Carbon Footprint Estimation for La Serena-Coquimbo Conurbation Based on Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of La Serena-Coquimbo Conurbation
2.2. Methods
- Identification of sectors and subsectors contributing to GHG emissions in the conurbation.
- Gathering data on selected sectors to develop a GHG inventory.
- Quantification of CO2eq in selected sectors to establish their carbon footprint contribution.
2.2.1. Identification of the Main Sectors and Subsectors Contributing to GHG Emissions in the Conurbation
- Energy industries: this is considering that the El Peñón power plant is outside the conurbation boundaries.
- Unspecified sources: no data was available for the additional stationary energy sources included in this subsector.
- Fugitive emissions from mining, processing, storage, and transport of coal: the study does not take into account emissions from the extraction of raw materials, including minerals.
- Fugitive emissions from oil and natural gas systems: no data was available for the existence of fugitive emissions for either fossil fuel.
- Off-road transport: no data was available regarding the use of alternative routes other than roadways in the area of study.
- Biological treatment of waste: no data was available on the biological treatment of waste.
- Incineration and open burning of waste: considering no incineration of waste nor open burning procedures are carried out in the local landfill system.
2.2.2. Data Gathering for Selected Sectors
- Stationary energy sector data was obtained from the Energía Abierta website maintained by the National Energy Commission (CNE) and the 2017 Statistical Report on Fuels published by the Superintendency of Electricity and Fuels.
- For the transport sector, data was obtained from the Pollutant Release and Transfer Register (RETC) provided by the Transport Planning Office (SECTRA), the 2017 CAP Mining [46] report, the 2017 Army of Chile report, and the 2017 quarterly flight reports available at the La Florida airport website.
- For the waste sector, the aforementioned RETC was consulted, as well as information obtained from the National Waste Reporting System (SINADER) and Environmental Oversight Report for the El Panul Landfill.
- Finally, emission factors applied herein were obtained using guidelines from the IPCC [35] and the Ministry of Energy of Chile.
- Due to the unavailability of consumption data at the community level, communal per capita consumption is calculated by multiplying regional per capita consumption times the conurbation’s population.
- Due to the unavailability of data regarding aircraft models for the La Serena airport, available data for Airbus 320 was used, as it is the most common aircraft used for domestic flights in Chile.
- Aircraft fuel consumption considered for emissions is restricted to the LTO (Landing/Take-Off) stage.
- Finally, due to the unavailability of data on watercraft, only data for port vessels and national size averages for various watercraft types were used.
2.2.3. Quantification of Emissions in CO2eq across Selected Sectors
- for La Serena-Coquimbo takes into account solid waste generated and sent to the El Panul landfill; 2017 RETC data revealed 98,823 tons were generated in Coquimbo and 87,707 tons in La Serena.
- value is 0.6, resulting from the methane generation potential as per IPCC guidelines [35] applied to El Panul landfill.
- Ox value is 0.1, considering that, as per GPC guidelines, the oxidation factor depends on whether the landfill is regulated or not. An Ox value of 0.1 is assigned to properly regulated landfills, while a value of 0 is assigned to unregulated landfills. According to the 2017 Environmental Oversight Report for El Panul Landfill, this is a duly regulated landfill.
- value is 0, considering the methane fraction recovered is due to burning, or to energy recovered from solid waste within the conurbation; currently, no such processes are undertaken; therefore, this parameter is assigned a value of 0 for the conurbation.
3. Results and Discussions
3.1. Results by Sector
3.1.1. Stationary Energy
3.1.2. Transport
3.1.3. Waste
3.2. The Political Challenges behind the Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Year | Author | Country | Topic |
---|---|---|---|
2021 | Alves de Oliveira, B.F.; Bottino, M.J.; Nobre, P.; Nobre, C.A | Brasil | Deforestation and Climate Change |
2020 | Bowman, D.M.J.S.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. | Australia | Vegetation Fires in the Anthropocene |
2019 | Menezes-Silva, P.E.; Loram-Lourenço, L.; Alves, R.D.F.B.; Sousa, L.F.; Almeida, S.E. da S.; Farnese, F.S | Brasil | Different Ways to Die in a Changing World |
2022 | Meyer, A.L.S.; Bentley, J.; Odoulami, R.C.; Pigot, A.L.; Trisos, C.H. | South Africa and United Kingdom | Risks to Biodiversity from Temperature Overshoot Pathways |
2021 | Garcia-Soto, C.; Cheng, L.; Caesar, L.; Schmidtko, S.; Jewett, E.B.; Cheripka, A.; Rigor, I.; Caballero, A.; Chiba, S.; Báez, J.C | Switzerland | Overview of Ocean Climate Change Indicators |
2015 | Kalmykova, Y.; Rosado, L.; Patrício, J | Sweden | Urban Economies Resource Productivity and Decoupling: Metabolism Trends |
2018 | Huang-Lachmann, J.-T.; Hannemann, M.; Guenther, E. | Germany | Identifying Links between Economic Opportunities and Climate Change Adaptation: |
2018 | Lombardi, M.; Laiola, E.; Tricase, C.; Rana, R. | Italy | Urban Carbon Footprint |
2020 | Wiedmann, T.; Chen, G.; Owen, A.; Lenzen, M.; Doust, M.; Barrett, J.; Steele, K. | Australia, China | Scope of Carbon Emission Inventories of Global Cities. |
2022 | Gurney, K.R.; Kılkış, Ş.; Seto, K.C.; Lwasa, S.; Moran, D.; Riahi, K.; Keller, M.; Rayner, P.; Luqman, M. | USA, Turkey, Netherlands, Norway, Austria, Australia | Greenhouse Gas Emissions from Global Cities under SSP/RCP Scenarios |
2019 | Yang, F.; Li, Y.; Xu, J. | China, Germany | Urban GHG Inventory in China |
2019 | Sununta, N.; Kongboon, R.; Sampattagul, S. | Thailand | GHG Evaluation and Mitigation Planning for Low Carbon City |
2019 | Lu, C.; Li, W. A | China | GHGs Inventory |
2018 | Lombardi, M.; Laiola, E.; Tricase, C.; Rana, R. | Italy | Urban Environmental Sustainability |
2018 | Sówka, I.; Bezyk, Y. | Poland | Greenhouse Gas Emission Accounting at Urban Level: A Case Study of the City of Wroclaw (Poland). |
2021 | Gurney, K.R.; Liang, J.; Roest, G.; Song, Y.; Mueller, K.; Lauvaux, T. | USA | Greenhouse Gas Emissions |
2020 | Baltar de Souza Leão, E.; Nascimento, L.F.M. do; Andrade, J.C.S. de; Puppim de Oliveira, J.A. | Brasil | Greenhouse Gas Inventories and Climate Action Plans |
References
- D Oliveira, B.F.A.; Bottino, M.J.; Nobre, P.; Nobre, C.A. Deforestation and Climate Change Are Projected to Increase Heat Stress Risk in the Brazilian Amazon. Commun. Earth Environ. 2021, 2, 207. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; Van der Werf, G.R.; Flannigan, M. Vegetation Fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.A.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G. Global Carbon Budget 2018. Earth Syst. Sci. Data 2018, 10, 2141–2194. [Google Scholar] [CrossRef]
- Carbon Dioxide|Vital Signs—Climate Change: Vital Signs of the Planet. Available online: https://climate.nasa.gov/vital-signs/carbon-dioxide/ (accessed on 21 July 2022).
- Frohmann, A.; Olmos, X. Huella De Carbono, Exportaciones Y Estrategias Empresariales Frente Al Cambio Climático; CEPAL: Santiago, Chile, 2013. [Google Scholar]
- Menezes-Silva, P.E.; Loram-Lourenço, L.; Alves, R.D.F.B.; Sousa, L.F.; Da Silva Almeida, S.E.; Farnese, F.S. Different Ways to Die in a Changing World: Consequences of Climate Change for Tree Species Performance and Survival through an Ecophysiological Perspective. Ecol. Evol. 2019, 9, 11979–11999. [Google Scholar] [CrossRef]
- Meyer, A.L.S.; Bentley, J.; Odoulami, R.C.; Pigot, A.L.; Trisos, C.H. Risks to Biodiversity from Temperature Overshoot Pathways. Philos. Trans. R. Soc. B Biol. Sci. 2022, 377, 20210394. [Google Scholar] [CrossRef]
- Bhushan, B.; Sharma, A. Sea-Level Rise Due to Climate Change. In Flood Handbook; CRC Press: Boca Raton, FL, USA, 2022; ISBN 978-0-429-46393-8. [Google Scholar]
- Garcia-Soto, C.; Cheng, L.; Caesar, L.; Schmidtko, S.; Jewett, E.B.; Cheripka, A.; Rigor, I.; Caballero, A.; Chiba, S.; Báez, J.C.; et al. An Overview of Ocean Climate Change Indicators: Sea Surface Temperature, Ocean Heat Content, Ocean pH, Dissolved Oxygen Concentration, Arctic Sea Ice Extent, Thickness and Volume, Sea Level and Strength of the AMOC (Atlantic Meridional Overturning Circulation). Front. Mar. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Gerardo, C.G.; Baes, O.; Pablo, F. La Sexta Extinción: La Pérdida de Especies y Poblaciones en el Neotrópico; Universidad de Chile: Santiago, Chile, 2011; pp. 95–108. [Google Scholar]
- Climate Change in Cities: Innovations in Multi-Level Governance; The Urban Book Series; Springer: Cham, Switzerland, 2018; ISBN 978-3-319-65002-9.
- Población Urbana (% Del Total)|Data. Available online: https://datos.bancomundial.org/indicador/SP.URB.TOTL.IN.ZS (accessed on 21 July 2022).
- Kalmykova, Y.; Rosado, L.; Patrício, J. Urban Economies Resource Productivity and Decoupling: Metabolism Trends of 1996–2011 in Sweden, Stockholm, and Gothenburg. Environ. Sci. Technol. 2015, 49, 8815–8823. [Google Scholar] [CrossRef]
- Lombardi, M.; Pazienza, P.; Rana, R. The EU Environmental-Energy Policy for Urban Areas: The Covenant of Mayors, the ELENA Program and the Role of ESCos. Energy Policy 2016, 93, 33–40. [Google Scholar] [CrossRef]
- Moser, S.C. Talk of the City: Engaging Urbanites on Climate Change. Environ. Res. Lett. 2006, 1, 014006. [Google Scholar] [CrossRef]
- Huang-Lachmann, J.-T.; Hannemann, M.; Guenther, E. Identifying Links between Economic Opportunities and Climate Change Adaptation: Empirical Evidence of 63 Cities. Ecol. Econ. 2018, 145, 231–243. [Google Scholar] [CrossRef]
- AR5 Climate Change 2014: Impacts, Adaptation, and Vulnerability—IPCC. Available online: https://www.ipcc.ch/report/ar5/wg2/ (accessed on 1 August 2022).
- Espíndola, C.; Valderrama, J.O. Huella Del Carbono. Parte 1: Conceptos, Métodos de Estimación y Complejidades Metodológicas. Inf. Tecnológica 2012, 23, 163–176. [Google Scholar] [CrossRef]
- Lombardi, M.; Laiola, E.; Tricase, C.; Rana, R. Assessing the Urban Carbon Footprint: An Overview. Environ. Impact Assess. Rev. 2017, 66, 43–52. [Google Scholar] [CrossRef]
- Wiedmann, T.; Chen, G.; Owen, A.; Lenzen, M.; Doust, M.; Barrett, J.; Steele, K. Three-Scope Carbon Emission Inventories of Global Cities. J. Ind. Ecol. 2021, 25, 735–750. [Google Scholar] [CrossRef]
- Gurney, K.R.; Kılkış, Ş.; Seto, K.C.; Lwasa, S.; Moran, D.; Riahi, K.; Keller, M.; Rayner, P.; Luqman, M. Greenhouse Gas Emissions from Global Cities under SSP/RCP Scenarios, 1990 to 2100. Glob. Environ. Change 2022, 73, 102478. [Google Scholar] [CrossRef]
- Yang, F.; Li, Y.; Xu, J. Review on Urban GHG Inventory in China. Int. Rev. Spat. Plan. Sustain. Dev. 2016, 4, 46–59. [Google Scholar] [CrossRef]
- Sununta, N.; Kongboon, R.; Sampattagul, S. GHG Evaluation and Mitigation Planning for Low Carbon City Case Study: Dan Sai Municipality. J. Clean. Prod. 2019, 228, 1345–1353. [Google Scholar] [CrossRef]
- Lu, C.; Li, W. A Comprehensive City-Level GHGs Inventory Accounting Quantitative Estimation with an Empirical Case of Baoding. Sci. Total Environ. 2019, 651, 601–613. [Google Scholar] [CrossRef]
- Lombardi, M.; Laiola, E.; Tricase, C.; Rana, R. Toward Urban Environmental Sustainability: The Carbon Footprint of Foggia’s Municipality. J. Clean. Prod. 2018, 186, 534–543. [Google Scholar] [CrossRef]
- Sanna, L.; Ferrara, R.; Zara, P.; Duce, P. GHG Emissions Inventory at Urban Scale: The Sassari Case Study. Energy Procedia 2014, 59, 344–350. [Google Scholar] [CrossRef]
- Sówka, I.; Bezyk, Y. Greenhouse Gas Emission Accounting at Urban Level: A Case Study of the City of Wroclaw (Poland). Atmos. Pollut. Res. 2018, 9, 289–298. [Google Scholar] [CrossRef]
- Dahal, K.; Niemelä, J. Cities’ Greenhouse Gas Accounting Methods: A Study of Helsinki, Stockholm, and Copenhagen. Climate 2017, 5, 31. [Google Scholar] [CrossRef]
- Kona, A.; Monforti-Ferrario, F.; Bertoldi, P.; Baldi, M.G.; Kakoulaki, G.; Vetters, N.; Thiel, C.; Melica, G.; Lo Vullo, E.; Sgobbi, A.; et al. Global Covenant of Mayors, a Dataset of Greenhouse Gas Emissions for 6200 Cities in Europe and the Southern Mediterranean Countries. Earth Syst. Sci. Data 2021, 13, 3551–3564. [Google Scholar] [CrossRef]
- Gurney, K.R.; Liang, J.; Roest, G.; Song, Y.; Mueller, K.; Lauvaux, T. Under-Reporting of Greenhouse Gas Emissions in U.S. Cities. Nat. Commun. 2021, 12, 553. [Google Scholar] [CrossRef] [PubMed]
- Belloc, I.; Molina, J.A. Are Greenhouse Gas Emissions Converging in Latin America? GLO Discussion Paper, No. 1037; Global Labor Organization (GLO): Essen, Germany, 2022. [Google Scholar]
- de Souza Leão, E.B.; do Nascimento, L.F.M.; de Andrade, J.C.S.; de Oliveira, J.A.P. Carbon Accounting Approaches and Reporting Gaps in Urban Emissions: An Analysis of the Greenhouse Gas Inventories and Climate Action Plans in Brazilian Cities. J. Clean. Prod. 2020, 245, 118930. [Google Scholar] [CrossRef]
- Ferraro, R.; Gareis, M.C.; Zulaica, L. Contributions to the Calculation of the Carbon Footprint in the Great Urban Settlements in Argentina. Cuad. Geogr. Rev. Colomb. Geogr. 2013, 22, 87–106. [Google Scholar] [CrossRef]
- Guillaumet, M. Inventario de Gases de Efecto Invernadero de La Localidad de Venado Tuerto (Argentina) Realizado a Partir Del Protocolo de IPCC, 2015. 2015. Available online: https://www.researchgate.net/publication/313854416_Inventario_de_gases_de_efecto_invernadero_de_la_localidad_de_Venado_Tuerto_Argentina_realizado_a_partir_del_protocolo_de_IPCC_2015 (accessed on 2 June 2022).
- Ramaswami, A.; Chavez, A.; Ewing-Thiel, J.; Reeve, K.E. Two Approaches to Greenhouse Gas Emissions Foot-Printing at the City Scale. Environ. Sci. Technol. 2011, 45, 4205–4206. [Google Scholar] [CrossRef]
- Hernández, K.D.; Fajardo, O.A. Estimation of Industrial Emissions in a Latin American Megacity under Power Matrix Scenarios Projected to the Year 2050 Implementing the LEAP Model. J. Clean. Prod. 2021, 303, 126921. [Google Scholar] [CrossRef]
- INE. Ciudades, Pueblos, Aldeas y Caseríos 2019. Available online: https://www.pauta.cl/pauta/site/docs/20190906/20190906120234/documento_ine_ciudades.pdf (accessed on 1 August 2022).
- Phillips, B.F.; Pérez-Ramírez, M. Climate Change Impacts on Fisheries and Aquaculture, 2 Volumes: A Global Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2017; Volume 1. [Google Scholar]
- Schulz, N.; Boisier, J.P.; Aceituno, P. Climate Change along the Arid Coast of Northern Chile. Int. J. Climatol. 2012, 32, 1803–1814. [Google Scholar] [CrossRef]
- Yáñez, E.; Lagos, N.A.; Norambuena, R.; Silva, C.; Letelier, J.; Muck, K.-P.; San Martin, G.; Benítez, S.; Broitman, B.R.; Contreras, H. Impacts of Climate Change on Marine Fisheries and Aquaculture in Chile. Clim. Change Impacts Fish. Aquac. 2017, 239–332. [Google Scholar]
- Ministerio de Medio Ambiente Estado Del Medio Ambiente 2011. Available online: https://bibliotecadigital.ciren.cl/handle/20.500.13082/21274 (accessed on 1 August 2022).
- Pizarro-Araya, J.; Cepeda-Pizarro, J.; Barriga, J.E.; Bodini, A. Biological Vulnerability in the Elqui Valley (Coquimbo Region, Chile) to Economically Important Arthropods. Cienc. E Investig. Agrar. 2009, 36, 215–228. [Google Scholar] [CrossRef]
- Soto Baüerle, M.V.; Marker, M.; Castro, C.; Rodolfi, G. Análisis Integrado de las Condiciones de Amenaza Natural en el Medio Ambiente Costero Semiárido de Chile, La Serena, Coquimbo. Boletín de la Asociación de Geógrafos Españoles. 2015. Available online: https://repositorio.uchile.cl/handle/2250/132640 (accessed on 1 August 2022).
- Araya-Osses, D.; Casanueva, A.; Román-Figueroa, C.; Uribe, J.M.; Paneque, M. Climate Change Projections of Temperature and Precipitation in Chile Based on Statistical Downscaling. Clim. Dyn. 2020, 54, 4309–4330. [Google Scholar] [CrossRef]
- Corporate Value Chain (Scope 3) Standard|Greenhouse Gas Protocol. Available online: https://ghgprotocol.org/standards/scope-3-standard (accessed on 21 July 2022).
- Ministerio del Medio Ambiente Chile Tercer Informe Bienal de Actualización de Chile Sobre Cambio Climático. 2018. Available online: https://mma.gob.cl/wp-content/uploads/2019/07/2018_NIR_CL.pdf (accessed on 1 August 2022).
- Shahmansouri, A.A.; Yazdani, M.; Hosseini, M.; Akbarzadeh Bengar, H.; Farrokh Ghatte, H. The Prediction Analysis of Compressive Strength and Electrical Resistivity of Environmentally Friendly Concrete Incorporating Natural Zeolite Using Artificial Neural Network. Constr. Build. Mater. 2022, 317, 125876. [Google Scholar] [CrossRef]
- MarineTraffic: Global Ship Tracking Intelligence|AIS Marine Traffic. Available online: https://www.marinetraffic.com/es/ais/home/centerx:108.6/centery:32.5/zoom:5 (accessed on 21 July 2022).
- INE. Estadísticas de La Región. 2019. Available online: https://www.ine.cl/estadisticas (accessed on 1 August 2022).
- Waste Atlas—Interactive Map with Visualized Waste Management Data. Available online: http://www.atlas.d-waste.com/ (accessed on 21 July 2022).
- Errázuriz, C.P. Normas y políticas públicas destinadas al crecimiento de las energías renovables en Chile. Rev. Derecho Ambient. 2020, 9–41. [Google Scholar] [CrossRef]
- Ramos-Jiliberto, R.; Herrera, R.J.; Ramos-Jiliberto, R.; Herrera, R.J. Modelización y análisis de escenarios de intervención en sistemas socio-naturales: El caso del sistema de sustentabilidad energía-territorio de la región de Coquimbo, Chile. Rev. Cienc. Ambient. 2021, 55, 1–22. [Google Scholar] [CrossRef]
- Jiménez, S. Energía Renovable No Convencional: Políticas de Promoción en Chile y El Mundo. 2011. Available online: https://archivos.lyd.org/other/files_mf/sie218energiarenovablenoconvencionalpoliticasdepromocionenchileyelmundosjimenezseptiembre2011.pdf (accessed on 2 June 2022).
- Sauma Santis, E.E. Políticas de Fomento a Las Energías Renovables No Convencionales (ERNC) En Chile; Escuela de Ingeniería UC: Santiago, Chile, 2012. [Google Scholar]
- Generación Eléctrica en Chile. Available online: http://generadoras.cl/generacion-electrica-en-chile (accessed on 27 January 2022).
- De Enegría, M. Guía 2.0 Para La Elaboración de Planes Energéticos Regionales; Ministeriio de nergía: Santiago, Chile, 2018.
- Van Treek, E.V.; Alarcón, C.T. Pugna Por Gobernanza Urbano/Metropolitana En Chile: Resistencia de Agencias y Reforma Intergubernamental Con Poder Regional. Urbano 2017, 20, 18–31. [Google Scholar]
- Saez-Abarzúa, C.; Del Poder, L.D. El Caso de La Gobernanza Del Sistema de Transporte Público En La Conurbación La Serena—Coquimbo. In Tesis para la obtención del Grado de Magister en Políticas Públicas y Gobernanaza Territorial; Universidad Católica del Norte: Coquimbo, Chile, 2021. [Google Scholar]
- Ciclovías Minvu. Available online: https://www.minvu.gob.cl/ciclovias-minvu/ (accessed on 28 January 2022).
- Vasconi, P. Residuos Sólidos Domiciliarios En Chile: Análisis y Propuestas; Registro de Problemas Públicos: Santiago, Chile, 2004. [Google Scholar]
- Valenzuela-Levi, N. Poor Performance in Municipal Recycling: The Case of Chile. Waste Manag. 2021, 133, 49–58. [Google Scholar] [CrossRef]
- Ley 20920. Establece Marco Para La Gestión de Residuos, La Responsabilidad Extendida Del Productor y Fomento al Reciclaje. 2016. Available online: https://www.bcn.cl/leychile/navegar?idNorma=1090894&idParte=9705129&idVersion=2016-06-01 (accessed on 2 June 2022).
Sources | Kerosene (m3) | Natural Gas (m3) | Liquefied Gas (t) | CO2 (t) | CH4 (t) | N2O (t) | CH4 Emission Factor | N2O Emission Factor | CO2eq (CO2) | CO2eq (CH4) | CO2eq (N2O) | Energy Consumption (mWh) | SIC Emission Factor, t CO2eq/mWh | t CO2eq Electricity | Scope 1 Waste, t | t CO2eq Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stationary Energy | ||||||||||||||||
Residential—La Serena | 47 | 49,055 | 8128 | 134,189 | 14 | 1 | 28 | 265 | 134,189 | 384 | 371 | 160,174 | 0.3364 | 53,882 | - | 188,827 |
Non-residential—La Serena | 2 | 169,092 | 6977 | 393,686 | 21 | 4 | 28 | 265 | 393,686 | 585 | 1108 | 155,332 | 0.3364 | 52,254 | - | 447,633 |
Residential—Coquimbo | 48 | 50,532 | 8372 | 138,229 | 14 | 1 | 28 | 265 | 138,229 | 396 | 382 | 156,453 | 0.3364 | 52,631 | - | 191,638 |
Non-residential—Coquimbo | 2 | 174,183 | 7187 | 405,540 | 22 | 4 | 28 | 265 | 405,540 | 603 | 1141 | 160,099 | 0.3364 | 53,857 | - | 461,141 |
Stationary Energy Total | 98 | 442,863 | 30,664 | 1,071,644 | 70 | 11 | 28 | 265 | 1,071,644 | 1968 | 3001 | 632,058 | 0.3364 | 212,624 | - | 1,289,238 |
On-Road Transport | ||||||||||||||||
Buses | - | - | - | 26,442 | 8 | 0 | 28 | 265 | 26,442 | 215 | 106 | - | - | - | - | 26,763 |
Trucks | - | - | - | 8269 | 1 | 0 | 28 | 265 | 8269 | 37 | 52 | - | - | - | - | 8358 |
Motorcycles | - | - | - | 4067 | 5 | 0 | 28 | 265 | 4067 | 135 | 25 | - | - | - | - | 4227 |
Taxis and Shared Vehicles | - | - | - | 30,665 | 1 | 1 | 28 | 265 | 30,665 | 19 | 252 | - | - | - | - | 30,936 |
Mid-Sized Vehicles | - | - | - | 825 | 0 | 0 | 28 | 265 | 825 | 2 | 6 | - | - | - | - | 832 |
Commercial Vehicles | - | - | - | 143,322 | 10 | 6 | 28 | 265 | 143,322 | 275 | 1613 | - | - | - | - | 145,210 |
Private Vehicles | - | - | - | 256,741 | 20 | 10 | 28 | 265 | 256,741 | 552 | 2534 | - | - | - | - | 259,827 |
On-Road Transport Total | - | - | - | 470,331 | 44 | 17 | 28 | 265 | 470,331 | 1235 | 4588 | - | - | - | - | 476,153 |
Rail Transport | ||||||||||||||||
CAP Train | - | - | - | 414 | 0 | 0 | 28 | 265 | 414 | 1 | 42 | - | - | - | - | 457 |
Aircraft Transoprt | ||||||||||||||||
Cabotage | - | - | - | 9308 | 1 | 0 | 28 | 265 | 9308 | 18 | 69 | - | - | - | - | 9395 |
Watercraft Transport | ||||||||||||||||
Cabotage | - | - | - | 427 | 0 | 0 | 28 | 265 | 427 | 1.08 | 2.927 | - | - | - | - | 431 |
Transport Total | 480,480 | 45 | 18 | 28 | 265 | 480,480 | 1255 | 4702 | 486,437 | |||||||
Waste | ||||||||||||||||
La Serena Landfill | - | - | - | - | 4998 | - | 28 | 265 | - | 139,949 | - | - | - | - | 86,639 | 139,949 |
La Serena-Coquimbo Wastewater Treatment and Discharge | - | - | - | 689 | 31.5064 | 28 | 265 | 19,283 | 8349 | - | - | - | 27,632 | |||
Coquimbo Landfill | - | - | - | - | 5701 | - | 28 | 265 | - | 159,631 | - | - | - | - | 98,823 | 159,631 |
Waste Total | - | - | - | - | 11,387.96 | 31.51 | 28 | 265 | - | 318,863 | 8349 | - | - | - | 185,462 | 327,212 |
Grand Total | 1,552,124 | 11,503 | 61 | 28 | 265 | 1,552,124 | 322,086 | 16,052 | 632,058 | 0.3364 | 212,624 | 185,462 | 2,102,887 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balaguera-Quintero, A.; Vallone, A.; Igor-Tapia, S. Carbon Footprint Estimation for La Serena-Coquimbo Conurbation Based on Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC). Sustainability 2022, 14, 10309. https://doi.org/10.3390/su141610309
Balaguera-Quintero A, Vallone A, Igor-Tapia S. Carbon Footprint Estimation for La Serena-Coquimbo Conurbation Based on Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC). Sustainability. 2022; 14(16):10309. https://doi.org/10.3390/su141610309
Chicago/Turabian StyleBalaguera-Quintero, Alejandra, Andres Vallone, and Sebastián Igor-Tapia. 2022. "Carbon Footprint Estimation for La Serena-Coquimbo Conurbation Based on Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC)" Sustainability 14, no. 16: 10309. https://doi.org/10.3390/su141610309