Influence of Population Agglomeration on Urban Economic Resilience in China
Abstract
:1. Introduction
2. Theory and Hypothesis
2.1. Impact of Population Agglomeration on Urban Economic Resilience
2.2. Changes in Labor Structure under Population Agglomeration Affect Urban Economic Resilience
3. Methods and Variables
3.1. Model Settings
3.2. Variable Description
3.2.1. Urban Economic Resilience
3.2.2. Urban Population Agglomeration Level
3.2.3. Control Variables
4. Spatial Evolution Characteristics of Urban Economic Resilience and Population Agglomeration
4.1. Spatial Distribution Pattern
4.1.1. Spatial Distribution Pattern of Urban Economic Resilience
4.1.2. Characteristics of the Relationship between Urban Economic Resilience and Population Agglomeration
4.2. Spatial Correlation Features
5. Results
5.1. Impact of Population Agglomeration on Urban Economic Resilience
5.2. Impact of Labor Structure on Urban Economic Resilience
5.2.1. Impact of Labor Force Age Structure Status on Urban Economic Resilience
5.2.2. Impact of Human Capital Agglomeration on Urban Economic Resilience
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, C.C. Interprovincial Migration, Population Redistribution, and Regional Development in China: 1990 and 2000 Census Comparisons. Prof. Geogr. 2005, 57, 295–311. [Google Scholar] [CrossRef]
- Hudson, R. Resilient regions in an uncertain world: Wishful thinking or a practical reality? Camb. J. Reg. Econ. Soc. 2010, 3, 11–25. [Google Scholar] [CrossRef]
- Martin, R. Regional economic resilience, hysteresis and recessionary shocks. J. Econ. Geogr. 2012, 12, 1–32. [Google Scholar] [CrossRef]
- Martin, R.; Sunley, P. On the notion of regional economic resilience: Conceptualization and explanation. J. Econ. Geogr. 2015, 15, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A. Economic Development with Unlimited Supplies of Labour. Manch. Sch. Econ. Soc. Stud. 1954, 22, 139–191. [Google Scholar] [CrossRef]
- Heberle, R. The Causes of Rural-Urban Migration a Survey of German Theories. Am. J. Sociol. 1938, 43, 932–950. [Google Scholar] [CrossRef]
- Lee, E. A theory of migration. Demography 1966, 3, 47–57. [Google Scholar] [CrossRef]
- Mabogunje, A.L. Systems Approach to a Theory of Rural-Urban Migration. Geogr. Anal. 1970, 2, 1–18. [Google Scholar] [CrossRef]
- Davies, S. Regional resilience in the 2008–2010 downturn: Comparative evidence from European countries. Camb. J. Reg. Econ. Soc. 2011, 4, 369–382. [Google Scholar] [CrossRef]
- Faggian, A.; Gemmiti, R.; Jaquet, T.; Santini, I. Regional economic resilience: The experience of the Italian local labor systems. Ann. Reg. Sci. 2018, 60, 393–410. [Google Scholar] [CrossRef]
- Capello, R.; Caragliu, A.; Fratesi, U. Spatial heterogeneity in the costs of the economic crisis in Europe: Are cities sources of regional resilience? J. Econ. Geogr. 2015, 15, 951–972. [Google Scholar] [CrossRef]
- Huang, X. Immigration and economic resilience in the Great Recession. Urban Stud. 2021, 58, 1885–1905. [Google Scholar] [CrossRef]
- Becker, G.S. Investment in Human Capital: A Theoretical Analysis. J. Political Econ. 1962, 70, 9–49. [Google Scholar] [CrossRef]
- Storper, M.; Scott, A.J. Rethinking human capital, creativity and urban growth. J. Econ. Geogr. 2009, 9, 147–167. [Google Scholar] [CrossRef] [Green Version]
- Niebuhr, A. Migration and innovation: Does cultural diversity matter for regional R&D activity? Pap. Reg. Sci. 2010, 89, 563–585. [Google Scholar]
- Giannakis, E.; Bruggeman, A. Regional disparities in economic resilience in the European Union across the urban-rural divide. Reg. Stud. 2020, 54, 1200–1213. [Google Scholar] [CrossRef]
- Zaiceva, A.; Zimmermann, K.F. Migration and the Demographic Shift. Handb. Econ. Popul. Aging 2016, 1, 119–177. [Google Scholar]
- Bodvarsson, R.B.; Simpson, N.B.; Sparber, C. Migration Theory. Handb. Econ. Int. Migr. 2015, 1, 3–51. [Google Scholar]
- Gobel, C.; Zwick, T. Are personnel measures effective in increasing productivity of old workers? Labour Econ. 2013, 22, 80–93. [Google Scholar] [CrossRef]
- Borsch-Supan, A.; Weiss, M. Productivity and age: Evidence from work teams at the assembly line. J. Econ. Ageing 2016, 7, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Zamora, P.; Gallardo-Cobos, R. Diversity, Disparity and Territorial Resilience in the Context of the Economic Crisis: An Analysis of Rural Areas in Southern Spain. Sustainability 2019, 11, 1743. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Wang, Y.; Fan, Z.J. Heterogeneous Human Capital, Regional Specialization and Income Disparity—From the Perspective of New Economic Geography. China Ind. Econ. 2013, 2, 31–43. [Google Scholar]
- Diodato, D.; Weterings, A.B.R. The resilience of regional labour markets to economic shocks: Exploring the role of interactions among firms and workers. J. Econ. Geogr. 2015, 15, 723–742. [Google Scholar] [CrossRef]
- Caroli, E.; Van Reenen, J. Skill-biased organizational change? Evidence from a panel of British and French establishments. Q. J. Econ. 2001, 116, 1449–1492. [Google Scholar] [CrossRef]
- Ciccone, A.; Papaioannou, E. Human Capital, The Structure of Production, and Growth. Rev. Econ. Stat. 2009, 91, 66–82. [Google Scholar] [CrossRef]
- Juster, F.T. Education, Income, and Human Behavior; McGraw-Hill Book Company: Hightstown, NJ, USA, 1975. [Google Scholar]
- Marais, M.A. The Consumption Benefits of Education; Economics Discussion; The University of Western Australia, Department of Economics: Perth, Australia, 1993. [Google Scholar]
- Liu, R.; Feng, Z.; Yang, Y.; You, Z. Research on the Spatial Pattern of Population Agglomeration and Dispersion in China. Prog. Geogr. 2010, 29, 1171–1177. [Google Scholar]
- Brown, L.; Greenbaum, R.T. The role of industrial diversity in economic resilience: An empirical examination across 35 years. Urban Stud. 2017, 54, 1347–1366. [Google Scholar] [CrossRef]
- Zhang, M.D.; Wu, Q.B.; Li, W.L.; Sun, D.Q.; Huang, F. Intensifier of urban economic resilience: Specialized or diversified agglomeration? PLoS ONE 2021, 16, e0260214. [Google Scholar] [CrossRef]
- Tan, J.T.; Hu, X.H.; Hassink, R.; Ni, J.W. Industrial structure or agency: What affects regional economic resilience? Evidence from resource-based cities in China. Cities 2020, 106, 102906. [Google Scholar] [CrossRef]
- Christopherson, S.; Michie, J.; Tyler, P. Regional resilience: Theoretical and empirical perspectives. Camb. J. Reg. Econ. Soc. 2010, 3, 3–10. [Google Scholar] [CrossRef]
- Yu, H.C.; Liu, Y.; Liu, C.L.; Fan, F. Spatiotemporal Variation and Inequality in China’s Economic Resilience across Cities and Urban Agglomerations. Sustainability 2018, 10, 4754. [Google Scholar] [CrossRef] [Green Version]
- Boschma, R. Towards an Evolutionary Perspective on Regional Resilience. Reg. Stud. 2015, 49, 733–751. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.L.; Wang, J.L.; Wulaer, S.; Chen, B.; Yang, X.D. The Effect of Innovative Entrepreneurial Vitality on Economic Resilience Based on a Spatial Perspective: Economic Policy Uncertainty as a Moderating Variable. Sustainability 2021, 13, 10677. [Google Scholar] [CrossRef]
- Duranton, G.; Puga, D. Diversity and specialisation in cities: Why, where and when does it matter? Urban Stud. 2000, 37, 533–555. [Google Scholar] [CrossRef] [Green Version]
Variable Name | Symbol | Indicator Meaning | Source |
---|---|---|---|
Resident population concentration | pop | population agglomeration | “China City Statistical Yearbook” “2010 Provincial Census Data” |
Agglomeration of the population aged 15–40 | youth | youth labor | |
Aggregation of population aged 40–54 | prime | prime-age labor | |
Agglomeration of population aged 54–64 | elder | older labor | |
The agglomeration of the population with education below junior college among the employed population | hom | Homogeneous human capital | |
The agglomeration of the population with college education and above among the employed population | het | Heterogeneous human capital | |
Science and technology expenditure (100 million yuan) | ste | Innovation level | “China City Statistical Yearbook” |
Total retail and wholesale trade of consumer goods (100 million yuan) | cm | market size | |
GDP (100 million yuan) | lngdp | economic development foundation | |
Amount of foreign capital actually utilized (USD 10,000) | lnopen | level of opening | |
financial self-sufficiency rate (%) | fsel | Government policy support | |
Industrial Diversity | indiv | Industrial Diversity |
Period | Low Resilience City | High Resilience City | ||
---|---|---|---|---|
Number (Pieces) | Proportion (%) | Number (Pieces) | Proportion (%) | |
Fragile resistance period | 124 | 43.66 | 160 | 56.34 |
recovery adjustment period | 133 | 46.83 | 151 | 53.17 |
Period | Variable | Moran’s I |
---|---|---|
Fragile resistance period | Economic resilience | 0.288 *** |
Secondary industry economic resilience | 0.450 *** | |
Tertiary Industry Economic Resilience | 0.203 *** | |
Recovery adjustment period | Economic resilience | 0.313 *** |
Secondary industry economic resilience | 0.494 *** | |
Tertiary Industry Economic Resilience | 0.431 *** | |
Population agglomeration | 2008 | 0.675 *** |
2010 | 0.451 *** |
Variable | Fragile Resistance Period | Recovery Adjustment Period | ||||||
---|---|---|---|---|---|---|---|---|
OLS | SLM | SEM | SDM | OLS | SLM | SEM | SDM | |
lnpop | 0.031 ** | 0.024 * | 0.023 * | 0.022 | 0.074 *** | 0.052 *** | 0.084 *** | 0.030 * |
(2.24) | (1.69) | (1.77) | (1.49) | (3.88) | (3.23) | (4.24) | (1.76) | |
ste | −0.005 *** | −0.004 *** | −0.004 *** | −0.004 *** | −0.003 ** | −0.003 ** | −0.003 ** | −0.003 ** |
(−2.98) | (−2.72) | (−2.94) | (−2.69) | (−2.28) | (−2.30) | (−2.35) | (−2.42) | |
open | 0.004 ** | 0.004 ** | 0.004 ** | 0.003 * | 0.002 | 0.002 | 0.003 | 0.002 |
(2.33) | (2.17) | (2.35) | (2.11) | (1.26) | (1.59) | (1.63) | (1.54) | |
lncm | −0.054 * | −0.039 | −0.042 | −0.037 | 0.074 * | 0.072 ** | 0.082 ** | 0.068 * |
(−1.96) | (−1.52) | (−1.64) | (−1.44) | (1.77) | (2.10) | (2.22) | (1.73) | |
lngdp | 0.049 | 0.026 | 0.033 | 0.025 | −0.045 | −0.072 | −0.110 *** | −0.047 * |
(1.42) | (0.80) | (1.04) | (0.76) | (−0.85) | (−1.62) | (−2.74) | (−0.91) | |
indiv | 0.077 | 0.042 | 0.055 | 0.040 | 0.094 | 0.142 ** | 0.175 *** | 0.148 ** |
(1.47) | (0.79) | (1.12) | (0.76) | (1.21) | (2.19) | (2.79) | (2.09) | |
fsel | 0.007 | −0.010 | −0.006 | −0.016 | −0.448 *** | −0.275 *** | −0.432 *** | −0.353 *** |
(0.12) | (−0.16) | (−0.10) | (−0.28) | (−3.96) | (−2.88) | (−3.75) | (−3.34) | |
W*lnpop | 0.0183 | −0.182 | −0.159 | −0.007 | 0.065 *** | |||
(0.83) | (−0.74) | (−0.78) | (−0.44) | (2.95) | ||||
cons | −0.635 | −0.280 | −0.402 | −0.266 | 0.151 *** | 0.165 *** | −0.273 | |
(−1.45) | (−0.66) | (−0.99) | (−0.63) | (9.98) | (11.08) | (−1.25) | ||
Ρ/λ | 0.388 *** | 0.386 *** | 0.382 *** | 0.074 *** | 0.052 *** | 0.084 *** | 0.445 *** | |
(5.32) | (5.46) | (5.22) | (3.88) | (3.23) | (4.24) | (6.77) | ||
N | 284 | 284 | 284 | 284 | 284 | 284 | 284 | 284 |
R2 | 0.06 | 0.18 | 0.18 | 0.23 | 0.11 | 0.27 | 0.28 | 0.28 |
Log-L | 115.590 | 85.352 *** | 115.935 | 5.933 | 11.384 | 3.659 | ||
LM-lag/LM-error | 91.717 *** | 1.373 | 71.127 *** | 76.104 *** | ||||
Robustness LM-lag/LM-error | 7.738 *** | 0.313 | 0.125 | 5.102 ** |
Variable | Fragile Resistance Period | Recovery Adjustment Period | ||||||
---|---|---|---|---|---|---|---|---|
OLS | SLM | SEM | SDM | OLS | SLM | SEM | SDM | |
lnpop | 0.096 *** | 0.063 ** | 0.104 ** | 0.114 *** | 0.113 ** | 0.080 ** | 0.123 ** | 0.096 * |
(2.61) | (1.99) | (2.53) | (2.80) | (2.15) | (2.04) | (2.49) | (1.91) | |
ste | −0.005 | −0.004 | −0.004 | −0.005 | −0.005 | −0.003 | −0.003 | −0.004 |
(−1.05) | (−0.99) | (−1.02) | (−1.18) | (−1.35) | (−1.20) | (−1.20) | (−1.28) | |
open | 6.66 × 10−5 | 0.001 | −0.001 | 0.001 | 0.001 | 4.48 × 10−4 | −0.002 | 0.001 |
(0.01) | (0.25) | (−0.12) | (0.14) | (0.14) | (0.12) | (−0.49) | (0.19) | |
lncm | −0.065 | −0.006 | 0.016 | −0.041 | 0.232 ** | 0.116 | 0.088 | 0.124 |
(−0.87) | (−0.09) | (0.34) | (−0.56) | (2.04) | (1.35) | (0.95) | (1.19) | |
lngdp | 0.127 | 0.038 | 0.020 | 0.082 | −0.259 | −0.132 | −0.087 | −0.161 |
(1.38) | (0.48) | (0.78) | (0.88) | (−1.77) | (−1.20) | (−0.86) | (−1.17) | |
indiv | −0.097 | −0.111 | −0.047 | −0.041 | −0.258 | −0.039 | 0.190 | −0.049 |
(−0.69) | (−0.92) | (−0.34) | (−0.29) | (−1.21) | (−0.25) | (1.20) | (−0.24) | |
fsel | −0.543 *** | −0.441 *** | −0.603 *** | −0.502 *** | −0.761 ** | −0.456 | −0.747 *** | −0.639 ** |
(−3.33) | (−3.16) | (−3.78) | (−3.06) | (−2.46) | (−1.95) | (−2.59) | (−2.22) | |
W*lnpop | −0.040 | 0.023 | ||||||
(−0.70) | (0.32) | |||||||
cons | −1.058 | −0.109 | −0.011 | −0.632 | 1.334 ** | 0.484 | −0.019 | 0.825 |
(−0.90) | (−0.11) | (−0.37) | (−0.53) | (1.97) | (0.95) | (−0.45) | (1.27) | |
Ρ/λ | 0.148 *** | 0.166 *** | 0.213 *** | 0.153 *** | 0.160 *** | 0.477 *** | ||
(8.73) | (9.34) | (2.63) | (13.71) | (14.21) | (7.76) | |||
N | 284 | 284 | 284 | 284 | 284 | 284 | 284 | 284 |
R2 | 0.08 | 0.17 | 0.17 | 0.23 | 0.05 | 0.41 | 0.42 | 0.43 |
Log-L | −145.040 | −140.918 | −173.418 | −251.737 | −249.363 | −295.782 | ||
LM-lag/LM-error | 51.538 *** | 50.707 *** | 157.731 *** | 150.668 *** | ||||
Robustness LM-lag/LM-error | 1.143 | 0.312 | 7.727 *** | 0.664 |
Variable | Fragile Resistance Period | Recovery Adjustment Period | ||||||
---|---|---|---|---|---|---|---|---|
OLS | SLM | SEM | SDM | OLS | SLM | SEM | SDM | |
lnpop | 0.009 | 0.003 | 0.009 | 0.020 | 0.115 *** | 0.079 *** | 0.099 *** | 0.107 *** |
(0.22) | (0.10) | (0.25) | (0.47) | (4.94) | (4.33) | (4.46) | (4.85) | |
ste | −0.005 | −0.004 | −0.005 | −0.005 | −0.001 | −0.001 | −0.002 | −0.0013 |
(−1.10) | (−0.99) | (−1.08) | (−1.13) | (−0.85) | (−0.83) | (−1.46) | (−0.98) | |
open | 0.006 | 0.005 | 0.006 | 0.006 | −0.001 | −3.32 × 10−4 | −1.66 × 10−4 | 2.15 × 10−4 |
(1.33) | (1.06) | (1.33) | (1.36) | (−0.30) | (−0.19) | (−0.09) | (0.11) | |
lncm | −0.396 *** | −0.368 *** | −0.413 *** | −0.412 *** | −0.166 *** | −0.141 *** | −0.172 *** | −0.163 *** |
(−5.18) | (−5.42) | (−5.45) | (−5.36) | (−3.28) | (−3.60) | (−4.15) | (−3.65) | |
lngdp | 0.396 *** | 0.383 *** | 0.418 *** | 0.418 *** | 0.174 *** | 0.158 *** | 0.217 *** | 0.156 *** |
(4.16) | (4.54) | (4.47) | (4.31) | (2.68) | (3.14) | (4.81) | (2.63) | |
indiv | 0.346 * | 0.272 * | 0.348 * | 0.332 * | −0.017 | −0.064 | −0.004 | −0.030 |
(2.38) | (2.10) | (2.45) | (2.26) | (−0.18) | (−0.87) | (−0.05) | (−0.33) | |
fsel | 0.623 *** | 0.469 ** | 0.624 *** | 0.619 *** | −0.715 *** | −0.305 *** | −0.363 *** | −0.370 *** |
(3.71) | (3.12) | (3.79) | (3.61) | (−5.19) | (−2.75) | (−2.82) | (−2.88) | |
W*lnpop | −0.031 | −0.066 ** | ||||||
(−0.54) | (−2.04) | |||||||
cons | −4.971 *** | −4.709 *** | −5.293 *** | −5.179 *** | 0.424 | 0.140 | 1.19 × 10−4 | 0.380 |
(−4.11) | (−4.39) | (−4.43) | (−4.25) | (1.41) | (0.60) | (0.01) | (1.35) | |
Ρ/λ | 0.161 *** | −0.003 | 0.0771 | 0.151 *** | 0.172 *** | 0.524 *** | ||
(6.92) | (−0.96) | (0.82) | (12.69) | (15.25) | (8.45) | |||
N | 284 | 284 | 284 | 284 | 284 | 284 | 284 | 284 |
R2 | 0.13 | 0.16 | 0.16 | 0.20 | 0.18 | 0.40 | 0.39 | 0.40 |
Log-L | −164.894 | −185.248 | −185.184 | −29.586 | −20.604 | −60.421 | ||
LM-lag/LM-error | 22.487 *** | 25.954 *** | 117.480 *** | 107.829 *** | ||||
Robustness LM-lag/LM-error | 0.587 | 4.053 ** | 10.780 *** | 1.129 |
Variable | Fragile Resistance Period | Recovery Adjustment Period | ||||||
---|---|---|---|---|---|---|---|---|
OLS | SLM | SEM | SDM | OLS | SLM | SEM | SDM | |
youth | −0.036 ** | −0.025 ** | −0.027 * | −0.032 ** | −0.019 | −0.048 ** | −0.064 *** | −0.033 |
(−2.25) | (−1.99) | (−1.87) | (−2.04) | (−0.72) | (−2.22) | (−2.61) | (−1.27) | |
prime | 0.087 ** | 0.061 * | 0.061 * | 0.076 * | 0.054 | 0.129 ** | 0.173 *** | 0.089 |
(2.06) | (1.87) | (1.66) | (1.85) | (0.79) | (2.30) | (2.73) | (1.30) | |
elder | −0.046 * | −0.036 ** | −0.035 * | −0.042 * | −0.015 | −0.060 * | −0.080 ** | −0.034 |
(−1.93) | (−1.97) | (−1.73) | (−1.83) | (−0.39) | (−1.92) | (−2.33) | (−0.90) | |
ste | −0.004** | −0.002 | −0.002 | −0.002 | −0.004 ** | −0.003 ** | −0.003 | −0.003 ** |
(−2.07) | (−1.51) | (−1.22) | (−1.40) | (−2.40) | (−2.00) | (−1.88) | (−2.05) | |
open | 0.005 *** | 0.004 *** | 0.004 ** | 0.004 ** | 0.002 | 0.003 * | 0.003 * | 0.002 |
(2.63) | (2.92) | (2.29) | (2.44) | (1.07) | (1.66) | (1.78) | (1.36) | |
lncm | −0.056 ** | −0.025 | −0.022 | −0.042 | 0.087 ** | 0.074 ** | 0.103 *** | 0.069 * |
(−2.01) | (−1.18) | (−1.39) | (−1.62) | (2.05) | (2.14) | (2.79) | (1.66) | |
lngdp | 0.070 ** | 0.016 | 0.009 | 0.043 | −0.033 | −0.056 | −0.118 *** | −0.033 |
(2.00) | (0.58) | (1.03) | (1.29) | (−0.60) | (−1.24) | (−2.90) | (−0.61) | |
indiv | 0.056 | 0.009 | −0.007 | 0.034 | 0.067 | 0.126 * | 0.088 | 0.123 |
(1.09) | (0.21) | (−0.16) | (0.65) | (0.84) | (1.94) | (1.46) | (1.53) | |
fsel | −0.029 | −0.036 | −0.042 | −0.041 | −0.347 *** | −0.239 ** | −0.318 *** | −0.325 *** |
(−0.46) | (−0.74) | (−0.76) | (−0.69) | (−3.04) | (−2.56) | (−2.88) | (−2.87) | |
W*youth | −0.023 | 0.077 | ||||||
(−0.68) | (1.38) | |||||||
W*prime | 0.055 | −0.198 | ||||||
(0.67) | (−1.44) | |||||||
W*elder | −0.022 | 0.114 | ||||||
(−0.50) | (1.59) | |||||||
cons | −0.899 ** | −0.114 | −0.003 | −0.514 | −0.384 | −0.305 | −0.007 | −0.394 |
(−2.04) | (−0.33) | (−0.32) | (−1.21) | (−1.54) | (−1.51) | (−0.44) | (−1.55) | |
Ρ/λ | 0.176 *** | 0.175 *** | 0.403 *** | 0.161 *** | 0.165 *** | 0.299 *** | ||
(12.56) | (13.02) | (5.62) | (10.59) | (11.61) | (4.00) | |||
N | 284 | 284 | 284 | 284 | 284 | 284 | 284 | 284 |
R2 | 0.06 | 0.19 | 0.19 | 0.25 | 0.08 | 0.26 | 0.28 | 0.26 |
Log-L | 163.421 | 163.795 | 118.425 | 4.507 | 7.461 | −30.061 | ||
LM-lag/LM-error | 97.533 *** | 92.833 *** | 75.099 *** | 78.894 *** | ||||
Robustness LM-lag/LM-error | 5.337** | 0.638 | 0.213 | 4.008 ** |
Variable | Fragile Resistance Period | Recovery Adjustment Period | ||||||
---|---|---|---|---|---|---|---|---|
OLS | SLM | SEM | SDM | OLS | SLM | SEM | SDM | |
lnhom | 0.063 *** | 0.022 | 0.044 ** | 0.058 *** | 0.063 * | −0.014 | −0.044 | −0.006 |
(3.10) | (1.36) | (1.99) | (2.62) | (1.85) | (−0.48) | (−1.22) | (−0.15) | |
lnhet | −0.061 ** | −0.027 | −0.047 * | −0.060 ** | 0.004 | 0.075 ** | 0.141 *** | 0.072 * |
(−2.41) | (−1.35) | (−1.86) | (−2.32) | (0.10) | (2.09) | (3.40) | (1.65) | |
ste | −0.004 *** | −0.003** | −0.003 ** | −0.004 ** | −0.003 ** | −0.003 ** | −0.003 *** | −0.003 ** |
(−2.77) | (−2.51) | (−2.35) | (−2.52) | (−2.24) | (−2.45) | (−2.78) | (−2.49) | |
open | 0.004 ** | 0.003 ** | 0.003 * | 0.003 ** | 0.002 | 0.002 | 0.002 | 0.002 |
(2.29) | (2.39) | (1.89) | (2.14) | (1.32) | (1.49) | (1.39) | (1.44) | |
lncm | −0.050 * | −0.017 | −0.012 | −0.031 | 0.072 * | 0.063 * | 0.058 | 0.054 |
(−1.81) | (−0.77) | (−0.68) | (−1.19) | (1.72) | (1.83) | (1.55) | (1.33) | |
lngdp | 0.060 * | 0.007 | 0.003 | 0.034 | −0.046 | −0.068 | −0.084 ** | −0.047 |
(1.75) | (0.28) | (0.31) | (1.03) | (−0.86) | (−1.54) | (−2.06) | (−0.89) | |
indiv | 0.091 * | 0.019 | 0.001 | 0.056 | 0.114 | 0.132 ** | 0.190 *** | 0.135 * |
(1.72) | (0.45) | (0.02) | (1.06) | (1.44) | (2.02) | (3.05) | (1.69) | |
fsel | 0.026 | −0.001 | −0.006 | 0.016 | −0.412 *** | −0.311 *** | −0.525 *** | −0.460 *** |
(0.39) | (−0.02) | (−0.09) | (0.25) | (−3.46) | (−3.15) | (−4.38) | (−3.91) | |
W*lnhom | −0.026 | 0.179 *** | ||||||
(−0.65) | (2.95) | |||||||
W*lnhet | 0.032 | −0.153 ** | ||||||
(0.77) | (−2.41) | |||||||
cons | −0.865 ** | −0.070 | −0.004 | −0.487 | −0.224 | −0.077 | −0.008 | −0.122 |
(−1.99) | (−0.20) | (−0.40) | (−1.15) | (−0.88) | (−0.36) | (−0.47) | (−0.48) | |
Ρ/λ | 0.174 *** | 0.179 *** | 0.391 *** | 0.156 *** | 0.168 *** | 0.254 *** | ||
(12.06) | (12.48) | (5.23) | (10.05) | (12.25) | (3.31) | |||
N | 284 | 284 | 284 | 284 | 284 | 284 | 284 | 284 |
R2 | 0.07 | 0.20 | 0.20 | 0.25 | 0.12 | 0.26 | 0.28 | 0.30 |
Log-L | 161.286 | 162.575 | 118.156 | 7.025 | 14.980 | −22.764 | ||
LM-lag/LM-error | 70.806 *** | 70.260 *** | 67.873 *** | 71.950 *** | ||||
Robustness LM-lag/LM-error | 2.001 | 1.455 | 0.005 | 4.082 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Zhang, X.; Huang, C. Influence of Population Agglomeration on Urban Economic Resilience in China. Sustainability 2022, 14, 10407. https://doi.org/10.3390/su141610407
Jiang J, Zhang X, Huang C. Influence of Population Agglomeration on Urban Economic Resilience in China. Sustainability. 2022; 14(16):10407. https://doi.org/10.3390/su141610407
Chicago/Turabian StyleJiang, Jing, Xiaoqing Zhang, and Caihong Huang. 2022. "Influence of Population Agglomeration on Urban Economic Resilience in China" Sustainability 14, no. 16: 10407. https://doi.org/10.3390/su141610407