Behavior Change; Hagger, M.S., Cameron, L.D., Hamilton, K., Hankonen, N., Lintunen, T., Eds.; Cambridge University Press (Virtual Publishing): Cambridge, UK, 2020. [Google Scholar]
- Bosnjak, M.; Ajzen, I.; Schmidt, P. The Theory of Planned Behavior: Selected Recent Advances and Applications. Eur. J. Psychol. 2020, 16, 352–356. [Google Scholar] [CrossRef]
- ElHaffar, G.; Durif, F.; Dubé, L. Towards Closing the Attitude-Intention-Behavior Gap in Green Consumption: A Narrative Review of the Literature and an Overview of Future Research Directions. J. Clean. Prod. 2020, 275, 122556. [Google Scholar] [CrossRef]
- Jung, H.; Seo, E.; Han, E.; Henderson, M.D.; Patall, E.A. Prosocial Modeling: A Meta-Analytic Review and Synthesis. Psychol. Bull. 2020, 146, 635–663. [Google Scholar] [CrossRef]
- Wang, J.; Shen, M.; Chu, M. Why Is Green Consumption Easier Said than Done? Exploring the Green Consumption Atti-tude-Intention Gap in China with Behavioral Reasoning Theory. Clean. Responsible Consum. 2021, 2, 100015. [Google Scholar] [CrossRef]
- Kamijo, Y.; Kira, Y.; Nitta, K. Even Bad Social Norms Promote Positive Interactions. Sci. Rep. 2020, 10, 8694. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Siegel, J.Z.; Clithero, J.A.; Crockett, M.J. How Peer Influence Shapes Value Computation in Moral Deci-sion-Making. Cognition 2021, 211, 104641. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Olmedo, A.M.; Carrero Bosch, I.; Martínez, C.V. Volition to Behave Sustainably: An Examination of the Role of Self-control. J. Consum. Behav. 2021, 20, 776–790. [Google Scholar] [CrossRef]
- Zahrai, K.; Veer, E.; Ballantine, P.W.; Vries, H.P.; Prayag, G. Either You Control Social Media or Social Media Controls You: Understanding the Impact of Self-control on Excessive Social Media Use from the Dual-system Perspective. J. Consum. Aff. 2022. [Google Scholar] [CrossRef]
- Curtis, G.J.; Cowcher, E.; Greene, B.R.; Rundle, K.; Paull, M.; Davis, M.C. Self-Control, Injunctive Norms, and Descriptive Norms Predict Engagement in Plagiarism in a Theory of Planned Behavior Model. J. Acad. Ethics 2018, 16, 225–239. [Google Scholar] [CrossRef]
- Pfeffer, I.; Englert, C.; Mueller-Alcazar, A. Perceived Stress and Trait Self-Control Interact with the Intention–Behavior Gap in Physical Activity Behavior. Sport Exerc. Perform. Psychol. 2020, 9, 244–260. [Google Scholar] [CrossRef]
- Fu, K.W.; Tremayne, K.S. Self-Efficacy and Self-Control Mediate the Relationship between Negative Emotions and Attitudes toward Plagiarism. J. Acad. Ethics 2021. [Google Scholar] [CrossRef]
- Mele, A.R.; Mele, W.H.L.T.W.P.A.R. Surrounding Self-Control; Mele, A.R., Ed.; Oxford University Press: New York, NY, USA, 2020. [Google Scholar]
- Wolfe, S.E.; Higgins, G.E. Self-Control and Perceived Behavioral Control: An Examination of College Student Drinking. Appl. Psychol. Crim. Justice 2008, 4, 108–134. [Google Scholar]
- Burt, C.H. Self-Control and Crime: Beyond Gottfredson and Hirschi’s Theory. Annu. Rev. Criminol. 2020, 3, 43–73. [Google Scholar] [CrossRef]
- Stults, B.J.; Hernandez, J.L.; Hay, C. Low Self-Control, Peer Delinquency, and Crime: Considering Gendered Pathways. J. Res. Crime Delinq. 2021, 58, 666–709. [Google Scholar] [CrossRef]
- Barauskaite, D.; Gineikiene, J.; Fennis, B.M.; Auruskeviciene, V.; Yamaguchi, M.; Kondo, N. Eating Healthy to Impress: How Conspicuous Consumption, Perceived Self-Control Motivation, and Descriptive Normative Influence Determine Functional Food Choices. Appetite 2018, 131, 59–67. [Google Scholar] [CrossRef]
- Sultan, P.; Tarafder, T.; Pearson, D.; Henryks, J. Intention-Behavior Gap and Perceived Behavioral Control-Behavior Gap in Theory of Planned Behavior: Moderating Roles of Communication, Satisfaction and Trust in Organic Food Consumption. Food Qual. Prefer. 2020, 81, 103838. [Google Scholar] [CrossRef]
- Abbink, K.; Gangadharan, L.; Handfield, T.; Thrasher, J. Peer punishment promotes enforcement of bad social norms. Nat. Commun. 2017, 8, 609. [Google Scholar] [CrossRef]
- Bicchieri, C. Norms in the Wild: How to Diagnose, Measure, and Change Social Norms; Oxford University Press: New York, NY, USA, 2017. [Google Scholar]
- Nogueira-Arjona, R.; Shannon, T.; Kehayes, I.-L.; Sherry, S.B.; Keough, M.T.; Stewart, S.H. Drinking to Keep Pace: A Study of the Moderating Influence of Extraversion on Alcohol Consumption Similarity in Drinking Buddy Dyads. Addict. Behav. 2019, 92, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Nook, E.C.; Ong, D.C.; Morelli, S.A.; Mitchell, J.P.; Zaki, J. Prosocial Conformity: Prosocial Norms Generalize across Behavior and Empathy: Prosocial Norms Generalize across Behavior and Empathy. Pers. Soc. Psychol. Bull. 2016, 42, 1045–1062. [Google Scholar] [CrossRef] [PubMed]
- Schacter, H.L.; Juvonen, J. You’ve Got a Friend(Ly School): Can School Prosocial Norms and Friends Similarly Protect Victims from Distress? Soc. Dev. 2018, 27, 636–651. [Google Scholar] [CrossRef]
- Costello, B.J.; Anderson, B.J.; Stein, M.D. Self-Control and Adverse “Drinking” Consequences. Deviant Behav. 2014, 35, 973–992. [Google Scholar] [CrossRef]
- Cao, Y.; Li, H. Toward Controlling of a Pandemic: How Self-Control Ability Influences Willingness to Take the COVID-19 Vaccine. Pers. Individ. Dif. 2022, 188, 111447. [Google Scholar] [CrossRef]
- Li, J.; Li, A.; Sun, Y.; Li, H.E.; Liu, L.; Zhan, Y.; Fan, W.; Zhong, Y. The Effect of Preceding Self-Control on Prosocial Behaviors: The Moderating Role of Awe. Front. Psychol. 2019, 10, 682. [Google Scholar] [CrossRef]
- Sanne, P.N.C.; Wiese, M. The Theory of Planned Behavior and User Engagement Applied to Facebook Advertising. S. Afr. J. Inf. Manag. 2018, 20, a915. [Google Scholar] [CrossRef]
- Kim, J.; Namkoong, K.; Chen, J. Predictors of Online News-Sharing Intention in the U.s and South Korea: An Application of the Theory of Reasoned Action. Commun. Stud. 2020, 71, 315–331. [Google Scholar] [CrossRef]
- Mittelman, R.; Rojas-Méndez, J. Why Canadians Give to Charity: An Extended Theory of Planned Behavior Model. Int. Rev. Public Nonprofit Mark. 2018, 15, 189–204. [Google Scholar] [CrossRef]
- Stephenson, V.L.; Wickham, B.M.; Capezza, N.M. Psychological abuse in the context of social media. Violence Gend. 2018, 5, 129–134. [Google Scholar] [CrossRef]
- Nyangeni, T.; Du Rand, S.; Van Rooyen, D. Perceptions of Nursing Students Regarding Responsible Use of Social Media in the Eastern Cape. Curationis 2015, 38, 1496. [Google Scholar] [CrossRef] [PubMed]
- Lysenstøen, C.; Bøe, T.; Hjetland, G.J.; Skogen, J.C. A Review of the Relationship between Social Media Use and Online Prosocial Behavior among Adolescents. Front. Psychol. 2021, 12, 579347. [Google Scholar] [CrossRef] [PubMed]
- Abu Bakar, S.H.; Wahab, H.A.; Rezaul Islam, M. Parental Attachment for At-Risk Children’s Antisocial Behavior: A Case of Malaysia. Child Care Pract. 2016, 22, 148–165. [Google Scholar] [CrossRef]
- Parlangeli, O.; Marchigiani, E.; Bracci, M.; Duguid, A.M.; Palmitesta, P.; Marti, P. Offensive Acts and Helping Behavior on the Internet: An Analysis of the Relationships between Moral Disengagement, Empathy and Use of Social Media in a Sample of Italian Students. Work 2019, 63, 469–477. [Google Scholar] [CrossRef]
- Porten-Cheé, P.; Kunst, M.; Emmer, M. Online Civic Intervention: A New Form of Political Participation under Conditions of a Disruptive Online Discourse. Int. J. Commun. 2020, 14, 21. [Google Scholar]
- Cross, D.; Barnes, A.; Papageorgiou, A.; Hadwen, K.; Hearn, L.; Lester, L. A Social–Ecological Framework for Understanding and Reducing Cyberbullying Behaviors. Aggress. Violent Behav. 2015, 23, 109–117. [Google Scholar] [CrossRef]
- Sauers, N.J.; Richardson, J.W. Leading the Pack: Developing Empowering Responsible Use Policies. J. Res. Technol. Educ. 2019, 51, 27–42. [Google Scholar] [CrossRef]
- Kaluarachchi, C.; Warren, M.; Jiang, F. Review: Responsible Use of Technology to Combat Cyberbullying among Adoles-cents. Aust. J. Inf. Syst. 2020, 24, 1–17. [Google Scholar] [CrossRef]
- Erreygers, S.; Vandebosch, H.; Vranjes, I.; Baillien, E.; De Witte, H. Development of a Measure of Adolescents’ Online Pro-social Behavior. J. Child. Media 2018, 12, 448–464. [Google Scholar] [CrossRef]
- Liu, C.-H.; Yin, X.-R.; Huang, P.-S. Cyberbullying: Effect of Emergency Perception on the Helping Tendencies of Bystand-ers. Telemat. Inform. 2021, 62, 101627. [Google Scholar] [CrossRef]
- Turel, O.; Mouttapa, M.; Donato, E. Preventing Problematic Internet Use through Video-Based Interventions: A Theoretical Model and Empirical Test. Behav. Inf. Technol. 2015, 34, 349–362. [Google Scholar] [CrossRef]
- Weber, M.; Viehmann, C.; Ziegele, M.; Schemer, C. Online Hate Does Not Stay Online—How Implicit and Explicit Attitudes Mediate the Effect of Civil Negativity and Hate in User Comments on Prosocial Behavior. Comput. Hum. Behav. 2020, 104, 106192. [Google Scholar] [CrossRef]
- Erreygers, S.; Vandebosch, H.; Vranjes, I.; Baillien, E.; De Witte, H. Nice or Naughty? The Role of Emotions and Digital Media Use in Explaining Adolescents’ Online Prosocial and Antisocial Behavior. Media Psychol. 2017, 20, 374–400. [Google Scholar] [CrossRef]
- Kyriacou, C.; Zuin, A. Cyberbullying and Moral Disengagement: An Analysis Based on a Social Pedagogy of Pastoral Care in Schools. Pastor. Care Educ. 2016, 34, 34–42. [Google Scholar] [CrossRef]
- Rudnicki, K.; Vandebosch, H.; Voué, P.; Poels, K. Systematic Review of Determinants and Consequences of Bystander Interventions in Online Hate and Cyberbullying among Adults. Behav. Inf. Technol. 2022, 1–18. [Google Scholar] [CrossRef]
- Sussman, R.; Gifford, R. Causality in the Theory of Planned Behavior. Pers. Soc. Psychol. Bull. 2019, 45, 920–933. [Google Scholar] [CrossRef]
- Ho, S.S.; Chen, L.; Ng, A.P.Y. Comparing Cyberbullying Perpetration on Social Media between Primary and Secondary School Students. Comput. Educ. 2017, 109, 74–84. [Google Scholar] [CrossRef]
- Banerjee, S.; Ho, S.S. Applying the Theory of Planned Behavior: Examining How Communication, Attitudes, Social Norms, and Perceived Behavioral Control Relate to Healthy Lifestyle Intention in Singapore. Int. J. Healthc. Manag. 2020, 13, 496–503. [Google Scholar] [CrossRef]
- Morwitz, V.G.; Munz, K.P. Intentions. Consum. Psychol. Rev. 2021, 4, 26–41. [Google Scholar] [CrossRef]
- Chen, M.-F. Modeling an Extended Theory of Planned Behavior Model to Predict Intention to Take Precautions to Avoid Consuming Food with Additives. Food Qual. Prefer. 2017, 58, 24–33. [Google Scholar] [CrossRef]
- Petty, R.E. A Metacognitive Model of Attitudes. J. Consum. Res. 2006, 33, 22–24. [Google Scholar] [CrossRef]
- Yzer, M. Perceived Behavioral Control in Reasoned Action Theory: A Dual-Aspect Interpretation. Ann. Am. Acad. Pol. Soc. Sci. 2012, 640, 101–117. [Google Scholar] [CrossRef]
- Kan, M.P.H.; Fabrigar, L.R. Theory of Planned Behavior. In Encyclopedia of Personality and Individual Differences; Springer International Publishing: Cham, Switzerland, 2020; pp. 5476–5483. [Google Scholar]
- Hofmann, V.; Müller, C.M. Avoiding Antisocial Behavior among Adolescents: The Positive Influence of Classmates’ Prosocial Behavior. J. Adolesc. 2018, 68, 136–145. [Google Scholar] [CrossRef]
- Gottfredson, M.R.; Hirschi, T. A General Theory of Crime; Stanford University Press: Palo Alto, CA, USA, 1990. [Google Scholar]
- Hirtenlehner, H.; & Leitgöb, H. Differential Self-control Effects: Moral Filtering and the Subsidiary Relevance of Self-control. Int Criminol. 2021, 1, 91–106. [Google Scholar] [CrossRef]
- Lianos, H.; McGrath, A. Can the General Theory of Crime and General Strain Theory Explain Cyberbullying Perpetration? Crime Delinq. 2018, 64, 674–700. [Google Scholar] [CrossRef]
- Kokkinos, C.M.; Vlavianou, E. The Moderating Role of Emotional Intelligence in the Association between Parenting Practices and Academic Achievement among Adolescents. Curr. Psychol. 2021, 40, 4333–4347. [Google Scholar] [CrossRef]
- Liu, Q.-Q.; Zhou, Z.-K.; Yang, X.-J.; Kong, F.-C.; Sun, X.-J.; Fan, C.-Y. Mindfulness and Sleep Quality in Adolescents: Analysis of Rumination as a Mediator and Self-Control as a Moderator. Pers. Individ. Dif. 2018, 122, 171–176. [Google Scholar] [CrossRef]
- Jenkins, W.J. A General Theory of Crime; Routledge: London, UK, 2017. [Google Scholar]
- de Ridder, D.T.D.; Lensvelt-Mulders, G.; Finkenauer, C.; Stok, F.M.; Baumeister, R.F. Taking Stock of Self-Control. In Self-Regulation and Self-Control; Routledge: London, UK, 2018; pp. 213–255. [Google Scholar]
- Converse, P.D.; Beverage, M.S.; Vaghef, K.; Moore, L.S. Self-Control over Time: Implications for Work, Relationship, and Well-Being Outcomes. J. Res. Pers. 2018, 73, 82–92. [Google Scholar] [CrossRef]
- Li, Q.; Xiang, G.; Song, S.; Xiao, M.; Chen, H. Trait Self-Control Mediates the Association between Resting-State Neural Correlates and Emotional Well-Being in Late Adolescence. Soc. Cogn. Affect. Neurosci. 2021, 16, 632–641. [Google Scholar] [CrossRef]
- Wiese, C.W.; Tay, L.; Duckworth, A.L.; D’Mello, S.; Kuykendall, L.; Hofmann, W.; Baumeister, R.F.; Vohs, K.D. Too Much of a Good Thing? Exploring the Inverted-U Relationship between Self-control and Happiness. J. Pers. 2018, 86, 380–396. [Google Scholar] [CrossRef] [PubMed]
- DeSmet, A.; Bastiaensens, S.; Van Cleemput, K.; Poels, K.; Vandebosch, H.; Deboutte, G.; Herrewijn, L.; Malliet, S.; Pabian, S.; Van Broeckhoven, F.; et al. The Efficacy of the Friendly Attac Serious Digital Game to Promote Prosocial Bystander Behavior in Cyberbullying among Young Adolescents: A Cluster-Randomized Controlled Trial. Comput. Hum. Behav. 2018, 78, 336–347. [Google Scholar] [CrossRef]
- Esmaeilzadeh, S.; Allahverdipour, H.; Fathi, B.; Shirzadi, S. Risk Perception of HIV/AIDS and Low Self-Control Trait: Explaining Preventative Behaviors among Iranian University Students. Glob. J. Health Sci. 2015, 8, 44. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Pang, T.W.-Y.; Chan, M.K.-Y.; Leung, S.; Chen, X.; Leung, C.; Zheng, Z.-J.; Wong, M.C.-S. Does Theory of Planned Behavior Play a Role in Predicting Uptake of Colorectal Cancer Screening? A Cross-Sectional Study in Hong Kong. BMJ Open 2020, 10, e037619. [Google Scholar] [CrossRef]
- Laninga-Wijnen, L.; Steglich, C.; Harakeh, Z.; Vollebergh, W.; Veenstra, R.; Dijkstra, J.K. The Role of Prosocial and Aggressive Popularity Norm Combinations in Prosocial and Aggressive Friendship Processes. J. Youth Adolesc. 2020, 49, 645–663. [Google Scholar] [CrossRef]
- Tweneboah-Koduah, E.Y.; Mann, V.E.; Adams, M. Using Motivation, Opportunity, and Ability Model in Social Marketing to Predict “Galamsey” Behavior in Ghana. Soc. Mar. Q. 2020, 26, 28–46. [Google Scholar] [CrossRef]
- Pilcher, J.J.; Bryant, S.A. Implications of Social Support as a Self-Control Resource. Front. Behav. Neurosci. 2016, 10, 228. [Google Scholar] [CrossRef]
- Kabiri, S.; Shadmanfaat, S.M. (shamila); Smith, H.; Choi, J. Antisocial Behavior in Soccer Players: Using an Integrated Mediation Model of Personal Control and Social Learning Theory. Soc. Sci. Q. 2020, 101, 1090–1114. [Google Scholar] [CrossRef]
- Clinkinbeard, S.S.; Rhodes, T.N. Propensity, Social Ties, Friend Behavior, and Heavy Drinking among College Students. J. Child Adolesc. Subst. Abuse 2014, 23, 362–374. [Google Scholar] [CrossRef]
- Blake, P.R.; Piovesan, M.; Montinari, N.; Warneken, F.; Gino, F. Prosocial Norms in the Classroom: The Role of Self-Regulation in Following Norms of Giving. J. Econ. Behav. Organ. 2015, 115, 18–29. [Google Scholar] [CrossRef]
- Wolff, W.; Martarelli, C.S.; Schüler, J.; Bieleke, M. High Boredom Proneness and Low Trait Self-Control Impair Adherence to Social Distancing Guidelines during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2020, 17, 5420. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.-J.; McGinley, M. The Associated Effects of Parent, Peer and Teacher Attachment and Self-Regulation on Prosocial Behaviors: A Person-and Variable-Centered Investigation. J. Soc. Pers. Relat. 2022, 026540752210952. [Google Scholar] [CrossRef]
- Chu, S.-C.; Chen, H.-T. Impact of Consumers’ Corporate Social Responsibility-related Activities in Social Media on Brand Attitude, Electronic Word-of-mouth Intention, and Purchase Intention: A Study of Chinese Consumer Behavior. J. Consum. Behav. 2019, 18, 453–462. [Google Scholar] [CrossRef]
- Zadeh, A.H.; Zolfagharian, M.; Hofacker, C.F. Customer–Customer Value Co-Creation in Social Media: Conceptualization and Antecedents. J. Strat. Mark. 2019, 27, 283–302. [Google Scholar] [CrossRef]
- Stavrova, O.; Pronk, T.; Kokkoris, M.D. Finding Meaning in Self-Control: The Effect of Self-Control on the Perception of Meaning in Life. Self Identity 2020, 19, 201–218. [Google Scholar] [CrossRef]
- Cudo, A.; Torój, M.; Demczuk, M.; Francuz, P. Dysfunction of Self-Control in Facebook Addiction: Impulsivity Is the Key. Psychiatr. Q. 2020, 91, 91–101. [Google Scholar] [CrossRef]
- Hilvert-Bruce, Z.; Neill, J.T. I’m Just Trolling: The Role of Normative Beliefs in Aggressive Behavior in Online Gaming. Comput. Hum. Behav. 2020, 102, 303–311. [Google Scholar] [CrossRef]
- Siu, A.M.H.; Shek, D.T.L.; Law, B. Prosocial Norms as a Positive Youth Development Construct: A Conceptual Re-view. Sci. World J. 2012, 2012, 832026. [Google Scholar] [CrossRef]
- Kowalski, R.M.; Limber, S.P.; McCord, A. A Developmental Approach to Cyberbullying: Prevalence and Protective Factors. Aggress. Violent Behav. 2019, 45, 20–32. [Google Scholar] [CrossRef]
- Jang, Y.-J.; Kim, H.-W.; Jung, Y. A Mixed Methods Approach to the Posting of Benevolent Comments Online. Int. J. Inf. Manag. 2016, 36, 414–424. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, Z.; Tian, Q. Religiosity and Prosocial Behavior at National Level. Psycholog. Relig. Spiritual. 2020, 12, 55–65. [Google Scholar] [CrossRef]
- Thakkar, J.J. Applications of Structural Equation Modelling with AMOS 21, IBM SPSS. In Structural Equation Modelling; Springer: Singapore, 2020; pp. 35–89. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming, 3rd ed.; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Dijkstra, T.K.; Henseler, J. Consistent and Asymptotically Normal PLS Estimators for Linear Structural Equations. Comput. Stat. Data Anal. 2015, 81, 10–23. [Google Scholar] [CrossRef]
- Sarstedt, M.; Cheah, J.-H. Partial Least Squares Structural Equation Modeling Using SmartPLS: A Software Review. J. Mark. Anal. 2019, 7, 196–202. [Google Scholar] [CrossRef]
- Ahmed, S.; Ting, D.H. Shopping Cues: Conceptualization, Scale Development, and Validation. Int. J. Mark. Res. 2020, 62, 95–112. [Google Scholar] [CrossRef]
- Carpenter, S. Ten Steps in Scale Development and Reporting: A Guide for Researchers. Commun. Methods Meas. 2018, 12, 25–44. [Google Scholar] [CrossRef]
- Mâță, L.; Clipa, O.; Tzafilkou, K. The Development and Validation of a Scale to Measure University Teachers’ Attitude towards Ethical Use of Information Technology for a Sustainable Education. Sustainability 2020, 12, 6268. [Google Scholar] [CrossRef]
- Waqas, M.; Salleh, N.A.M.; Hamzah, Z.L. Branded Content Experience in Social Media: Conceptualization, Scale Development, and Validation. J. Interact. Mark. 2021, 56, 106–120. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, H.; Hong, H. Scale Development and Validation for Psychological Reactance to Health Promotion Messages. Sustainability 2020, 12, 5816. [Google Scholar] [CrossRef]
- Vrbnjak, D.; Pahor, D.; Nelson, J.W.; Pajnkihar, M. Content Validity, Face Validity and Internal Consistency of the Slovene Version of Caring Factor Survey for Care Providers, Caring for Co-Workers and Caring of Managers. Scand. J. Caring Sci. 2017, 31, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Shrotryia, V.K.; Dhanda, U. Content Validity of Assessment Instrument for Employee Engagement. SAGE Open 2019, 9, 215824401882175. [Google Scholar] [CrossRef]
- Oktari, R.S.; Comfort, L.K.; Syamsidik; Dwitama, P. Measuring Coastal Cities’ Resilience toward Coastal Hazards: In-strument Development and Validation. Prog. Disaster Sci. 2020, 5, 100057. [Google Scholar] [CrossRef]
- Squires, J.E.; Estabrooks, C.A.; Newburn-Cook, C.V.; Gierl, M. Validation of the Conceptual Research Utilization Scale: An Application of the Standards for Educational and Psychological Testing in Healthcare. BMC Health Serv. Res. 2011, 11, 107. [Google Scholar] [CrossRef]
- Choukas-Bradley, S.; Nesi, J.; Widman, L.; Galla, B.M. The Appearance-Related Social Media Consciousness Scale: Devel-opment and Validation with Adolescents. Body Image 2020, 33, 164–174. [Google Scholar] [CrossRef]
- Waeterloos, C.; Walrave, M.; Ponnet, K. Designing and Validating the Social Media Political Participation Scale: An Instrument to Measure Political Participation on Social Media. Technol. Soc. 2021, 64, 101493. [Google Scholar] [CrossRef]
- Jones, L.M.; Mitchell, K.J. Defining and Measuring Youth Digital Citizenship. New Media Soc. 2016, 18, 2063–2079. [Google Scholar] [CrossRef]
- Barlett, C.P.; Helmstetter, K.; Gentile, D.A. The Development of a New Cyberbullying Attitude Measure. Comput. Human Behav. 2016, 64, 906–913. [Google Scholar] [CrossRef]
- Melović, B.; Stojanović, A.J.; Backović, T.; Dudić, B.; Kovačičová, Z. Research of Attitudes toward Online Vio-lence—Significance of Online Media and Social Marketing in the Function of Violence Prevention and Behavior Eval-uation. Sustainability 2020, 12, 10609. [Google Scholar] [CrossRef]
- Tangney, J.P.; Boone, A.L.; Baumeister, R.F. High Self-Control Predicts Good Adjustment, Less Pathology, Better Grades, and Interpersonal Success. In Self-Regulation and Self-Control; Routledge: London, UK, 2018; pp. 173–212. [Google Scholar] [CrossRef]
- Chiesi, F.; Bonacchi, A.; Lau, C.; Tosti, A.E.; Marra, F.; Saklofske, D.H. Measuring Self-Control across Gender, Age, Lan-guage, and Clinical Status: A Validation Study of the Italian Version of the Brief Self- Control Scale (BSCS). PLoS ONE 2020, 15, e0237729. [Google Scholar] [CrossRef]
- Geusens, F.; Bigman-Galimore, C.A.; Beullens, K. Identifying At-Risk Youth: The Moderating Role of Sensation Seeking, Sensitivity to Peer Pressure and Self-Control in the Relation between Sharing Alcohol References on Social Media and Drinking Intentions. Eur. J. Health Commun. 2020, 1, 7–29. [Google Scholar] [CrossRef]
- Mesch, G.S.; Dodel, M. Low Self-Control, Information Disclosure, and the Risk of Online Fraud. Am. Behav. Sci. 2018, 62, 1356–1371. [Google Scholar] [CrossRef]
- Luengo Kanacri, B.P.; Eisenberg, N.; Tramontano, C.; Zuffiano, A.; Caprara, M.G.; Regner, E.; Zhu, L.; Pastorelli, C.; Caprara, G.V. Measuring Prosocial Behaviors: Psychometric Properties and Cross-National Validation of the Proso-ciality Scale in Five Countries. Front. Psychol. 2021, 12, 693174. [Google Scholar] [CrossRef]
- Marino, C.; Gini, G.; Angelini, F.; Vieno, A.; Spada, M.M. Social norms and e-motions in problematic social media use among adolescents. Addict. Behav. Rep. 2020, 11, 100250. [Google Scholar] [CrossRef] [PubMed]
- Baumsteiger, R.; Siegel, J.T. Measuring Prosociality: The Development of a Prosocial Behavioral Intentions Scale. J. Pers. Assess. 2019, 101, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Leng, J.; Guo, Q.; Ma, B.; Zhang, S.; Sun, P. Bridging Personality and Online Prosocial Behavior: The Roles of Empathy, Moral Identity, and Social Self-Efficacy. Front. Psychol. 2020, 11, 575053. [Google Scholar] [CrossRef]
- Nieswiadomy, R.M.; Bailey, C. Foundations of Nursing Research Etext 2.0, 7th ed.; Pearson: Upper Saddle River, NJ, USA, 2021. [Google Scholar]
- Julious, S.A. Sample Size of 12 per Group Rule of Thumb for a Pilot Study, Pharmaceut. Pharmaceut. Stat. J. Appl. Stat. Pharm. Ind. 2005, 4, 287–291. [Google Scholar]
- Alam, M.Z.; Hu, W.; Kaium, M.A.; Hoque, M.R.; Alam, M.M.D. Understanding the Determinants of MHealth Apps Adoption in Bangladesh: A SEM-Neural Network Approach. Technol. Soc. 2020, 61, 101255. [Google Scholar] [CrossRef]
- Mondal, H.; Mondal, S.; Ghosal, T.; Mondal, S. Using Google Forms for Medical Survey: A Technical Note. Int. J. Clin. Exp. Physiol. 2019, 5, 216–218. [Google Scholar] [CrossRef]
- Rayhan, R.U.; Zheng, Y.; Uddin, E.; Timbol, C.; Adewuyi, O.; Baraniuk, J.N. Administer and Collect Medical Questionnaires with Google Documents: A Simple, Safe, and Free System. Appl. Med. Inform. 2013, 33, 12–21. [Google Scholar]
- Alharbi, M.A. Exploring the Potential of Google Doc in Facilitating Innovative Teaching and Learning Practices in an EFL Writing Course. Innov. Lang. Learn. Teach. 2020, 14, 227–242. [Google Scholar] [CrossRef]
- Creswell, J.W.; Creswell, J.D. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches; SAGE Publications: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Kyriazos, T.A. Applied Psychometrics: Sample Size and Sample Power Considerations in Factor Analysis (EFA, CFA) and SEM in General. Psychology 2018, 9, 2207–2230. [Google Scholar] [CrossRef]
- Lakens, D. Sample Size Justification. Collabra Psychol. 2022, 8, 33267. [Google Scholar] [CrossRef]
- Hair, J.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 3rd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2021. [Google Scholar]
- Sarstedt, M.; Hair, J.F., Jr.; Ringle, C.M. “PLS-SEM: Indeed a Silver Bullet”—Retrospective Observations and Recent Ad-vances. J. Mark. Theory Pract. 2022, 19, 139–152. [Google Scholar] [CrossRef]
- Whelan, E.; Islam, A.K.M.N.; Brooks, S. Applying the SOBC Paradigm to Explain How Social Media Overload Affects Academic Performance. Comput. Educ. 2020, 143, 103692. [Google Scholar] [CrossRef]
- Pick, M. Psychological Ownership in Social Media Influencer Marketing. Eur. Bus. Rev. 2021, 33. [Google Scholar] [CrossRef]
- Demircioğlu, Z.I.; Göncü Köse, A. Effects of attachment styles, dark triad, rejection sensitivity, and relationship satisfaction on social media addiction: A mediated model. Curr. Psychol. 2021, 40, 414–428. [Google Scholar] [CrossRef]
- Lee, D.; Ng, P.M.L.; Bogomolova, S. The Impact of University Brand Identification and EWOM Behaviour on Students’ Psychological Well-Being: A Multi-Group Analysis among Active and Passive Social Media Users. J. Mark. Manag. 2020, 36, 384–403. [Google Scholar] [CrossRef]
- Mohammed, A.; Ferraris, A. Factors Influencing User Participation in Social Media: Evidence from Twitter Usage during COVID-19 Pandemic in Saudi Arabia. Technol. Soc. 2021, 66, 101651. [Google Scholar] [CrossRef]
- Ashraf, M.H.; Zhang, J.; Özpolat, K. Antecedents of Blatant Benevolence on Social Media. Behav. Inf. Technol. 2022, 1–23. [Google Scholar] [CrossRef]
- Riley, R.D.; Ensor, J.; Snell, K.I.E.; Harrell, F.E., Jr.; Martin, G.P.; Reitsma, J.B.; Moons, K.G.M.; Collins, G.; van Smeden, M. Calculating the Sample Size Required for Developing a Clinical Prediction Model. BMJ 2020, 368, m441. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-Y. Statistical Notes for Clinical Researchers: Assessing Normal Distribution (2) Using Skewness and Kurtosis. Restor. Dent. Endod. 2013, 38, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Hair, J. Multivariate Data Analysis: A Global Perspective, 7th ed.; Prentice Hall: Bergen County, NJ, USA, 2010. [Google Scholar]
- Collier, J.E. Applied Structural Equation Modeling Using AMOS: Basic to Advanced Techniques; Routledge: London, UK, 2020. [Google Scholar]
- Siregar, J.J.; Wardaya Puspokusumo, R.A.A.; Rahayu, A. Analysis of Affecting Factors Technology Acceptance Model in the Application of Knowledge Management for Small Medium Enterprises in Industry Creative. Procedia Comput. Sci. 2017, 116, 500–508. [Google Scholar] [CrossRef]
- Brown, T.A. Confirmatory Factor Analysis for Applied Research, 2nd ed.; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to Use and How to Report the Results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Islam, A.K.M.N.; Laato, S.; Talukder, S.; Sutinen, E. Misinformation Sharing and Social Media Fatigue during COVID-19: An Affordance and Cognitive Load Perspective. Technol. Forecast. Soc. Chang. 2020, 159, 120201. [Google Scholar] [CrossRef] [PubMed]
- Sternad Zabukovšek, S.; Bobek, S.; Zabukovšek, U.; Kalinić, Z.; Tominc, P. Enhancing PLS-SEM-Enabled Research with ANN and IPMA: Research Study of Enterprise Resource Planning (ERP) Systems’ Acceptance Based on the Technology Acceptance Model (TAM). Mathematics 2022, 10, 1379. [Google Scholar] [CrossRef]
- Zafar, A.U.; Shen, J.; Shahzad, M.; Islam, T. Relation of Impulsive Urges and Sustainable Purchase Decisions in the Per-sonalized Environment of Social Media. Sustain. Prod. Consum. 2021, 25, 591–603. [Google Scholar] [CrossRef]
- Zijlmans, E.A.O.; Tijmstra, J.; van der Ark, L.A.; Sijtsma, K. Item-Score Reliability as a Selection Tool in Test Construc-tion. Front. Psychol. 2018, 9, 2298. [Google Scholar] [CrossRef]
- Davison, T.E.; Busija, L.; McCabe, M.P. Assessing Residents’ Perceptions of Their Relocation to Long-Term Care: Psycho-metric Validation of the View of Relocation Scale. J. Am. Med. Dir. Assoc. 2022, 23, 122–127. [Google Scholar] [CrossRef]
- Bozionelos, N.; Simmering, M.J. Methodological Threat or Myth? Evaluating the Current State of Evidence on Common Method Variance in Human Resource Management Research. Hum. Resour. Manag. J. 2022, 32, 194–215. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y.; Phillips, L.W. Assessing Construct Validity in Organizational Research. Adm. Sci. Q. 1991, 36, 421. [Google Scholar] [CrossRef]
- Tehseen, S.; Ramayah, T.; Sajilan, S. Testing and Controlling for Common Method Variance: A Review of Available Meth-ods. J. Manag. Sci. 2017, 4, 142–168. [Google Scholar] [CrossRef]
- Williams, L.J.; McGonagle, A.K. Four Research Designs and a Comprehensive Analysis Strategy for Investigating Common Method Variance with Self-Report Measures Using Latent Variables. J. Bus. Psychol. 2016, 31, 339–359. [Google Scholar] [CrossRef]
- Lai, M.H.C. Bootstrap Confidence Intervals for Multilevel Standardized Effect Size. Multivariate Behav. Res. 2021, 56, 558–578. [Google Scholar] [CrossRef] [PubMed]
- Tenenhaus, M.; Amato, S.; Vinzi, V.E. A Global Goodness-of-Ft Index for PLS Structural Equation Modelling. In Proceedings of the XLII SIS scientifc meeting, CLEUP, Padova, Italy, 9–11 June 2004; pp. 739–742. [Google Scholar]
- Chen, R.; Sharma, S.K. Learning and Self-Disclosure Behavior on Social Networking Sites: The Case of Facebook Users. Eur. J. Inf. Syst. 2015, 24, 93–106. [Google Scholar] [CrossRef]
- Priestley, M.; Mesoudi, A. Do Online Voting Patterns Reflect Evolved Features of Human Cognition? An Exploratory Empirical Investiga-tion. PLoS ONE 2015, 10, e0129703. [Google Scholar] [CrossRef]
- IBM Cloud Education. What Are Neural Networks? Available online: https://www.ibm.com/cloud/learn/neural-networks (accessed on 17 July 2022).
- Leong, L.-Y.; Hew, T.-S.; Ooi, K.-B.; Wei, J. Predicting Mobile Wallet Resistance: A Two-Staged Structural Equation Model-ing-Artificial Neural Network Approach. Int. J. Inf. Manag. 2020, 51, 102047. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Habibi, A.; Yusop, F.D.; Razak, R.A. The Dataset for Validation of Factors Affecting Pre-Service Teachers’ Use of ICT during Teaching Practices: Indonesian Context. Data Brief 2020, 28, 104875. [Google Scholar] [CrossRef]
- Andrade, E.F.; Pereira, L.J.; Orlando, D.R.; Peixoto, M.F.D.; Lee, S.A.; Castelo, P.M. Validation of the Brazilian Portuguese Version of the Obsession with COVID-19 Scale (BP-OCS) Using a Large University Sample in Brazil. Death Stud. 2022, 46, 1073–1079. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; Guilford Publications: New York, NY, USA, 2016. [Google Scholar]
- Bertsimas, D.; Sturt, B. Computation of Exact Bootstrap Confidence Intervals: Complexity and Deterministic Algo-rithms. Oper. Res. 2020, 68, 949–964. [Google Scholar] [CrossRef]
- Shmueli, G.; Sarstedt, M.; Hair, J.F.; Cheah, J.-H.; Ting, H.; Vaithilingam, S.; Ringle, C.M. Predictive Model Assessment in PLS-SEM: Guidelines for Using PLSpredict. Eur. J. Mark. 2019, 53, 2322–2347. [Google Scholar] [CrossRef]
- Bernerth, J.B.; Cole, M.S.; Taylor, E.C.; Walker, H.J. Control Variables in Leadership Research: A Qualitative and Quan-titative Review. J. Manag. 2018, 44, 131–160. [Google Scholar] [CrossRef]
- Hu, L.-T.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Struct. Equ. Modeling 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Dash, G.; Paul, J. CB-SEM vs PLS-SEM Methods for Research in Social Sciences and Technology Forecasting. Technol. Forecast. Soc. Chang. 2021, 173, 121092. [Google Scholar] [CrossRef]
- Serpas, D.G.; García, J.J.; Arellano-Morales, L. A Path Model of Racial/Ethnic Discrimination and Cardiovascular Disease Risk Factors among College Students of Color. J Am. Coll. Health 2020, 1–5. [Google Scholar] [CrossRef]
- Bollen, K.A.; Stine, R.A. Bootstrapping Goodness-of-Fit Measures in Structural Equation Models. Sociol. Methods Res. 1992, 21, 205–229. [Google Scholar] [CrossRef]
- Sharma, A.; Fadahunsi, A.; Abbas, H.; Pathak, V.K. A Multi-Analytic Approach to Predict Social Media Marketing Influence on Consumer Purchase Intention. J. Ind. Bus. Res. 2022, 14, 125–149. [Google Scholar] [CrossRef]
- Osgood, J.M.; Muraven, M. Self-Control Depletion Does Not Diminish Attitudes about Being Prosocial but Does Diminish Prosocial Behaviors. Basic Appl. Soc. Psych. 2015, 37, 68–80. [Google Scholar] [CrossRef]
- Joosten, A.; van Dijke, M.; Van Hiel, A.; De Cremer, D. Out of Control!? How Loss of Self-Control Influences Prosocial Behavior: The Role of Power and Moral Values. PLoS ONE 2015, 10, e0126377. [Google Scholar] [CrossRef]
- Barrett-Maitland, N.; Lynch, J. Social Media, Ethics and the Privacy Paradox. In Security and Privacy From a Legal, Ethical, and Technical Perspective; Intech Open: London, UK, 2020. [Google Scholar]
- Abdullah Moafa, F.; Ahmad, K.; Al-Rahmi, W.M.; Yahaya, N.; Bin Kamin, Y.; Alamri, M.M. Develop a Model to Measure the Ethical Effects of Students through Social Media Use. IEEE Access 2018, 6, 56685–56699. [Google Scholar] [CrossRef]
- Ali, S.H.; Foreman, J.; Capasso, A.; Jones, A.M.; Tozan, Y.; DiClemente, R.J. Social Media as a Recruitment Platform for a Nationwide Online Survey of COVID-19 Knowledge, Beliefs, and Practices in the United States: Methodology and Feasibility Analysis. BMC Med. Res. Methodol. 2020, 20, 116. [Google Scholar] [CrossRef]
- Apuke, O.D.; Omar, B. Fake News and COVID-19: Modelling the Predictors of Fake News Sharing among Social Media Users. Telemat. Inform. 2021, 56, 101475. [Google Scholar] [CrossRef] [PubMed]
- Emerson, R.W. Convenience Sampling Revisited: Embracing Its Limitations through Thoughtful Study Design. J. Vis. Impair. Blind. 2021, 115, 76–77. [Google Scholar] [CrossRef]
- Winton, B.G.; Sabol, M.A. A Multi-Group Analysis of Convenience Samples: Free, Cheap, Friendly, and Fancy Sources. Int. J. Soc. Methodol. 2021, 1–16. [Google Scholar] [CrossRef]
- Druckman, J.N.; Green, D.P. Advances in Experimental Political Science; Druckman, J., Green, D.P., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Wadsley, M.; Covey, J.; Ihssen, N. The Predictive Utility of Reward-Based Motives Underlying Excessive and Problematic Social Networking Site Use. Psychol. Rep. 2021, 332941211025271. [Google Scholar] [CrossRef]
- Rahman, S.; Ramakrishnan, T.; Ngamassi, L. Impact of Social Media Use on Student Satisfaction in Higher Education. High. Educ. Q. 2020, 74, 304–319. [Google Scholar] [CrossRef]
- Rivera, J.D. When Attaining the Best Sample Is out of Reach: Nonprobability Alternatives When Engaging in Public Ad-ministration Research. J. Publ. Aff. Educ. 2019, 25, 314–342. [Google Scholar] [CrossRef]
- Turner, D.P. Sampling Methods in Research Design. Headache 2020, 60, 8–12. [Google Scholar] [CrossRef]
- Ørmen, J. Quantitative Approaches to Media and Communication Research. In A Handbook of Media and Communication Research, 3rd ed.; Routledge: New York, NY, USA, 2021. [Google Scholar]
- Coppock, A.; McClellan, O.A. Validating the Demographic, Political, Psychological, and Experimental Results Obtained from a New Source of Online Survey Respondents. Res. Politics 2019, 6, 205316801882217. [Google Scholar] [CrossRef]
- Rossini, P.; Stromer-Galley, J.; Baptista, E.A.; Veiga de Oliveira, V. Dysfunctional Information Sharing on WhatsApp and Facebook: The Role of Political Talk, Cross-Cutting Exposure and Social Corrections. New Media Soc. 2021, 23, 2430. [Google Scholar] [CrossRef]
- Al-Maroof, R.; Ayoubi, K.; Alhumaid, K.; Aburayya, A.; Alshurideh, M.; Alfaisal, R.; Salloum, S. The Acceptance of Social Media Video for Knowledge Acquisition, Sharing and Application: A Com-Parative Study among YouTube Users and TikTok Users’ for Medical Purposes. Int. J. Data Netw. Sci. 2021, 5, 197–214. [Google Scholar] [CrossRef]
- Patmanthara, S.; Febiharsa, D.; Dwiyanto, F.A. Social Media as a Learning Media: A Comparative Analysis of Youtube, WhatsApp, Facebook and Instagram Utillization. In Proceedings of the 2019 International Conference on Electrical, Electronics and Information Engineering (ICEEIE), Denpasar, Bali, Indonesia, 3–4 October 2019; pp. 183–186. [Google Scholar] [CrossRef]
- Buf, D.-M.; Ștefăniță, O. Uses and Gratifications of YouTube: A Comparative Analysis of Users and Content Creators. Romanian J. Commun. Public Relat. 2020, 22, 75–89. [Google Scholar] [CrossRef]
- Kılınç, D.D. Is the Information about Orthodontics on Youtube and TikTok Reliable for the Oral Health of the Public? A Cross Sectional Comparative Study. J. Stomatol. Oral Maxillofac. Surg. 2022. [Google Scholar] [CrossRef]
- Shu, S.; Woo, B.K.P. The Roles of YouTube and WhatsApp in Dementia Education for the Older Chinese American Popu-lation: Longitudinal Analysis. JMIR Aging 2020, 3, e18179. [Google Scholar] [CrossRef] [PubMed]
- Rozgonjuk, D.; Sindermann, C.; Elhai, J.D.; Montag, C. Comparing Smartphone, WhatsApp, Facebook, Instagram, and Snapchat: Which Platform Elicits the Greatest Use Disorder Symptoms? Cyberpsychology Behav. Soc. Netw. 2021, 24, 129–134. [Google Scholar] [CrossRef]
- Al-Kandari, A.A.; Dashti, A. Fatwa and the Internet: A Study of the Influence of Muslim Religious Scholars on Internet Diffusion in Saudi Arabia. Prometheus 2014, 32, 127–144. [Google Scholar] [CrossRef]
- Daskal, E.; Wentrup, R.; Shefet, D. Taming the Internet Trolls With an Internet Ombudsperson: Ethical Social Media Regu-lation. Policy Internet 2020, 12, 207–224. [Google Scholar] [CrossRef]
- Rubenking, B. Emotion, Attitudes, Norms and Sources: Exploring Sharing Intent of Disgusting Online Videos. Comput. Human Behav. 2019, 96, 63–71. [Google Scholar] [CrossRef]
- Hughes, J.N.; Cao, Q.; Kwok, O.-M. Indirect Effects of Extracurricular Participation on Academic Adjustment via Perceived Friends’ Prosocial Norms. J. Youth Adolesc. 2016, 45, 2260–2277. [Google Scholar] [CrossRef]
- van den Broek, T.A.; Need, A.; Ehrenhard, M.L.; Priante, A.; Hiemstra, D. The Influence of Network Structure and Prosocial Cultural Norms on Charitable Giving: A Multilevel Analysis of Movember’s Fundraising Campaigns in 24 Coun-tries. Soc. Netw. 2019, 58, 128–135. [Google Scholar] [CrossRef]
- Choi, J.; Seo, S. Goodwill Intended for Whom? Examining Factors Influencing Conspicuous Prosocial Behavior on Social Media. Int. J. Hosp. Manag. 2017, 60, 23–32. [Google Scholar] [CrossRef]
- Barua, Z.; Barua, S.; Aktar, S.; Kabir, N.; Li, M. Effects of Misinformation on COVID-19 Individual Responses and Recom-mendations for Resilience of Disastrous Consequences of Misinformation. Prog. Disaster Sci. 2020, 8, 100119. [Google Scholar] [CrossRef]
- Zhang, A.; Rau, P.-L.P. A Review and Reappraisal of Social Media Misuse: Measurements, Consequences, and Predictors. Int. J. Hum.–Comput. Interact. 2021, 37, 1–14. [Google Scholar] [CrossRef]
- Armstrong-Carter, E.; Telzer, E.H. Advancing Measurement and Research on Youths’ Prosocial Behavior in the Digital Age. Child Dev. Perspect. 2021, 15, 31–36. [Google Scholar] [CrossRef]
- Yu, C.; Ye, B.; Ma, S. Creating for Others: Linking Prosocial Motivation and Social Entrepreneurship Intentions. Manag. Decis. 2020, 59, 2755–2773. [Google Scholar] [CrossRef]
- Zeng, P.; Zhao, X.; Xie, X.; Long, J.; Jiang, Q.; Wang, Y.; Qi, L.; Lei, L.; Wang, P. Moral Perfectionism and Online Prosocial Behavior: The Mediating Role of Moral Identity and the Moderating Role of Online Interpersonal Trust. Personal. Individ. Differ. 2020, 162, 110017. [Google Scholar] [CrossRef]
- Agbaria, Q.; Bdier, D. The Role of Self-Control and Identity Status as Predictors of Internet Addiction among Israeli-Palestinian College Stu-dents in Israel. Int. J. Ment. Health Addict. 2021, 19, 252–266. [Google Scholar] [CrossRef]
- Janoski, T.; Musick, M.; Wilson, J. Being volunteered? The impact of social participation and pro-social attitudes on volunteering. Sociol. Forum 1998, 13, 495–519. [Google Scholar] [CrossRef]
- Bolin, A.U. Self-Control, Perceived Opportunity, and Attitudes as Predictors of Academic Dishonesty. J. Psychol. 2004, 138, 101–114. [Google Scholar] [CrossRef]
- Manca, S.; Bocconi, S.; Gleason, B. “Think Globally, Act Locally”: A Glocal Approach to the Development of Social Media Literacy. Comput. Educ. 2021, 160, 104025. [Google Scholar] [CrossRef]
- Festl, R. Social Media Literacy & Adolescent Social Online Behavior in Germany. J. Child. Media 2021, 15, 249–271. [Google Scholar] [CrossRef]
- Raza, A.; Usman, M.; Ali, M. Examining How and When Facebook Intensive Use Shapes Users’ Online pro-Social Behaviors. Telemat. Inform. 2022, 67, 101753. [Google Scholar] [CrossRef]
- Wong, T.C.; Chan, H.K.; Lacka, E. An ANN-based approach of interpreting user-generated comments from social me-dia. Appl. Soft Comput. 2017, 52, 1169–1180. [Google Scholar] [CrossRef]
- Khatua, A.; Khatua, A.; Cambria, E. Predicting political sentiments of voters from Twitter in multi-party contexts. Appl. Soft Comput. 2020, 97, 106743. [Google Scholar] [CrossRef]
Code: | Item Description (Used as a Statement in the Questionnaire) | Sub-Themes | Initial Face Validity: Majority 1 or 0 | Experts’ Content Validity: I-CVI, Kappa, CVR | Scale S-CVI/U, S-CVI/Avg | Retained or Not I-CVI ≥ 0.83; Kappa > 0.74; CVR ≥ 0.99 | References |
---|---|---|---|---|---|---|---|
Theme/construct 1: Attitude to use social media responsibly (ATT) | |||||||
ATT1 | If I avoid problematic use of social media, that will enhance my effectiveness online. | Cognitive | 1 | 1,1,1 | 0.83, 0.94 | √ | [96] |
ATT2 | I like to present myself online as someone making positive choices. | Affective | 1 | 1,1,1 | √ | [155] | |
ATT3 | My favorite places online are where people are respectful to each other. | Behavioral | 1 | 1,1,1 | √ | ||
ATT4 | Teasing or making fun of others online with comments is enjoyable to me. | Affective | 1 | 1,1,1 | √ | [96,156] | |
ATT5 | Although I am not in face-to-face contact with others, I cannot do whatever I like on social media. | Cognitive | 1 | 1,1,1 | √ | ||
ATT6 | I should work continuously on raising awareness about online violence and its consequences | Behavioral | 1 | 0.66, −4.33, 0.33 | X | [157] | |
Theme/construct 2: Self-control ability to use social media responsibly (SCA) | |||||||
SCA1 | I need to be good at resisting temptation on social media | Restraint | 1 | 1,1,1 | 0.75, 0.95 | √ | [158,159] |
SCA2 | I need to refuse things to do on social media that are bad for me and others | Performance | 1 | 1,1,1 | √ | ||
SCA3 | Sometimes I cannot stop myself from doing something unexpected on social media due to situational factors, even though I know it is wrong. | Emotions | 1 | 0.83, 0.81,1, | √ | ||
SCA4 | I wish I had more self-discipline. | Thoughts | 1 | 1,1,1 | √ | ||
SCA5 | I lose my temper pretty easily and can’t control myself on social media | Emotions | 0 | N/A | X | [160,161] | |
Theme/construct 3: Perceived prosocial norms for the use of social media responsibly (PPN) | |||||||
PPN1 | I am emphatic with those who are in trouble with social media-related issues. | Emphatic | 1 | 1,1,1 | 1,1 | √ | [162] |
PPN2 | I intensely feel what others feel in good deeds. | Good feelings | 1 | 1,1,1 | √ | ||
PPN3 | I feel the necessity to support those who are the victim on social media | Helping | 1 | 1,1,1 | √ | ||
PPN4 | I immediately sense my friends’ discomfort online, and even they do not directly communicate with me. | Sorrow-feelings | 1 | 1,1,1 | √ | ||
PPN5 | My friends think that it is essential that I always use social media to get in touch | Close norms | 0 | N/A | X | [163] | |
Theme/construct 4: Behavioral intention to use social media responsibly (IUSR) | |||||||
IUSR1 | I can guarantee that I will always justify before posting/sharing/commenting on any photos/videos/texts so that it does not go in the wrong way or embarrass others | Perfection | 1 | 1,1,1 | 0.80, 0.96 | √ | [10,94,155] |
IUSR2 | I can guarantee that I am not intended to share or add arguments to rumors on the internet. | Non-disturbance | 1 | 0.83, 0.81,1 | √ | [94,155] | |
IUSR3 | I am intended to use social media for creative learning and sharing (e.g., posting, sharing/reading, writing, seeing photos or flyers, watching videos) about positive social, cultural, or religious issues. | Creative | 1 | 1,1,1 | √ | [41,64,155] | |
IUSR4 | I will console and support those victimized or who experienced any hardship online. | Helping | 1 | 1,1,1 | √ | [80,95,164] | |
IUSR5 | I am intended to guide my friends on how to use the internet more efficiently/acceptably | Mentoring | 1 | 1,1,1 | √ | [155,165] | |
IUSR6 | If I get something wrong with me on social media, I am not intended to do something wrong | Kind | 0 | N/A | X | [94,163] |
Mostly Used Social Media | Gender | Description of the Daily Usage of Social Media | |||
---|---|---|---|---|---|
% | Category | % | Category | % | |
0.9 | Male | 71.8 | 30 min | 2.6 | |
1.8 | Female | 28.2 | 30–60 min | 7.0 | |
2.2 | 60–90 min | 21.1 | |||
3.5 | 90–120 min | 18.1 | |||
YouTube | 10.6 | 120–150 min | 11.9 | ||
Messenger | 5.3 | 150–180 min | 15.4 | ||
75.8 | 180–210 min | 23.8 | |||
Mins | |||||
Mean | 141.24 | ||||
Std. Deviation | 53.09 | ||||
Range | 180.00 |
Constructs (CA) | Code | Mean a | SD a | CIT a | SMC a | KMO, BTS- χ2. df = 6 *** | Eigenvalues a | Variance explained a | LEF a | LPLS b | VIF b | LCB c | Sig bc |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ATT (0.857) | ATT1 | 6.03 | 1.028 | 0.678 | 0.550 | 0.822, 396.616 | 2.422 | 60.540% | 0.745 | 0.740 | 1.874 | 0.742 | *** |
ATT2 | 6.04 | 1.023 | 0.656 | 0.509 | 0.717 | 0.710 | 1.765 | 0.713 | *** | ||||
ATT3 | 6.01 | 0.961 | 0.731 | 0.665 | 0.814 | 0.815 | 2.198 | 0.815 | *** | ||||
ATT5 | 6.08 | 0.955 | 0.743 | 0.697 | 0.831 | 0.842 | 2.287 | 0.835 | *** | ||||
SCA (0.881) | SCA1 | 6.07 | 1.050 | 0.718 | 0.606 | 0.835, 476.236 | 2.622 | 65.554% | 0.774 | 0.788 | 2.084 | 0.778 | *** |
SCA2 | 6.00 | 1.106 | 0.769 | 0.689 | 0.838 | 0.805 | 2.496 | 0.830 | *** | ||||
SCA3 | 5.92 | 1.240 | 0.718 | 0.606 | 0.773 | 0.792 | 2.074 | 0.778 | *** | ||||
SCA4 | 6.02 | 1.119 | 0.776 | 0.723 | 0.850 | 0.851 | 2.583 | 0.850 | *** | ||||
PPN (0.892) | PPN1 | 6.13 | 1.037 | 0.782 | 0.717 | 0.832, 535.049 | 2.725 | 68.132% | 0.844 | 0.827 | 2.674 | 0.847 | *** |
PPN2 | 6.08 | 1.080 | 0.720 | 0.772 | 0.891 | 0.822 | 3.198 | 0.803 | *** | ||||
PPN3 | 6.02 | 1.135 | 0.684 | 0.568 | 0.724 | 0.870 | 1.880 | 0.754 | *** | ||||
PPN4 | 6.00 | 1.106 | 0.774 | 0.679 | 0.835 | 0.776 | 2.622 | 0.824 | *** | ||||
IUSR (0.879) | IUSR1 | 6.09 | 1.026 | 0.709 | 0.754 | 0.834, 459.361 | 2.586 | 64.660% | 0.783 | 0.774 | 2.124 | 0.777 | *** |
IUSR3 | 6.15 | 0.983 | 0.786 | 0.723 | 0.822 | 0.866 | 2.331 | 0.843 | *** | ||||
IUSR4 | 6.11 | 0.997 | 0.721 | 0.715 | 0.775 | 0.793 | 2.076 | 0.782 | *** | ||||
IUSR5 | 6.05 | 1.084 | 0.728 | 0.764 | 0.835 | 0.791 | 2.418 | 0.811 | *** |
Internal Consistency Reliability (PLSc-SEM/CB-SEM *) | Convergent Validity (PLSc-SEM/CB-SEM *) | Discriminant Validity (PLSc-SEM) | ||||||
---|---|---|---|---|---|---|---|---|
HTMT/ FLC | ATT | PPN | SCA | IUSR | ||||
Constructs | CR | CA | AVE | ATT | 0.778 F | |||
ATT | 0.859/0.859 | 0.857/0.874 | 0.610/0.605 | PPN | 0.658/0.658 F | 0.822 F | ||
SCA | 0.882/0.884 | 0.881/0.898 | 0.654/0.655 | SCA | 0.659/0.657 F | 0.703/0.706 F | 0.809 F | |
PPN | 0.891/0.896 | 0.891/0.900 | 0.675/0.684 | IUSR | 0.778/0.778 F | 0.801/0.803 F | 0.808/0.807 F | 0.804 F |
IUSR | 0.882/0.879 | 0.880/0.918 | 0.655/0.646 |
PLSc-SEM/CB-SEM Structural Model Results | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Constructs | LVC | VIF | Predictability | Path Coefficients | Decisions on Hypotheses * | |||||
R2 | Q2 | t /CR | β | 5% CI | 95% CI | p | ||||
ATT→IUSR | 0.779/0.782 | 2.029 | 0.810/0.804 | 0.640 | 2.688/4.642 | 0.319/0.342 | 0.162/0.185 | 0.562/0.587 | 0.004/0.002 | Supported |
PPN→IUSR | 0.808/0.783 | 2.296 | 2.323/4.195 | 0.344/0.308 | 0.128/0.108 | 0.604/0.586 | 0.011/0.015 | Supported | ||
SCA→IUSR | 0.810/0.802 | 2.290 | 2.142/4.833 | 0.355/0.368 | 0.103/0.118 | 0.646/0.665 | 0.020/0.015 | Supported | ||
PPN→ATT | 0.666/0.652 | 0.534/0.504 | 0.360 | 2.092/4.257 | 0.395/0.388 | 0.082/0.107 | 0.691/0.682 | 0.018/0.033 | supported | |
SCA→ATT | 0.661/0.651 | 2.146/4.137 | 0.379/0.385 | 0.095/0.128 | 0.681/0.668 | 0.016/0.016 | supported | |||
ATT→SCA | 0.661/0.651 | 0.563/0.543 | 0.430 | 2.416/4.083 | 0.327/0.354 | 0.107/0.119 | 0.563/0.568 | 0.008/0.017 | supported | |
PPN→SCA | 0.712/0.686 | 3.556/5.363 | 0.499/0.455 | 0.272/0.240 | 0.711/0.711 | 0.000/0.000 | supported | |||
ATT→PPN | 0.666/0.652 | 0.564/0.544 | 0.427 | 2.275/4.231 | 0.338/0.357 | 0.083/0.094 | 0.574/0.589 | 0.011/0.036 | Supported | |
SCA→PPN | 0.712/0.686 | 3.485/5.304 | 0.492/0.454 | 0.278/0.234 | 0.724/0.721 | 0.000/0.000 | supported |
Mediation Analysis: PLS-SEM/CB-SEM | ||||||
---|---|---|---|---|---|---|
Constructs | Path Coefficients | Decisions on Hypotheses * | ||||
t | β | 5% CI | 95% CI | p | ||
PPN→ATT→IUSR | 1.769 | 0.121/0.133 | 0.036 | 0.271 | 0.038 | Partial mediation |
SCA→ATT→IUSR | 1.538 | 0.124/0.132 | 0.026 | 0.299 | 0.062 | No mediation |
PPN→SCA→IUSR | 1.625 | 0.182/0.168 | 0.021 | 0.370 | 0.052 | No mediation |
ATT→SCA→IUSR | 1.601 | 0.117/0.130 | 0.014 | 0.252 | 0.055 | No mediation |
ATT→PPN→IUSR | 1.428 | 0.122/0.112 | 0.022 | 0.280 | 0.077 | No mediation |
SCA→PPN→IUSR | 1.911 | 0.166/0.143 | 0.063 | 0.341 | 0.028 | Partial mediation |
Model Fit Indices * | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PLSc-SEM | CB-SEM | ||||||||||||
NFI | SRMR | d_ULS | d_G | SRMSR | NFI/ PNFI | CFI/ PCFI | TLI | GFI/ PGFI | RMSEA | PCLOSE | CMIN/df | Bollen-Stine bootstrap p | |
0.920 | 0.033 | 0.149 | 0.174 | 0.038 | 0.931/ 0.760 | 0.968/ 0.791 | 0.961 | 0.916/0.660 | 0.059 | 0.145 | 174.76/98 = 1.783 | 0.190 | |
GoF | 0.725 |
Items | PLS | LM | Difference between PLS and LM | Decision a | |||
---|---|---|---|---|---|---|---|
RMSE | MEA | RMSE | MEA | RMSE | MEA | ||
ATT2 | 0.9108 | 0.6331 | 0.9312 | 0.6534 | 0.0203 | 0.0203 | High predictive power |
ATT1 | 0.8982 | 0.6339 | 0.9079 | 0.6502 | 0.0097 | 0.0162 | |
ATT3 | 0.8112 | 0.5890 | 0.8326 | 0.5920 | 0.0214 | 0.0030 | |
ATT5 | 0.8056 | 0.6059 | 0.8316 | 0.6113 | 0.0260 | 0.0054 | |
SCA2 | 0.9173 | 0.5860 | 0.9396 | 0.6015 | 0.0223 | 0.0155 | High predictive power |
SCA1 | 0.8904 | 0.5890 | 0.8774 | 0.5916 | −0.0130 | 0.0027 | |
SCA4 | 0.8872 | 0.5664 | 0.9100 | 0.5682 | 0.0228 | 0.0018 | |
SCA3 | 1.0353 | 0.6409 | 1.0689 | 0.6620 | 0.0337 | 0.0211 | |
PPN4 | 0.9395 | 0.6070 | 0.9606 | 0.6456 | 0.0211 | 0.0386 | High predictive power |
PPN2 | 0.8842 | 0.5307 | 0.8883 | 0.5517 | 0.0040 | 0.0211 | |
PPN3 | 0.8988 | 0.5869 | 0.9158 | 0.5694 | 0.0170 | −0.0176 | |
PPN1 | 0.8544 | 0.5330 | 0.8698 | 0.5540 | 0.0154 | 0.0210 | |
IUSR4 | 0.7454 | 0.4393 | 0.7829 | 0.4705 | 0.0375 | 0.0312 | High predictive power |
IUSR3 | 0.6645 | 0.4289 | 0.6787 | 0.4303 | 0.0142 | 0.0014 | |
IUSR5 | 0.8061 | 0.4431 | 0.8445 | 0.4670 | 0.0384 | 0.0239 | |
IUSR1 | 0.7781 | 0.4551 | 0.8010 | 0.4614 | 0.0229 | 0.0063 |
RMSE | ||||||||
---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 (Combined Model) | |||||
Input Covariates: SCA, PPN; Output: ATT | Input Covariates: ATT, PPN; Output: SCA | Input Covariates ATT, SCA; Output: PPN | Input Covariates: ATT, SCA, PPN; Output: IUSR | |||||
ANN | Training | Testing | Training | Testing | Training | Testing | Training | Testing |
1 | 0.1057 | 0.0987 | 0.1008 | 0.0664 | 0.1116 | 0.0922 | 0.0853 | 0.0463 |
2 | 0.9805 | 0.0962 | 0.1002 | 0.0869 | 0.1099 | 0.0853 | 0.0852 | 0.0447 |
3 | 0.1095 | 0.0892 | 0.1010 | 0.0606 | 0.1117 | 0.0689 | 0.1010 | 0.0690 |
4 | 0.1180 | 0.0725 | 0.1023 | 0.0636 | 0.1193 | 0.0985 | 0.0863 | 0.0572 |
5 | 0.1041 | 0.1006 | 0.1007 | 0.0500 | 0.1132 | 0.0656 | 0.0985 | 0.0892 |
6 | 0.1054 | 0.1039 | 0.1105 | 0.0865 | 0.1132 | 0.0573 | 0.0993 | 0.0775 |
7 | 0.1165 | 0.0572 | 0.1041 | 0.0554 | 0.1123 | 0.0714 | 0.0916 | 0.0863 |
8 | 0.1150 | 0.0742 | 0.1068 | 0.0571 | 0.1092 | 0.0889 | 0.0977 | 0.0727 |
9 | 0.1177 | 0.1108 | 0.1161 | 0.0753 | 0.1028 | 0.0593 | 0.0968 | 0.0524 |
10 | 0.1136 | 0.0945 | 0.1016 | 0.0710 | 0.1123 | 0.0856 | 0.0839 | 0.0608 |
Mean | 0.1986 | 0.0898 | 0.1044 | 0.0673 | 0.1130 | 0.0770 | 0.0853 | 0.0463 |
SD | 0.2748 | 0.0167 | 0.0053 | 0.0126 | 0.1116 | 0.0922 | 0.0077 | 0.0113 |
ANN Analysis | PLS Analysis | Rank | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Relative Importance | AVI | NMI | IMP | PFM | ANN/PLS | ||||||||||
ANN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||||
Model 1 | |||||||||||||||
SCA→ATT | 0.435 | 0.497 | 0.323 | 0.927 | 0.547 | 0.541 | 0.489 | 0.44 | 0.483 | 0.479 | 0.516 | 90.2% | 0.351 | 80.89 | 2 |
PPN→ATT | 0.565 | 0.503 | 0.677 | 0.073 | 0.453 | 0.459 | 0.511 | 0.560 | 0.517 | 0.521 | 0.484 | 100.0% | 0.0359 | 82.73 | 1 |
Model 2 | |||||||||||||||
ATT→SCA | 0.297 | 0.258 | 0.295 | 0.292 | 0.333 | 0.42 | 0.306 | 0.352 | 0.495 | 0.223 | 0.3271 | 50.7% | 0.316 | 78.98 | 2 |
PPN→SCA | 0.703 | 0.742 | 0.705 | 0.708 | 0.667 | 0.58 | 0.694 | 0.648 | 0.505 | 0.777 | 0.6729 | 100.0% | 0.447 | 82.68 | 1 |
Model 3 | |||||||||||||||
ATT→PPN | 0.451 | 0.547 | 0.481 | 0.459 | 0.488 | 0.483 | 0.487 | 0.495 | 0.493 | 0.48 | 0.4864 | 83.9% | 0.324 | 78.94 | 2 |
SCA→PPN | 0.549 | 0.453 | 0.519 | 0.541 | 0.512 | 0.517 | 0.513 | 0.505 | 0.507 | 0.52 | 0.5136 | 100.0% | 0.443 | 80.87 | 1 |
Model 4 (combined model) | |||||||||||||||
ATT→IUSR | 0.345 | 0.302 | 0.191 | 0.301 | 0.290 | 0.346 | 0.320 | 0.244 | 0.283 | 0.283 | 0.291 | 76.4% | 0.293 | 78.95 | 3 |
SCA→IUSR | 0.375 | 0.419 | 0.418 | 0.405 | 0.364 | 0.334 | 0.376 | 0.470 | 0.264 | 0.427 | 0.385 | 100.0% | 0.333 | 80.88 | 1/2 |
PPN→IUSR | 0.280 | 0.279 | 0.392 | 0.294 | 0.346 | 0.319 | 0.304 | 0.286 | 0.454 | 0.290 | 0.324 | 84.3% | 0.335 | 82.71 | 2/1 |
Model 5. Demographic variables with the main variables | |||||||||||||||
MUSM | 0.036 | 12.2 | 5 | ||||||||||||
GEN | 0.033 | 11.1 | 6 | ||||||||||||
USG | 0.078 | 26.4 | 4 | ||||||||||||
ATT | 0.272 | 91.0 | 3 | ||||||||||||
PPN | 0.278 | 92.8 | 2 | ||||||||||||
SCA | 0.300 | 100 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahzalal, M.; Adnan, H.M. Attitude, Self-Control, and Prosocial Norm to Predict Intention to Use Social Media Responsibly: From Scale to Model Fit towards a Modified Theory of Planned Behavior. Sustainability 2022, 14, 9822. https://doi.org/10.3390/su14169822
Shahzalal M, Adnan HM. Attitude, Self-Control, and Prosocial Norm to Predict Intention to Use Social Media Responsibly: From Scale to Model Fit towards a Modified Theory of Planned Behavior. Sustainability. 2022; 14(16):9822. https://doi.org/10.3390/su14169822
Chicago/Turabian StyleShahzalal, Md, and Hamedi Mohd Adnan. 2022. "Attitude, Self-Control, and Prosocial Norm to Predict Intention to Use Social Media Responsibly: From Scale to Model Fit towards a Modified Theory of Planned Behavior" Sustainability 14, no. 16: 9822. https://doi.org/10.3390/su14169822