Spatiotemporal Differentiation Characteristics of Land Ecological Quality and Its Obstacle Factors in the Typical Compound Area of Mine Agriculture Urban
Abstract
:1. Introduction
2. Data and Methods
2.1. Overview of the Study Zone
2.2. Data Sources
2.2.1. Basic Geographic Data
2.2.2. Remote Sensing Image Data
2.2.3. Soil Physicochemical Property and Pollution Data
2.3. Research Methods
2.3.1. Construction of the Evaluation Index System of Land Ecological Quality
2.3.2. Land Ecological Quality Index Acquisition Based on Remote Sensing and GIS
- (1)
- Ecological foundation index acquisition
- ①
- Data collection and laboratory determination of soil samples
- ②
- Spatial distribution data acquisition of soil organic matter content based on remote sensing retrieval
- ③
- Effective soil thickness
- ④
- Topographic position index
- ⑤
- Vegetation cover
- ⑥
- NPP
- (2)
- Acquisition of ecological structure indicators
- ①
- Methods for acquiring land-use data
- ②
- Landscape index analysis method
- ③
- Land-use structure index
- (3)
- Ecosystem service value
- (4)
- Ecological stress index
- ①
- Comprehensive soil pollution index
- ②
- Damaged land proportion
- ③
- Disturbance index of industrial and mining land
2.3.3. Evaluation Method of Land Ecological Quality
- (1)
- Determining the Evaluation Unit of Land Ecological Quality
- (2)
- Determining the Evaluation Model of Land Ecological Quality
- (3)
- Standardizing the Evaluation Index of Land Ecological Quality
- (4)
- Determining the Weight of the Evaluation Index of Land Ecological Quality
2.3.4. Spatial Correlation Analysis of Land Ecological Quality Index
2.3.5. Diagnosing and Analyzing the Obstacle Factors of Land Ecological Quality
3. Results
3.1. Spatiotemporal Differentiation of Distribution Characteristics of Land Ecological Quality Grades
3.2. Analysis on the Change of Average Land Ecological Quality Index in the Study Zone and Various Mining Fields
3.3. Spatiotemporal Differentiation of the Correlation Characteristics of Land Ecological Quality
3.4. Spatiotemporal Changes of Obstacle Factors of Land Ecological Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, Y.G. Pattern Evolution and Management Countermeasures on Land Use in Typical Compound Area of Mine Agriculture Urban. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2020. [Google Scholar]
- Zhang, C.; Fang, S. Identifying and Zoning Key Areas of Ecological Restoration for Territory in Resource-Based Cities: A Case Study of Huangshi City, China. Sustainability 2021, 13, 3931. [Google Scholar] [CrossRef]
- Xu, J.X.; Li, G.; Chen, G.L.; Zhao, H. Dynamic changes and evaluation of land ecological quality in coal mining area. J. China Coal Soc. 2013, 38 (Suppl. S1), 180–185. [Google Scholar]
- Dube, F.; Zagal, E.; Stolpe, N. The influence of land-use change on the organic carbon distribution and microbial respiration in a volcanic soil of the Chilean Patagonia. For. Ecol. Manag. 2009, 257, 1695–1704. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Zhao, Y.L. Main problems in ecological restoration of mines and their solutions. China Coal 2021, 47, 2–7. [Google Scholar]
- Su, S.L.; Li, D.; Yu, X.; Zhang, Z.H.; Zhang, Q.; Xiao, R.; Zhi, J.J.; Wu, J.P. Assessing land ecological security in Shanghai (China) based on catastrophe theory. Environ. Res. Risk Assess. 2011, 25, 737–746. [Google Scholar] [CrossRef]
- Peng, J.; Pan, Y.J.; Liu, Y.X.; Zhao, H.J.; Wang, Y.L. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Dubńiski, J. Sustainable development of mining mineral resources. J. Sustain. Min. 2013, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.C.; Bian, Z.F.; Chen, F.; Mu, S.G. Diagnosis and its regulations for land ecosystem degradation in mining area. Coal Sci. Tec. 2020, 48, 214–223. [Google Scholar]
- Yu, H.C.; Chen, F.; Yin, D.Y.; Han, X.T.; Mu, S.G.; Lei, S.G.; Bian, Z.F. Effects of mining activities and climate change on land ecosystem in Gobi mining area: A case study of Zhundong Coal Base. J. China Coal Soc. 2021, 46, 2650–2662. [Google Scholar]
- Gao, X.M. Study on the Change and Evaluation of Land Ecological Quality in Coal Mining Subsidence Area of Mu Us Sandy Land—A Case Study of the Bulianta Coal Mine. Master’s Thesis, Inner Mongolia Normal University, Huhhot, China, 2021. [Google Scholar]
- Pandey, M.; Mishra, A.; Swamy, S.L.; Thakur, T.K.; Pandey, V.C. Impact of coal mining on land use dynamics and soil quality: Assessment of land degradation vulnerability through conjunctive use of analytical hierarchy process and geospatial techniques. Land Degrad. Dev. 2022, in press. [CrossRef]
- Luise, S.; Gläβer, C. Analyses and monitoring of lignite mining lakes in Eastern Germany with spectral signatures of Landsat TM satellite data. Int. J. Coal Geol. 2011, 86, 27–39. [Google Scholar] [CrossRef]
- Konstantinos, I.V.; Demetrios, C.K. An Overall Index of Environmental Quality in Coal Mining Areas and Energy Facilities. Environ. Manag. 2006, 38, 1031–1045. [Google Scholar] [CrossRef]
- Antwi, E.K.; Krawczynski, R.; Wiegleb, G. Detecting the effect of disturbance on habitat diversity and landcover change in a post-mining area using GIS. Landsc. Urban Plan. 2008, 87, 22–32. [Google Scholar] [CrossRef]
- Zhang, L.J.; Zhai, Z.H.; Zhou, Y.; Liu, S.H.; Wang, L.W. The Landscape Pattern Evolution of Typical Open-Pit Coal Mines Based on Land Use in Inner Mongolia of China during 20 Years. Sustainability 2022, 14, 9590. [Google Scholar] [CrossRef]
- Yu, J.; Chen, Y.H.; Peng, J.; Li, J.Y.; Nie, Y. Comprehensive evaluation on land ecological quality based on GIS and Fragstats: A case study in Xiantao City, Hubei Province. Acta Ecol. Sin. 2020, 40, 2932–2943. [Google Scholar]
- Zhao, Y.Q.; Yang, Y.; Keszek, S.; Wang, X.Y. Experience in the transformation process of “coal city” to “beautiful city”: Taking Jiaozuo City as an example. Energy Policy 2021, 150, 112164. [Google Scholar] [CrossRef]
- Song, X. Preliminary study on land impact and reclamation model of coal mining subsidence land. Pub. Com. Sci. Tech. 2012, 10, 135–137. [Google Scholar]
- Ma, S.C.; Shao, Y.; Yang, J.F.; Li, C.X. Risk assessment of heavy metal contamination in soil-plant system of the overlapped areas of crop and mineral production. Ecol. Environ. Sci. 2012, 21, 937–941. [Google Scholar]
- He, K.; Guo, L.; Guo, Y.; Luo, H.; Liang, Y. Research on the effects of coal mining on the karst hydrogeological environment in Jiaozuo mining area, China. Environ. Earth Sci. 2019, 78, 434. [Google Scholar] [CrossRef]
- El-Raey, M.; Fouda, Y.; Gal, P. GIS for Environmental Assessment of the Impacts of Urban Encroachment on Rosetta Region, Egypt. Environ. Monit. Assess. 2000, 60, 217–233. [Google Scholar] [CrossRef]
- Messing, I.; Hoang, F.M.; Chen, L. Criteria for land suitability evaluation in a small catchment on the Loess Plateau in China. Catena 2003, 54, 215–234. [Google Scholar] [CrossRef]
- Dumanski, J.; Gameda, S.; Pieri, C. Indicators of Land Quality and Sustainable Land Management: An Annotated Bibliography; Environmentally and Socially Sustainable Development Series: Rural Development; The International Bank for Reconstruction and Development, The World Bank: Washington, DC, USA, 1998. [Google Scholar]
- Parcerisas, L.; Marull, J.; Pino, J.; Tello, E.; Coll, F.; Basnou, C. Land use changes, landscape ecology and their socioeconomic driving forces in the Spanish Mediterranean coast (EL Maresme County, 1850–2005). Environ. Sci. Pol. 2012, 23, 120–132. [Google Scholar] [CrossRef]
- Brandmeier, M. Remote sensing of Carhuarazo volcanic complex using ASTER imagery in Southern Peru to detect alteration zones and volcanic structures—A combined approach of image processing in ENVI and ArcGIS/ArcScene. Geocarto Int. 2010, 25, 629–648. [Google Scholar] [CrossRef]
- Mccarty, G.W.; Reeves, J.B.; Reeves, V.B.; Follett, R.F.; Kimble, J.M. Mid-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Sci. Soc. Am. J. 2002, 66, 640–646. [Google Scholar] [CrossRef]
- Chen, F.; Kissel, D.E.; West, L.T.; Adkins, W. Field-scale mapping of surface soil organic carbon using remotely sensed imagery. Soil Sci. Soc. Am. J. 2000, 64, 746–753. [Google Scholar] [CrossRef] [Green Version]
- Myeong, S.; Nowak, D.J.; Duggin, M.J. A temporal analysis of urban forest carbon storage using remote sensing. Remote. Sens. Environ. 2006, 101, 277–282. [Google Scholar] [CrossRef]
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P.; et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
- Li, F.; Chen, W.; Zeng, Y.; Zhao, Q.J.; Wu, B.F. Improving Estimates of Grassland Fractional Vegetation Cover Based on a Pixel Dichotomy Model: A Case Study in Inner Mongolia, China. Remote Sens. 2014, 6, 4705–4722. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.Q.; Bao, Y.H.; Zhang, Q.F.; Du, W.L. Spatiotemporal Changes of Vegetation Coverage in Inner Mongolia Based on the Dimidiate Pixel Model and Intensity Analysis. Ecol. Environ. Sci. 2016, 25, 737–743. [Google Scholar]
- Zhu, W.Q.; Pan, Y.Z.; Zhang, J.S. Estimation of Net Primary Productivity of Chinese terrestrial vegetation based on Remote Sensing. China J. Plant Ecol. 2007, 31, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Bahadur, K.C.K. Improving Landsat and IRS Image Classification: Evaluation of Unsupervised and Supervised Classification through Band Ratios and DEM in a Mountainous Landscape in Nepal. Remote Sens. 2009, 1, 1257–1272. [Google Scholar] [CrossRef] [Green Version]
- Paudel, S.; Yuan, F. Assessing landscape changes and dynamics using patch analysis and GIS modeling. Int. J. Appl. Earth Obs. Geoinf. 2012, 16, 66–76. [Google Scholar] [CrossRef]
- Caillault, S.; Mialhe, F.; Vannier, C.; Delmotte, S.; Kedowide, C.; Amblard, F.; Etienne, M.; Becu, N.; Houet, T. Influence of incentive networks onlandscape changes: A simple agent-based simulation approach. Environ. Model. Softw. 2013, 45, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.B.; Xiao, D.N.; Li, X.Z. Classification, application, and creation of landscape indices. Chin. J. Appl. Ecol. 2002, 1, 121–125. [Google Scholar]
- Costanza, R.; d’Arge, R.; Groot, R.D.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar] [CrossRef]
- Kang, Y.L.; Qi, Y.A.; Guan, N. Analysis of heavy metals in soil in Jiaozuo city. Energy Environ. Prot. 2006, 20, 60–62. [Google Scholar]
- Li, X.H.; Wang, X.Y.; Yang, J.; Guo, H.X. Review on Heavy Metal Pollution to Soil and Corn near Coal Waste Rock Dump in Jiaozuo Diggings. Environ. Prot. Sci. 2009, 35, 66–68. [Google Scholar]
- Wang, Z.H.; Ren, J.; Tao, L.; Tian, C.X.; Hou, P.Q.; Jia, C.J. Analysis of heavy metals pollution in soil around the gangue dumpinYanma mine of Jiaozuo city in Henan province. Resour. Environ. Eng. 2007, 21, 272–275. [Google Scholar]
- Boularbah, A.; Schwartz, C.; Bitton, G.; Aboudrar, W.; Ouhammou, A.; Morel, J.L. Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere 2006, 63, 811–817. [Google Scholar] [CrossRef]
- Meng, Z.; Liu, T.; Bai, X.; Liang, H. Characteristics and Assessment of Soil Heavy Metals Pollution in the Xiaohe River Irrigation Area of the Loess Plateau, China. Sustainability 2022, 14, 6479. [Google Scholar] [CrossRef]
- Zhang, H.B. Research of Land Ecological QualityEvaluation and Spatial Differentiation at CityDomain Scale. Ph.D. Thesis, Henan Polytechnic University, Jiaozuo, China, 2015. [Google Scholar]
- Chen, Y.; Cai, H.S.; Zhang, X.L.; Zeng, H.; Shao, H.; Hong, T.L. Comprehensive evaluation of spatially ecological quality of Rao River Basin and its spatial differentiation based on multi-objective comprehensive evaluation method. Acta Ecol. Sin. 2021, 41, 2236–2247. [Google Scholar]
- Shi, F.; Li, M. Assessing Land Cover and Ecological Quality Changes under the New-Type Urbanization from Multi-Source Remote Sensing. Sustainability 2021, 13, 11979. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, K. Comparison between General Moran’s Index and Getis-Ord Genara G of spatial autocorrelation. Acta Sci. Nat. Univ. Sunyatseni 2007, 4, 93–97. [Google Scholar]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Fischer, M.M., Getis, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 73–89. ISBN 978-3-642-03647-7. [Google Scholar]
- Wang, X.C.; Wang, S.D.; Zhang, H.B. Spatiotemporal pattern of vegetation net primary productivity in Henan Province of China based on MOD17A3. Chin. J. Ecol. 2013, 31, 2797–2805. [Google Scholar]
- Zhang, J.; Wen, G.C.; Wang, E.Y.; Xie, H.B.; Liu, Z.J. Dynamic monitoring and evaluation of ecological environment at Jiaozuo City based on remote sensing ecological index. Bulle. Soil Water Conserv. 2020, 40, 107–114. [Google Scholar]
- Wang, G. Analysis on ecological sustainability in resource-based cities in transformation period: A case of Jiaozuo City. Ecol. Econ. 2016, 32, 53–56. [Google Scholar]
ID | Mine Name | ID | Mine Name | ID | Mine Name |
---|---|---|---|---|---|
1 | Xiaoma Mine | 2 | Zhongma Mine | 3 | Fengying Mine |
4 | Hanwang Mine | 5 | Yanma Mine | 6 | Fangzhuang No.1 Mine |
7 | Jiulishan Mine | 8 | Baizhuang Mine | 9 | Fangzhuang No.2 Mine |
10 | Guhanshan Mine |
Criterion Layer (Weight) | Index Layer (Weight) | Attribute |
---|---|---|
Ecological foundation (0.3509) | Soil organic matter content (0.1093) | + |
Effective soil thickness (0.1093) | + | |
Topographic position index (0.3689) | − | |
Vegetation coverage (0.2063) | + | |
Net primary productivity (NPP) (0.2063) | + | |
Ecological structure (0.1891) | Land-use structure index (0.4488) | + |
Landscape aggregation index (0.0819) | − | |
Landscape dominance index (0.2346) | − | |
Landscape diversity index (0.2346) | + | |
Ecological benefit (0.1091) | Ecosystem service value (1) | + |
Ecological stress (0.3509) | Comprehensive soil pollution index (0.2809) | − |
Damaged land proportion (0.3546) | − | |
Disturbance index of industrial and mining land (0.3546) | − |
Matrix Order | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 |
Moran’s I/Z | 1980 | 1990 | 2000 | 2010 | 2020 |
---|---|---|---|---|---|
Moran’s I | 0.40 | 0.41 | 0.25 | 0.45 | 0.38 |
Z(I) | 5.62 | 5.77 | 3.49 | 6.38 | 4.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, W.; Zhang, H.; Lu, F. Spatiotemporal Differentiation Characteristics of Land Ecological Quality and Its Obstacle Factors in the Typical Compound Area of Mine Agriculture Urban. Sustainability 2022, 14, 10427. https://doi.org/10.3390/su141610427
Wang X, Liu W, Zhang H, Lu F. Spatiotemporal Differentiation Characteristics of Land Ecological Quality and Its Obstacle Factors in the Typical Compound Area of Mine Agriculture Urban. Sustainability. 2022; 14(16):10427. https://doi.org/10.3390/su141610427
Chicago/Turabian StyleWang, Xinchuang, Wenkai Liu, Hebing Zhang, and Fenglian Lu. 2022. "Spatiotemporal Differentiation Characteristics of Land Ecological Quality and Its Obstacle Factors in the Typical Compound Area of Mine Agriculture Urban" Sustainability 14, no. 16: 10427. https://doi.org/10.3390/su141610427