Spatio-Temporal Dynamics of Water Conservation Service of Ecosystems in the Zhejiang Greater Bay Area and Its Impact Factors Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Water Balance Model
2.4. Slope Trend Test
2.5. Contribution Rate of Climate and LUCC to Changes in Water Conservation
2.6. Geodetector
3. Results
3.1. The InVEST Model Validation
3.2. Temporal and Spatial Dynamics of Climate and LUCC
3.3. Temporal and Spatial Dynamic Changes of Water Conservation
3.4. Quantitative Analysis of the Impact of Climate and LUCC on Water Conservation
4. Discussion
4.1. The Response Relationship and Sensitivity Analysis of Water Conservation
4.2. Influencing Factors of Water Conservation
4.3. Space Grading of Water Conservation
4.4. Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The nature and value of ecosystem services: An overview highlighting hydrologic services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Shen, Y.; Xiao, Y.; Ouyang, Z.; Zhang, P. Water Conservation Service Evaluation Based on Ecosystem Quality in Southwestern China. Mt. Res. 2020, 38, 816–828. [Google Scholar]
- Vigerstol, K.L.; Aukema, J.E. A comparison of tools for modeling freshwater ecosystem services. J. Environ. Manag. 2011, 92, 2403–2409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, W.; Xie, G.; Xiao, Y. Water conservation of forest ecosystem in Beijing and its value. Ecol. Econ. 2010, 69, 1416–1426. [Google Scholar]
- Kong, L.; Wang, Y.; Zheng, H.; Xiao, Y.; Xu, W.; Zhang, L.; Xiao, Y.; Ouyang, Z. A method for evaluating ecological space and ecological conservation redlines in river basins: A case of the Yangtze River Basin. Acta Ecol. Sin. 2019, 39, 835–843. [Google Scholar]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Ji, Z.; Pei, T.; Chen, Y.; Wu, H.; Hou, Q.; Shi, F.; Xie, B.; Zhang, J. The driving factors of grassland water use efficiency along degradation gradients on the Qinghai-Tibet Plateau, China. Glob. Ecol. Conserv. 2022, 35, e02090. [Google Scholar] [CrossRef]
- Cao, W.; Wu, D.; Huang, L.; Liu, L. Spatial and temporal variations and significance identification of ecosystem services in the Sanjiangyuan National Park, China. Sci. Rep. 2020, 10, 6151. [Google Scholar] [CrossRef]
- Ferraz, S.F.; de Paula Lima, W.; Rodrigues, C.B. Managing forest plantation landscapes for water conservation. For. Ecol. Manag. 2013, 301, 58–66. [Google Scholar] [CrossRef]
- Tiemann, A.; Ring, I. Challenges and opportunities of aligning forest function mapping and the ecosystem service concept in Germany. Forests 2018, 9, 691. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Bian, Z.; Ding, S. Consequences of Spatial Heterogeneity of Forest Landscape on Ecosystem Water Conservation Service in the Yi River Watershed in Central China. Sustainability 2020, 12, 1170. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Li, G.; Gao, Z.; Jia, G.; Wang, Z.; Li, Y. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef]
- Hu, W.; Li, G.; Li, Z. Spatial and temporal evolution characteristics of the water conservation function and its driving factors in regional lake wetlands—Two types of homogeneous lakes as examples. Ecol. Indic. 2021, 130, 108069. [Google Scholar] [CrossRef]
- Khanal, S.; Lal, R.; Kharel, G.; Fulton, J. Identification and classification of critical soil and water conservation areas in the Muskingum River basin in Ohio. J. Soil Water Conserv. 2018, 73, 213–226. [Google Scholar] [CrossRef]
- Bao, Y.; LI, T.; Liu, H.; Ma, T.; Wang, H.; Liu, K.; Shen, X.; Liu, X. Spatial and temporal changes of water conservation of Loess Plateau in northern Shaanxi province by InVEST model. Geophys. Res. 2016, 35, 664–676. [Google Scholar]
- Wang, Y.; Ye, A.; Peng, D.; Miao, C.; Di, Z.; Gong, W. Spatiotemporal variations in water conservation function of the Tibetan Plateau under climate change based on InVEST model. J. Hydrol. Reg. Stud. 2022, 41, 101064. [Google Scholar] [CrossRef]
- Li, M.; Liang, D.; Xia, J.; Song, J.; Cheng, D.; Wu, J.; Cao, Y.; Sun, H.; Li, Q. Evaluation of water conservation function of Danjiang River Basin in Qinling Mountains, China based on InVEST model. J. Environ. Manag. 2021, 286, 112212. [Google Scholar] [CrossRef]
- Zhu, Q.; Guo, J.; Guo, X.; Chen, L.; Han, Y.; Liu, S. Relationship between ecological quality and ecosystem services in a red soil hilly watershed in southern China. Ecol. Indic. 2021, 121, 107119. [Google Scholar] [CrossRef]
- Fu, B.; Xu, P.; Wang, Y.; Yan, K.; Chaudhary, S. Assessment of the ecosystem services provided by ponds in hilly areas. Sci. Total Environ. 2018, 642, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, K.; Bao, Y.; Chen, H. Spatial pattern and influencing factors of water conservation service function in Shangluo city. Sci. Geol. Sin. 2016, 36, 1546–1554. [Google Scholar]
- Xu, J.; Xiao, Y.; Xie, G.; Wang, S.; Zhu, W. Spatiotemporal analysis of water supply service in the Dongjiang Lake Basin. Acta Ecol. Sin. 2016, 36, 4892–4906. [Google Scholar]
- Zhang, B.; Li, W.; Xie, G.; Xiao, Y. Water conservation function and its measurement methods of forest ecosystem. Chin. J. Ecol. 2009, 28, 529–534. [Google Scholar]
- Šatalová, B.; Kenderessy, P. Assessment of water retention function as tool to improve integrated watershed management (case study of Poprad river basin, Slovakia). Sci. Total Environ. 2017, 599, 1082–1089. [Google Scholar] [CrossRef]
- Leh, M.D.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef] [Green Version]
- Hou, G.; Bi, H.; Wei, X.; Wang, N.; Cui, Y.; Zhao, D.; Ma, X.; Wang, S. Optimal configuration of stand structures in a low-efficiency Robinia pseudoacacia forest based on a comprehensive index of soil and water conservation ecological benefits. Ecol. Indic. 2020, 114, 106308. [Google Scholar] [CrossRef]
- Si, J.; Han, P.; Zhao, C. Review of Water Conservation Value Evaluation Methods of Forest and Case Study. J. Nat. Resour. 2011, 26, 2100–2109. [Google Scholar]
- Sun, Q.; Li, Y.; Guo, J.; Wu, X. Assessment of Water Conservation Function of Forest Ecosystem in Yunhe County, Zhejiang Province. Acta Sci. Nat. Univ. Pekin. 2015, 51, 888–896. [Google Scholar]
- Wang, X.; Shen, H.; Li, X.; Jing, F. Concepts, processes and quantification methods of the forest water conservation at the multiple scales. Acta Ecol. Sin. 2013, 33, 1019–1030. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, L.; Zeng, Y.; Fu, B.; Whitham, C.; Liu, S.; Wu, B. Representation of critical natural capital in China. Conserv. Biol. 2017, 31, 894–902. [Google Scholar] [CrossRef]
- Liu, C.; Liu, W.; Wang, N.; Yang, B. Application of SCS model in runoff simulation of non-data region: A case study in Qinghe river basin. Chin. J. Agric. Resour. Reg. Plann. 2019, 40, 56–63. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; pp. 103–134. [Google Scholar]
- Allen, R.G.; Pruitt, W.O.; Raes, D.; Smith, M.; Pereira, L.S. Estimating evaporation from bare soil and the crop coefficient for the initial period using common soils information. J. Irrig. Drain. Eng. 2005, 131, 14–23. [Google Scholar] [CrossRef]
- Chen, J.; Wang, D.; Li, G.; Sun, Z.; Wang, X.; Zhang, X.; Zhang, W. Spatial and Temporal Heterogeneity Analysis of Water Conservation in Beijing-Tianjin-Hebei Urban Agglomeration Based on the Geodetector and Spatial Elastic Coefficient Trajectory Models. GeoHealth 2020, 4, e2020GH000248. [Google Scholar] [CrossRef]
- Wang, B.; Chen, H.; Dong, Z.; Zhu, W.; Qiu, Q.; Tang, L. Impact of land use change on the water conservation service of ecosystems in the urban agglomeration of the Golden Triangle of Southern Fujian, China, in 2030. Acta Ecol. Sin. 2020, 40, 484–498. [Google Scholar]
- Pan, Y.; Zhen, L.; Long, X.; Cao, X. Ecosystem service interactions and their affecting factors in Jinghe watershed at county level. Chin. J. Appl. Ecol. 2012, 23, 1203–1209. [Google Scholar]
- Gong, S.; Xiao, Y.; Xiao, Y.; Zhang, L.; Ouyang, Z. Driving forces and their effects on water conservation services in forest ecosystems in China. Chin. Geogr. Sci. 2017, 27, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.; Xiao, Y.; Zheng, H.; Xiao, Y.; Ouyang, Z. Spatial patterns of ecosystem water conservation in China and its impact factors analysis. Acta Ecol. Sin. 2017, 37, 2455–2465. [Google Scholar]
- Zhang, L.; Hickel, K.; Dawes, W.; Chiew, F.H.; Western, A.; Briggs, P. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, 107500. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436, 35–50. [Google Scholar] [CrossRef]
- Liu, C.; Bai, P.; Wang, Z.; Liu, S.; Liu, X. Study on prediction of ungaged basins: A case study on the Tibetan Plateau. J. Hydraul. Eng. 2016, 47, 272–282. [Google Scholar]
- Liu, X.; Zhang, J.; Zhu, X.; Pan, Y.; Liu, Y.; Zhang, D.; Lin, Z. Spatiotemporal changes in vegetation coverage and its driving factors in the Three-River Headwaters Region during 2000–2011. J. Geog. Sci. 2014, 2, 288–302. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, L. Research on streamflow responses to land use change and climate variability in Xunhe catchment. Water Resour. Res. 2013, 2, 181–187. [Google Scholar] [CrossRef]
- Pandey, B.K.; Khare, D.; Kawasaki, A.; Meshesha, T.W. Integrated approach to simulate hydrological responses to land use dynamics and climate change scenarios employing scoring method in upper Narmada basin, India. J. Hydrol. 2021, 598, 126429. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, J.; Lei, L.; Xiang, J.; Huang, M.; Feng, W.; Zhu, G.; Wei, W.; Wang, J. Identification of drivers for water yield in the upstream of Shiyang River based on InVEST model. Chin. J. Ecol. 2019, 38, 3789–3799. [Google Scholar]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Zhang, C.; Li, W.; Zhang, B.; Liu, M. Water yield of Xitiaoxi river basin based on InVEST modeling. J. Resour. Ecol. 2012, 3, 50–54. [Google Scholar]
- Anand, J.; Gosain, A.K.; Khosa, R. Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Sci. Total Environ. 2018, 644, 503–519. [Google Scholar] [CrossRef]
- Pei, H.; Liu, M.; Shen, Y.; Xu, K.; Zhang, H.; Li, Y.; Luo, J. Quantifying impacts of climate dynamics and land-use changes on water yield service in the agro-pastoral ecotone of northern China. Sci. Total Environ. 2022, 809, 151153. [Google Scholar] [CrossRef]
- Wei, M.; Yuan, Z.; Xu, J.; Shi, M.; Wen, X. Attribution Assessment and Prediction of Runoff Change in the Han River Basin, China. Int. J. Environ. Res. Public Health 2022, 19, 2393. [Google Scholar] [CrossRef]
- Penman, H. The dependence of transpiration on weather and soil conditions. J. Soil Sci. 1950, 1, 74–89. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, S.; Zhao, D.; Dai, E. Ecosystem water conservation changes in response to climate change in the Source Region of the Yellow River from 1981 to 2010. Geogr. Res. 2016, 35, 49–57. [Google Scholar]
- Li, J.; Zhou, K.; Xie, B.; Xiao, J. Impact of landscape pattern change on water-related ecosystem services: Comprehensive analysis based on heterogeneity perspective. Ecol. Indic. 2021, 133, 108372. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landsc. Urban Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Xu, F.; Zhao, L.; Jia, Y.; Niu, C.; Liu, X.; Liu, H. Evaluation of water conservation function of Beijiang River basin in Nanling Mountains, China, based on WEP-L model. Ecol. Indic. 2022, 134, 108383. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Y.; Zou, C.; Xu, D.; Lin, N.; Wang, L.; Zhang, K. China’s ecological conservation redline: A solution for future nature conservation. Ambio 2020, 49, 1519–1529. [Google Scholar] [CrossRef]
- Hu, P.; Zhou, Y.; Zhou, J.; Wang, G.; Zhu, G. Uncovering the willingness to pay for ecological red lines protection: Evidence from China. Ecol. Indic. 2022, 134, 108458. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, M.; Wang, K.; Qin, J.; Fu, J. Characteristics of Variation of Water Conservation in Southern Hilly and Mountainous Region of China. Res. Agric. Modern. 2014, 35, 345–348. [Google Scholar]
- Wang, S.; Huang, L.; Xu, X.; Xu, S. Spatial and temporal evolution of ecosystem services and its trade-offs and synergies in Guangdong-Hong Kong-Macao Greater Bay Area. Acta Ecol. Sin. 2020, 40, 8403–8416. [Google Scholar]
Code | Land Use | Evapotranspiration Coefficient | Soil Depth of Root | Vegetation Cover and Management Factor |
---|---|---|---|---|
1 | Cropland | 0.93 | 240 | 1 |
2 | Forest | 1 | 1300 | 1 |
3 | Grassland | 0.75 | 500 | 1 |
4 | Waters | 1 | 1 | 0 |
5 | Construction land | 0.23 | 1 | 0 |
6 | Unused land | 0.2 | 1 | 0 |
Surface Species | Runoff Coefficient Range (u) | Mean Runoff Coefficient (u) |
---|---|---|
Cropland | 0.45–0.6 | 0.53 |
Forest | 0.25–0.5 | 0.37 |
Grassland | 0.4–0.65 | 0.53 |
Construction land | 0.6–0.95 | 0.78 |
Unused land | 0.5–0.85 | 0.67 |
2000 | 2019 | Area Reduction (2000) | Total Area (2000) | |||||
---|---|---|---|---|---|---|---|---|
Cropland | Forest | Grassland | Waters | Construction Land | Unused Land | |||
Cropland | 11,570 | 4414 | 168 | 704 | 4213 | 3 | 9501 | 21,071 |
Forest | 3873 | 31,058 | 739 | 368 | 855 | 8 | 5844 | 36,902 |
Grassland | 155 | 705 | 420 | 13 | 51 | 1 | 924 | 1344 |
Waters | 583 | 332 | 35 | 1104 | 302 | 1 | 1254 | 2357 |
Construction land | 1123 | 263 | 10 | 106 | 1474 | 0 | 1502 | 2976 |
Unused land | 1 | 8 | 0 | 1 | 2 | 3 | 12 | 16 |
Area increase (2019) | 5735 | 5721 | 952 | 1191 | 5423 | 14 | — | — |
Total area (2019) | 17,305 | 36,780 | 1372 | 2295 | 6897 | 17 | — | — |
Year | Water Conservation Per Unit Area (mm) | Total Water Conservation (×108 m3) | Water Conservation Capacity (>300 mm) | |
---|---|---|---|---|
Area (×108 m2) | Ratio (%) | |||
2000 | 255.38 | 153.95 | 233.86 | 35.38 |
2001 | 275.63 | 165.22 | 269.06 | 40.70 |
2002 | 391.12 | 234.11 | 428.49 | 64.82 |
2003 | 94.60 | 57.43 | 24.97 | 3.78 |
2004 | 132.21 | 79.89 | 74.45 | 11.26 |
2005 | 310.37 | 187.43 | 237.89 | 35.99 |
2006 | 206.37 | 124.36 | 157.63 | 23.85 |
2007 | 269.48 | 162.40 | 212.68 | 32.18 |
2008 | 231.46 | 138.18 | 155.73 | 23.56 |
2009 | 285.79 | 171.47 | 264.41 | 40.00 |
2010 | 438.04 | 262.49 | 393.13 | 59.48 |
2011 | 162.69 | 97.26 | 56.36 | 8.53 |
2012 | 481.06 | 286.89 | 492.45 | 74.50 |
2013 | 269.52 | 162.16 | 239.91 | 36.30 |
2014 | 330.27 | 198.27 | 325.14 | 49.19 |
2015 | 506.66 | 303.44 | 500.45 | 75.71 |
2016 | 554.82 | 334.69 | 552.44 | 83.58 |
2017 | 253.59 | 153.40 | 194.47 | 29.42 |
2018 | 313.92 | 188.77 | 320.26 | 48.45 |
2019 | 518.08 | 309.02 | 499.80 | 75.61 |
LUCC in the Base Period Climate in the Base Period | LUCC in the Base Period Climate in the Change Period | Climate in the Base Period LUCC in the Change Period | LUCC in the Change Period Climate in the Change Period | |
---|---|---|---|---|
Average annual water conservation depth (mm) | 234.45 | 384.77 | 232.59 | 382.66 |
Mutant average | 150.32 | −1.86 | 148.21 | |
The percentage of the variable volume (%) | 98.78 | 1.22 |
Precipitation | Evapotranspiration | NDVI | Soil Types | DEM | POP | GDP | Land Use | |
---|---|---|---|---|---|---|---|---|
Precipitation | 0.44 | |||||||
Evapotranspiration | 0.54 | 0.31 | ||||||
NDVI | 0.63 | 0.42 | 0.22 | |||||
Soil types | 0.62 | 0.42 | 0.27 | 0.21 | ||||
DEM | 0.60 | 0.42 | 0.26 | 0.25 | 0.18 | |||
POP | 0.54 | 0.36 | 0.23 | 0.22 | 0.21 | 0.07 | ||
GDP | 0.54 | 0.36 | 0.23 | 0.22 | 0.20 | 0.09 | 0.07 | |
Land use | 0.59 | 0.40 | 0.25 | 0.25 | 0.24 | 0.19 | 0.19 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Yang, F. Spatio-Temporal Dynamics of Water Conservation Service of Ecosystems in the Zhejiang Greater Bay Area and Its Impact Factors Analysis. Sustainability 2022, 14, 10392. https://doi.org/10.3390/su141610392
Zhang L, Yang F. Spatio-Temporal Dynamics of Water Conservation Service of Ecosystems in the Zhejiang Greater Bay Area and Its Impact Factors Analysis. Sustainability. 2022; 14(16):10392. https://doi.org/10.3390/su141610392
Chicago/Turabian StyleZhang, Lixue, and Fan Yang. 2022. "Spatio-Temporal Dynamics of Water Conservation Service of Ecosystems in the Zhejiang Greater Bay Area and Its Impact Factors Analysis" Sustainability 14, no. 16: 10392. https://doi.org/10.3390/su141610392