The Trend of Grassland Restoration and Its Driving Forces in Ningxia Hui Autonomous Region of China from 1988 to 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Methods
2.3.1. Trend Analysis of NDVI
2.3.2. The Spatial Transition Matrix
2.3.3. The Spatial Transition Matrix
2.3.4. Relative Contributions of Driving Forces
2.3.5. Future Trend Analysis
3. Results
3.1. Changes in the Distribution of Grass NDVI
3.1.1. Temporal-Spatial Variations in Grass NDVI
3.1.2. The Spatial Pattern of Grass NDVI
3.1.3. Spatial Pattern Transformation of Grass NDVI
3.2. Geographical Detector of Spatial Differentiation Variation of Grass NDVI
3.2.1. Analysis of the Influence of Dominant Factors on Grass NDVI
3.2.2. Analysis of Dominant Factors of Interaction Detector and Ecological Detector
3.2.3. Appropriate Range or Type of Impact Factor
3.3. The Influences and Relative Contributions of Climate Change and Human Activities on Grass NDVI
3.3.1. The Response of Grass NDVI to Climate Change
3.3.2. The Response of Grass NDVI to Human Activities
3.3.3. Spatial Distribution of Climate Change and Human Activities for Grass NDVI Change
3.3.4. Relative Contributions of Climate Change and Human Activities to Grass NDVI Changes
3.4. Future Trend Change in Grass NDVI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An international terminology for grazing lands and grazing animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Han, Y.W.; Gao, J.X. Analysis of main ecological problems of grasslands and relevant counter measure in China. Res. Environ. Sci. 2005, 18, 60–62. [Google Scholar] [CrossRef]
- Guo, S.; Pei, H.S.; Hu, S.; Yany, D.D.; Qiu, H.J.; Cao, M.M. Response of vegetation index to climate change and their relationship with runoff-sediment change in Yellow River Bastion. Bull. Soil Water Conserv. 2020, 40, 2–13. [Google Scholar] [CrossRef]
- Tu, Y.; Jiang, L.L.; Liu, R.; Xiao, Z.L.; Min, J. Spatiotemporal changes of vegetation NDVI and its driving forces in China during 1982–2015. Trans. Chin. Soc. Agric. Eng. 2005, 37, 75–84. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Shi, D.H.; Wang, X.R. Impact of climate change and human activities on vegetation coverage in the Mongolian Plateau. Arid Zone Res. 2014, 31, 604–610. [Google Scholar] [CrossRef]
- Xin, Z.B.; Xu, J.X.; Zheng, W. Response of vegetation cover change to climate change and human activities in Loess Plateau. Sci. China Ser. 2007, 37, 1504–1514. [Google Scholar] [CrossRef]
- Aalto, J.; Niittynen, P.; Riihimäki, H. Cryogenic land surface processes shape vegetation biomass patterns in northern European tundra. Commun. Earth Environ. 2021, 2, 222. [Google Scholar] [CrossRef]
- Forzieri, G.; Miralles, D.G.; Ciais, P. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Chang. 2020, 10, 356–362. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sen. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Liu, Y.D.; Wu, R.L.G.; Li, Y.H. Production efficiency and ecological effects of typical steppe under different grazing systems. J. Inner Mongolia Agric. Univ. 2021, 37, 425–436. [Google Scholar] [CrossRef]
- Ren, H.Y.; Eviner, V.T.; Gui, W.Y. Livestock grazing regulates ecosystem multi-functionality in semiarid grassland. Funct. Ecol. 2018, 32, 2790–2800. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Delgado-baquerizo, M.; Wang, D.L. Diversifying livestock promotes multi-diversity and multi-functionality in managed grasslands. Proc. Natl. Acad. Sci. USA 2019, 116, 6187–6192. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.L.; Wang, Y.Q.; Li, S.X.; Liu, Y.; Zhao, W.; Ma, Y.S.; Bao, G.S. Soil microbial character response to plant community variation after grazing prohibition for 10 years in a Qinghai-Tibetan alpine meadow. Plant Soil. 2019, 458, 175–189. [Google Scholar] [CrossRef]
- Milchunas, D.G.; Noy-Meir, I. Grazing refuges, external avoidance of herbivory and plant diversity. Oikos 2002, 99, 113–130. [Google Scholar] [CrossRef]
- Wang, Y.D. Effects of grazing livestock type and intensity on ground-dowelling arthropod steppe of Inner Mongolia. Master’s Thesis, Inner Mongolia University, Hohhot, China, 2012. [Google Scholar] [CrossRef]
- Yang, Z.M.; Hasitamier; Liu, X.M. Effects of grazing on the composition of soil animals and their decomposition function to Stipa grandis litter in Inner Mongolia typical steppe, China. J. Appl. Ecol. 2016, 27, 2864–2874. [Google Scholar] [CrossRef]
- Liu, W.T. Individual reproductive strategy of Stipa breviflora under different grazing pressures. Grassl. Sci. 2020, 66, 174–182. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, L.; Wang, X. Responses of plant and rodents to different grazing intensity. Acta Ecol. Sin. 1999, 19, 376–382. [Google Scholar] [CrossRef]
- Li, J.S.; Song, Y.L.; Wang, X.Z.; Zeng, Z.G. Spatial pattern of small mammals community diversity in different grazing pressure in montane desert-steppe. Acta Ecol. Sin. 2005, 25, 51–58. [Google Scholar] [CrossRef]
- Fleischner, T.L. Ecological costs of livestock grazing in western North America. Conserv. Biol. 1994, 8, 629–644. [Google Scholar] [CrossRef] [Green Version]
- Wardle, D.A. Experimental demonstration that plant diversity reduces invasibility evidence of a biological mechanism or a consequence of sampling effect? Oikos 2001, 95, 161–170. [Google Scholar] [CrossRef] [Green Version]
- de Villalobos, A.E.; Zalba, S.M. Continuous feral horse grazing and grazing exclusion in mountain pampean grasslands in Argentina. Acta Oecol. 2010, 36, 514–519. [Google Scholar] [CrossRef]
- Olivier, B.; Sylvain, F.; Jérôme, O.; Philippe, P.; Elise, B.; Thierry, D. Using stone cover patches and grazing exclusion to restore ground-active beetle communities in a degraded pseudo-steppe. J. Insect Conserv. 2011, 15, 561–572. [Google Scholar] [CrossRef]
- Virtanen, R.; Salminen, J.; Strömmer, R. Soil and decomposer responses to grazing exclusion are weak in mountain snow-beds. Acta Oecol. 2007, 33, 207–212. [Google Scholar] [CrossRef]
- Chen, X.J.; Lin, Q.M.; Zhao, X.R.; Chen, H.; Wen, J.; Li, Y.; Li, G.T. Long-term grazing exclusion influences arbuscular mycorrhizal fungi and their association with vegetation in typical steppe of Inner Mongolia, China. J. Integr. Agr. 2018, 17, 1445–1453. [Google Scholar] [CrossRef]
- Jeffrey, J.Y. Effects of grazing exclusion on rangeland vegetation and soils, East Central Idaho. West. N. Am. Naturalist. 2005, 65, 91–102. [Google Scholar]
- Xie, L.N.; Guan, L.J.; Guo, H.Y.; Chen, W.Z.; Liu, Z.; Li, Q.F.; Ma, C.C. Reproductive effort of Caragana microphylla under long term grazing exclusion in a semiarid grassland. Grassl. Sci. 2021, 67, 328–336. [Google Scholar] [CrossRef]
- Zalba, S.M.; Cozzani, N.C. The impact of feral horses on grassland bird communities in Argentina. Anim. Conserv. 2004, 7, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Barros, A.; Pickering, C.M.; Renison, D. Short-Term Effects of Pack Animal Grazing Exclusion from Andean Alpine Meadows. Arct. Antarct. Alp. Res. 2014, 46, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Bellis, L.M.; Muriel, N. Response of the endemic Long-tailed Meadowlark (Sturnella loyca obscura) to grazing exclusion in herbivore-dependent upland grasslands of Argentina. Emu Austral Ornithol. 2015, 115, 176–184. [Google Scholar] [CrossRef]
- Giuliano, W.M.; Homyack, J.D. Short-term grazing exclusion effects on riparian small mammal communities. J. Range Manag. 2004, 57, 346–350. [Google Scholar] [CrossRef]
- Song, N.P.; Zhang, F.R.; Li, B.G.; Chen, H.W.; Yao, H.M.; Cao, L.X. Prohibiting Graze Policy and Its Effect. J. Nat. Resour. 2004, 19, 316–323. [Google Scholar] [CrossRef]
- Zheng, Z.C. The above-and below-ground processes of degradation and restoring efficiency of grazing exclusion in typical alpine grasslands on the Tibetan Plateau. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2020. [Google Scholar] [CrossRef]
- Marta, B.C.; Celina, E.N.; Karen, B.; Ana, C.; Juan, A. Grazing and Grazing Exclusion Along a Resource Gradient in Magellanic Meadows of Tierra del Fuego. Rangel. Ecol. Manag. 2013, 66, 688–699. [Google Scholar] [CrossRef]
- Fan, Y.M.; Wu, H.Q.; Xie, Z.J.; Xie, Y.; He, J.; Chai, D.P. Effects of fencing on the soil organic carbon of desert grassland in the northern slope of Tianshan. Acta Agrestia. Sinica. 2014, 22, 65–69. [Google Scholar] [CrossRef]
- Shaltout, K.H.; Elhalawany, E.F.; Eikady, H.F. Consequences of protection from grazing on diversity and abundance of the coastal lowland vegetation in eastern Saudi Arabia. Biodivers. Conserv. 1996, 5, 27–36. [Google Scholar] [CrossRef]
- Wang, W.N.; Zhang, N.; Liu, X.B.; Liu, X.P.; Xue, Y.X.; Yang, J.; Li, K.C.; Hou, W.Y. Research progress in the ecosystem services function and value of grasslands. Acta Ningxia J. Agri. 2017, 58, 71–72. [Google Scholar] [CrossRef]
- Liu, X.Z.; Li, Y.C.; Su, Z.J. Characteristics of average temperature and extreme temperature in Ningxia from 1962 to 2015. Arid. Zone Res. 2018, 35, 1173–1180. [Google Scholar] [CrossRef]
- Wu, Y. Thinking on ecological environment construction in Ningxia. China Forest. Eco. 2017, 2, 79–97. [Google Scholar] [CrossRef]
- Guo, S.J.; Xin, Z.Z.; Cao, H.G. Sand fixation and countermeasures of grassland in Ningxia. J. Arid. Land. Res. Environ. 1995, 9, 70–73. [Google Scholar]
- Zhou, J.; Song, N.P.; Li, T.S.; Pan, J.; An, C.P.; Xie, Y.Z. Dynamic changes of land use in deserting-grazing village under the policy of “taking grain as the highest priority” in Yanchi country from 1964 to 1970. Agric. Res. Arid. Areas 2017, 35, 193–198. [Google Scholar] [CrossRef]
- Stow, D.; Daeschner, S.; Hope, A.; Douglas, D.; Petersen, A.; Myneni, R.; Zhou, L.; Oechel, W. Variability of the seasonally integrated normalized difference vegetation index across the North slope of Alaska in the 1990s. Int. Remote Sens. 2010, 24, 1111–1117. [Google Scholar] [CrossRef]
- Naeem, S.; Zhang, Y.; Zhang, X.; Tian, J.; Abbas, S.; Luo, L.; Meresa, H.K. Both climate and socioeconomic drivers contribute to vegetation greening of the Loess Plateau. Sci. Bull. 2021, 66, 1160–1163. [Google Scholar] [CrossRef]
- Yuan, L.J.; Bi, R.T.; Xu, L.S.; Zhu, H.F. Spatiotemporal differentiation of vegetation coverage in Qinhe Basin. Chin. J. Ecol. 2019, 38, 1093–1103. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid. Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Sun, W.; Song, X.; Mu, X.; Gao, P.; Wang, F.; Zhao, G. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209, 87–99. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Tao, S.; Kuang, T.T.; Peng, W.F. Analyzing the spatio-temporal variation and drivers of NDVI in upper reaches of the Yangtze River from 2000 to 2015: A case study of Yibin City. Acta Ecol. Sin. 2020, 40, 5029–5043. [Google Scholar] [CrossRef]
- Yuan, L.H.; Jiang, W.G.; Shen, W.M.; Liu, Y.H.; Wang, W.J.; Tao, L.L.; Zheng, H.; Liu, X.F. The spatio-temporal variations of vegetation cover in the Yellow River basin from 2000 to 2010. Acta Ecol. Sin. 2013, 33, 7798–7806. [Google Scholar] [CrossRef]
- Feng, X.L.; Feng, Z.L.; Luo, L.C.; Qiu, L.L.; Liu, P. Fractal analysis of climate change and Hurst index experiment in Tibetan Plateau in future. Arid. Land Geogr. 2008, 31, 175–181. [Google Scholar]
- Wen, X.J.; Liu, Y.X.; Yang, X.J. A resilience-based Analysis on the spatial heterogeneity of Vegetation restoration and its Affecting Factors in the Construction of Eco-cities: A case study of Shangluo, Shaanxi. Acta Ecol. Sin. 2015, 35, 4377–4389. [Google Scholar] [CrossRef]
- Huang, W.G.; Liu, X.D.; Yu, Z.; Ma, X.M.; Ma, Z.; Wang, L. Effects of grazing prohibition on grassland coverage—A case study at Yanchi country of Ningxia. Pratac. Sci. 2011, 28, 1502–1506. [Google Scholar]
- Hu, Z.Z. New progress in grassland classification. Grassland. Turf. 1994, 4, 1–9. [Google Scholar] [CrossRef]
- Hu, Z.Z. Introduction to the Classification of Grassland, 1st ed.; China Agricultural Press: Beijing, China, 1997; pp. 225–242. [Google Scholar]
- Ma, H.B.; Wang, N. Classification of grassland in Ningxia. J. Ningxia Agric. Colg. 2000, 21, 62–67. [Google Scholar]
- Liu, X.P.; Chen, S.R.; Guo, Z.J.; Zhao, Y.; Huang, Y. Research on regionalization of grassland agriculture in Ningxia. J. Northwest Normal Univ. (Nat.Sci. Ed.) 2014, 1, 115–120. [Google Scholar] [CrossRef]
- Ren, J.Z.; Hu, Z.Z.; Zhao, J.; Zhang, D.G.; Hou, F.J.; Lin, H.L.; Mu, X.D. A grassland classification system and its application in China. Rangel. J. 2008, 30, 199–209. [Google Scholar] [CrossRef]
- Courtois, D.R.; Perryman, B.L.; Hussein, S. Vegetation Change after 65 Years of Grazing and Grazing Exclusion. J. Range Manag. 2004, 57, 574. [Google Scholar] [CrossRef]
- Zhou, L.H.; Wang, Y.; Yang, G.J. Study on the Timely Adjustment of the Grazing Prohibition Policy Ban or Lift Empirical Research from Local Government Managers. Sustainability 2018, 10, 4852. [Google Scholar] [CrossRef] [Green Version]
- Rüdiger, K.; Roland, M.; Nikolaus, S.; Brigitta, E. Effects of Climate Change vs. Grazing Exclusion on Species Diversity Over 18 Years Along an Elevation Gradient in the European. Alps. Front. Ecol. Evol. 2021, 9, 640103. [Google Scholar] [CrossRef]
- Lenzi-Grillini, C.R.; Viskanic, P.; Mapesa, M. Effects of 20 years of grazing exclusion in an area of the Queen Elizabeth National Park, Uganda. Afr. J. Ecol. 1996, 34, 333–341. [Google Scholar] [CrossRef]
- Fahnestock, J.T.; Detling, J.K. The influence of herbivory on plant cover and species composition in the Pryor Mountain Wild Horse Range, USA. Plant Ecol. 1999, 144, 145–157. [Google Scholar] [CrossRef]
- Yagil, O.; Avi, P.; Jaime, K.; Francisco, P. Size Traits and Site Conditions Determine Changes in Seed Bank Structure Caused by Grazing Exclusion in Semiarid Annual Plant Communities. Ecography 2006, 29, 11–20. [Google Scholar] [CrossRef]
- Wu, J.B.; Bao, X.Y.; Li, J.; Zhao, N.X.; Gao, Y.B. Influence of fencing duration on community and population of Stia grandis in a typical steppe. Acta Agrestia Sin. 2010, 18, 490–495. [Google Scholar] [CrossRef]
- Saatkamp, A.; Henry, F.; Dutoit, T. Vegetation and soil seed bank in a 23-year grazing exclusion chronosequence in a Mediterranean dry grassland. Plant Biol. 2018, 152, 1020–1030. [Google Scholar] [CrossRef]
- Kathryn, A.H.; Wayne, C.L.; Trlica, M.J. Grazing History Affects Willow Communities in a Montane Riparian Ecosystem. Rangel. Ecol. Manag. 2005, 58, 148–154. [Google Scholar] [CrossRef]
- Wu, G.L.; Du, G.Z.; Liu, Z.H.; Thirgood, S. Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant Soil. 2009, 319, 115–126. [Google Scholar] [CrossRef]
- Xu, Q.; Xu, Z.Q.; Wang, Y.S. Evaluation on impacts of grazing prohibition on services of typical steppe ecosystem. Pratac. Sci. 2012, 29, 364–369. [Google Scholar]
- Díaz, S.; Lavorel, S.; McIntyre, S.; Falczuk, V.; Casanoves, F.; Milchunas, D.G.; Skarpe, C.; Rusch, G.; Sternberg, M.; Noy-Meir, I. Plant trait responses to grazing—A global synthesis. Glob. Chang. Biol. 2007, 13, 313–341. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, J.; Su, J.S.; Cheng, J.M. Diversity-productivity relationship of plant communities in typical grassland during the long-term grazing exclusion succession. Chin. J. Plant Ecol. 2022, 46, 176–187. [Google Scholar] [CrossRef]
- Zhang, J.H.; Huang, Y.M.; Chen, H.Y.; Gong, J.R.; Qi, Y.; Li, E.G.; Wu, X.C. Response of plant functional traits at species and community levels to grazing exclusion on Inner Mongolian steppe, China. Rangel. J. 2018, 40, 179–189. [Google Scholar] [CrossRef]
- Aldezabal, A.; Moragues, L.; Odriozola, I.; Mijangos, I. Impact of grazing abandonment on plant and soil microbial communities in an Atlantic mountain grassland. Appl. Soil Ecol. 2015, 96, 251–260. [Google Scholar] [CrossRef]
- Wang, F.F.; Li, Z.M.M.; Fu, B.J.; Lü, Y.H.; Liu, G.P.; Wang, D.B.; Wu, X. Short-Term Grazing Exclusion Alters Soil Bacterial Co-occurrence Patterns Rather Than Community Diversity or Composition in Temperate Grasslands. Front. Microbiol. 2022, 13, 824192. [Google Scholar] [CrossRef] [PubMed]
- José, D.S.O.F.; Jonas, N.V.; Eliane, M.R.D.S.; José, G.B.D.O.; Marcos, G.P.; Felipe, G.B. Assessing the effects of 17 years of grazing exclusion in degraded semi-arid soils: Evaluation of soil fertility, nutrients pools and stoichiometry. J. Arid Environ. 2019, 166, 1–10. [Google Scholar] [CrossRef]
- Deng, L.; Shangguan, Z.P.; Wu, G.L.; Chang, X.F. Effects of grazing exclusion on carbon sequestration in China’s grassland. J. Integr. Agr. 2017, 173, 84–95. [Google Scholar] [CrossRef]
- Shrestha, G.; Stahl, P.D. Carbon accumulation and storage in semi-arid sagebrush steppe: Effects of long-term grazing exclusion. Agr. Ecosyst. Environ. 2007, 125, 173–181. [Google Scholar] [CrossRef]
- Xie, L.; Song, N.Y.; Meng, C.; Wu, T.; Chen, X.Y.; Li, M.L.; Yue, J.M. Time course of changes in soil particle size and carbon and nitrogen reserves after fencing Ningxia desert steppe. Acta Pratac. Sin. 2020, 29, 1–10. [Google Scholar] [CrossRef]
- Yang, X.G.; Song, N.P.; Li, X.B.; Liu, B.R. Effects of short-term fencing on organic carbon fractions and physical stability of sandy sierozem in desert steppe of northwest China. Chin. J. Appl. Ecol. 2012, 23, 3325–3330. [Google Scholar] [CrossRef]
- Gao, Y.N.; Liao, L.R.; Wang, J.; Wan, Q.; Liu, G.B.; Zhang, C. Effects of grazing exclusion on the fractal characteristics of soil particle size in semiarid grassland on the Loess Plateau. J. Soil Water Conserv. 2012, 35, 312–326. [Google Scholar] [CrossRef]
- Greenwood, K.L.; MacLeod, D.A.; Scott, J.M.; Hutchinson, K.J. Changes to soil physical properties after grazing exclusion. Soil Use Manag. 1998, 14, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Yang, J.; Song, B.Y. The impacts of different closure durations on degraded Stipa Grandis grassland productivity and soil carbon and nitrogen storage. Chin. J. Ecol. 2014, 33, 896–901. [Google Scholar] [CrossRef]
- Yang, Y.H.; Pu, S.L. Variations in grassland vegetation cover in relation to climatic factors on the Tibetan plateau. J. Plant Eco. 2006, 30, 1–8. [Google Scholar] [CrossRef]
- Cao, X.J.; Gan, Z.Z.B.; Liang, Y.; Gao, Q.Z.; Zhang, Y.; Li, Y.E.; Wan, Y.F.; Dan, J.L.B. Temporal and spatial distribution of grassland degradation in northern Tibet based on NDVI. Acta Pratac. Sin. 2016, 25, 1–8. [Google Scholar] [CrossRef]
- Zhong, J.T.; Wang, P.; Mi, W.B.; Mao, W.T.; Yang, X.M.; Yang, M.L. Effect of grazing prohibition on grassland cover changes in Yanchi Country. Pratac. Sci. 2018, 35, 2855–2864. [Google Scholar] [CrossRef]
- Miao, J.; Zhang, K.B.; Liu, X.D.; Li, H.T. Diversity of plant community in relation to environment factors based on CCA in fencing region in Yanchi, Ningxia. Ecol. Environ. Sci. 2015, 24, 762–766. [Google Scholar] [CrossRef]
Factors Types | Detector Factors | Unit | Abbreviations |
---|---|---|---|
Climate factors | Average annual wind speed | m·s−1 | Wind |
Average annual temperature | °C | Temp | |
Average annual precipitation | mm | Prec | |
Average annual potential evapotranspiration | mm | ETp | |
Average annual downward shortwave radiation | W·m−2 | RD | |
Snow depth | mm | Snowd | |
Surface factors | Aspect | ° | Aspect |
Soil type | - | Soilt | |
Digital Elevation Model | m | Dem |
Slopeobs 1 | Driving Forces | Partition | Relative Roles of CC 2 % | Relative Roles of HA 2 % | |
---|---|---|---|---|---|
Slopecli 1 | Sloperes 1 | ||||
>0 | CC&HA | >0 | >0 | Slopecli/Slopeobs | Sloperes/Slopeobs |
CC | >0 | <0 | 100 | 0 | |
HA | <0 | >0 | 0 | 100 | |
<0 | CC&HA | <0 | <0 | Slopecli/Slopeobs | Sloperes/Slopeobs |
CC | <0 | >0 | 0 | 100 | |
HA | >0 | <0 | 100 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhao, Y.; Ma, K.; Wang, D.; Lin, H. The Trend of Grassland Restoration and Its Driving Forces in Ningxia Hui Autonomous Region of China from 1988 to 2018. Sustainability 2022, 14, 10404. https://doi.org/10.3390/su141610404
Zhang X, Zhao Y, Ma K, Wang D, Lin H. The Trend of Grassland Restoration and Its Driving Forces in Ningxia Hui Autonomous Region of China from 1988 to 2018. Sustainability. 2022; 14(16):10404. https://doi.org/10.3390/su141610404
Chicago/Turabian StyleZhang, Xiujuan, Yuting Zhao, Kexin Ma, Danni Wang, and Huilong Lin. 2022. "The Trend of Grassland Restoration and Its Driving Forces in Ningxia Hui Autonomous Region of China from 1988 to 2018" Sustainability 14, no. 16: 10404. https://doi.org/10.3390/su141610404