Sorghum Production in Northern Namibia: Farmers’ Perceived Constraints and Trait Preferences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Areas
2.2. Sampling Procedures
2.3. Data Collection and Analysis
3. Results
3.1. Socio-Demographic Description of Sorghum Growing Farmers
3.2. Sorghum Cropping Systems
3.3. Major Crops Grown in Northern Communal Areas of Namibia
3.4. Sorghum Varieties Grown in the Study Areas and Uses
3.5. Constraints to Sorghum Production
3.6. Varieties Grown by Farmers and Preferred Traits
4. Discussion
4.1. Socio-Economic Status
4.2. Sorghum Production and Cropping Systems
4.3. Constraints to Sorghum Production
4.4. Varieties Grown by Farmers and Suggested Traits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. FAOSTAT Statistical Database. 2022. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 21 July 2022).
- Orr, A.; Schipmann-Schwarze, C.; Gierend, A.; Nedumaran, S.; Mwema, C.; Muange, E.; Manyasa, E.; Ojulong, H. Why invest in Research & Development for sorghum and millets? The business case for East and Southern Africa. Glob. Food Secur. 2020, 26, 26100458. [Google Scholar] [CrossRef]
- Hossain, M.S.; Islam, M.N.; Rahman, M.M.; Mostofa, M.G.; Khan, M.A.R. Sorghum: A prospective crop for climatic vulnerability, food and nutritional security. J. Agric. Food Res. 2022, 8, 100300. [Google Scholar] [CrossRef]
- Adebo, O.A. African sorghum-based fermented foods: Past, current and future prospects. Nutrients 2020, 12, 1111. [Google Scholar] [CrossRef] [PubMed]
- Drub, T.F.; dos Santos, F.G.; Centeno, A.C.L.S.; Capriles, V.D. Sorghum, millet and pseudocereals as ingredients for gluten-free whole-grain yeast rolls. Int. J. Gastron. Food Sci. 2021, 23, 100293. [Google Scholar] [CrossRef]
- Dabija, A.; Ciocan, M.E.; Chetrariu, A.; Codină, G.G. Maize and sorghum as raw materials for brewing, a review. Appl. Sci. 2021, 11, 3139. [Google Scholar] [CrossRef]
- Khalid, W.; Ali, A.; Arshad, M.S.; Afzal, F.; Akram, R.; Siddeeg, A.; Kousar, S.; Rahim, M.A.; Aziz, A.; Maqbool, Z.; et al. Nutrients and bioactive compounds of Sorghum bicolor L. used to prepare functional foods: A review on the efficacy against different chronic disorders. Int. J. Food Prop. 2022, 25, 1045–1062. [Google Scholar] [CrossRef]
- Sharanagat, V.S.; Suhag, R.; Anand, P.; Deswal, G.; Kumar, R.; Chaudhary, A.; Singh, L.; Kushwah, O.S.; Mani, S.; Kumar, Y.; et al. Physico-functional, thermo-pasting and antioxidant properties of microwave roasted sorghum [Sorghum bicolor (L.) Moench]. J. Cereal Sci. 2019, 85, 111–119. [Google Scholar] [CrossRef]
- Alavi, S.; Mazumdar, S.D.; Taylor, J.R. Modern convenient sorghum and millet food, beverage and animal feed products, and their technologies. In Sorghum and Millets; AACC International Press: St. Paul, MN, USA, 2019; pp. 293–329. [Google Scholar] [CrossRef]
- Taylor, J.R.; Kruger, J. Sorghum and millets: Food and beverage nutritional attributes. In Sorghum and Millets; AACC International Press: St. Paul, MN, USA, 2019; pp. 171–224. [Google Scholar] [CrossRef]
- Waniska, R.; Rooney, L.; McDonough, C. Sorghum: Utilization. In Encyclopedia of Food Grains, 2nd ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 3–4, pp. 116–123. [Google Scholar] [CrossRef]
- Tokpohozin, S.E.; Fischer, S.; Becker, T. Selection of a new Saccharomyces yeast to enhance relevant sorghum beer aroma components, higher alcohols and esters. Food Microbiol. 2019, 83, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Coulibaly, W.H.; Bouatenin, K.M.J.-P.; Boli, Z.B.I.A.; Alfred, K.K.; Bi, Y.C.T.; N’Sa, K.M.C.; Cot, M.; Djameh, C.; Djè, K.M. Influence of yeasts on bioactive compounds content of traditional sorghum beer (tchapalo) produced in Côte d’Ivoire. Curr. Res. Food Sci. 2020, 3, 195–200. [Google Scholar] [CrossRef]
- Pamies, L.C.G.; Rovaletti, M.M.L.; Amezaga, N.M.J.M.; Benítez, E.I. The impact of pirodextrin addition to improve physicochemical parameters of sorghum beer. LWT Food Sci. Technol. 2021, 149, 112040. [Google Scholar] [CrossRef]
- Hillyer, A.E.M.; McDonagh, J.F.; Verlinden, A. Land-use and legumes in northern Namibia—The value of a local classification system. Agric. Ecosyst. Environ. 2006, 117, 251–265. [Google Scholar] [CrossRef]
- Mendelsohn, J.; El Obeid, S.; De Klerk, N.; Vigne, P. Farming Systems in Namibia; Namibia National Farmers Union, RAISON: Windhoek, Namibia, 2006. [Google Scholar]
- Newsham, A.J.; Thomas, D.S. Knowing, farming and climate change adaptation in North-Central Namibia. Glob. Environ. Chang. 2011, 21, 761–770. [Google Scholar] [CrossRef]
- Misihairabgwi, J.; Cheikhyoussef, A. Traditional fermented foods and beverages of Namibia. J. Ethn. Foods 2017, 3, 145–153. [Google Scholar] [CrossRef]
- Assefa, Y.; Staggenborg, S.A. Grain sorghum yield with hybrid advancement and changes in agronomic practices from 1957 through 2008. Agron. J. 2010, 102, 703–706. [Google Scholar] [CrossRef]
- Mofokeng, M.A.; Shargie, N.G. Bird damage and control strategies in grain sorghum production. Int. J. Agric. Environ. Res. 2016, 2, 264–269. [Google Scholar]
- Mengistu, G.; Shimelis, H.; Laing, M.; Lule, D. Assessment of farmers’ perceptions of production constraints, and their trait preferences of sorghum in western Ethiopia: Implications for anthracnose resistance breeding. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 3, 241–249. [Google Scholar] [CrossRef]
- Anjorin, T.S.; Oyerinde, A.A.; Okafor, O.E. Status of pests and diseases of sorghum and their management practices by †œFadama†III participating farmers in Abuja, Nigeria. J. Agric. Ext. Rural. Dev. 2020, 12, 36–47. [Google Scholar] [CrossRef]
- Amelework, B.; Shimelis, H.; Laing, M. Genetic variation in sorghum as revealed by phenotypic and SSR markers: Implications for combining ability and heterosis for grain yield. Plant Genet. Resour. 2017, 15, 335–347. [Google Scholar] [CrossRef]
- Ahmad Yahaya, M.; Shimelis, H.; Nebie, B.; Ojiewo, C.O.; Danso-Abbeam, G. Sorghum production in Nigeria: Opportunities, constraints, and recommendations. Acta Agric. Scand. Sect. B Soil Plant Sci. 2022, 72, 660–672. [Google Scholar] [CrossRef]
- Borrell, A.K.; van Oosterom, E.J.; Mullet, J.E.; George-Jaeggli, B.; Jordan, D.R.; Klein, P.E.; Hammer, G.L. Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns. New Phytol. 2014, 203, 817–830. [Google Scholar] [CrossRef] [PubMed]
- Hammer, G.L.; McLean, G.; Chapman, S.; Zheng, B.; Doherty, A.; Harrison, M.T.; van Oosterom, E.; Jordan, D. Crop design for specific adaptation in variable dryland production environments. Crop Pasture Sci. 2014, 65, 614–626. [Google Scholar] [CrossRef]
- Mwamahonje, A.; Eleblu, J.S.Y.; Ofori, K.; Deshpande, S.; Feyissa, T.; Tongoona, P. Drought tolerance and application of marker-assisted selection in sorghum. Biology 2021, 10, 1249. [Google Scholar] [CrossRef]
- Mrema, E.; Shimelis, H.; Laing, M.; Bucheyeki, T. Farmers’ perceptions of sorghum production constraints and Striga control practices in semi-arid areas of Tanzania. Int. J. Pest Manag. 2017, 63, 146–156. [Google Scholar] [CrossRef]
- Okot, F.; Laing, M.; Shimelis, H.; de Milliano, W.A. Diagnostic Appraisal of the sorghum farming system and breeding priorities in Sierra Leone. Sustainability 2022, 14, 7025. [Google Scholar] [CrossRef]
- Horn, L.; Shimelis, H.; Laing, M. Participatory appraisal of production constraints, preferred traits and farming system of cowpea in the northern Namibia: Implications for breeding. Legume Res. Int. J. 2015, 38, 691–700. [Google Scholar] [CrossRef]
- Awala, S.K.; Hove, K.; Wanga, M.A.; Valombola, J.S.; Mwandemele, O.D. Rainfall trend and variability in semi-arid northern Namibia: Implications for smallholder agricultural production. Welwitschia Int. J. Agric. Sci. 2019, 1, 1–25. [Google Scholar]
- Namibia Statistics Agency (NSA). Namibia Census of Agriculture 2013/2014—Communal Sector; Namibia Statistics Agency (NSA): Windhoek, Namibia, 2015. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows; IBM Corp: Armonk, NY, USA, 2020. [Google Scholar]
- Martey, E.; Etwire, P.M.; Kuwornu, J.K. Economic impacts of smallholder farmers’ adoption of drought-tolerant maize varieties. Land Use Policy 2020, 94, 104524. [Google Scholar] [CrossRef]
- Mugumaarhahama, Y.; Mondo, J.M.; Cokola, M.C.; Ndjadi, S.S.; Mutwedu, V.B.; Kazamwali, L.M.; Cirezi, N.C.; Chuma, G.B.; Ndeko, A.B.; Ayagirwe, R.B.B.; et al. Socio-economic drivers of improved sweet potato varieties adoption among smallholder farmers in South-Kivu Province, DR Congo. Sci. Afr. 2021, 12, e00818. [Google Scholar] [CrossRef]
- Attipoe, S.G.; Cao, J.M.; Opoku-Kwanowaa, Y.; Ohene-Sefa, F. Assessing the impact of non-governmental organization’s extension programs on sustainable cocoa production and household income in Ghana. J. Integr. Agric. 2021, 20, 2820–2836. [Google Scholar] [CrossRef]
- Adenegan, K.O.; Adams, O.; Nwauwa, L.O.E. Gender impacts of small-scale farm households on agricultural commercialisation in Oyo state, Nigeria. J. Econ. Manag. Trade 2013, 3, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gebretsadik, R.; Shimelis, H.; Laing, M.D.; Tongoona, P.; Mandefro, N. A diagnostic appraisal of the sorghum farming system and breeding priorities in Striga infested agro-ecologies of Ethiopia. Agric. Syst. 2014, 123, 54–61. [Google Scholar] [CrossRef]
- Bryceson, D.F. Gender and generational patterns of African deagrarianization: Evolving labour and land allocation in smallholder peasant household farming, 1980–2015. World Dev. 2019, 113, 60–72. [Google Scholar] [CrossRef]
- Pierotti, R.S.; Friedson-Ridenour, S.; Olayiwola, O. Women farm what they can manage: How time constraints affect the quantity and quality of labor for married women’s agricultural production in southwestern Nigeria. World Dev. 2022, 152, 105800. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, S. Refugee inflows, surplus farm labor, and crop marketization in rural Africa. J. Dev. Econ. 2022, 155, 102805. [Google Scholar] [CrossRef]
- Iijima, M.; Awala, S.K.; Nanhapo, P.I.; Wanga, A.; Mwandemele, O.D. Development of flood-and drought-adaptive cropping systems in Namibia. In Crop Production under Stressful Conditions; Springer: Singapore, 2018; pp. 49–70. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Tripathi, A.K.; Bandyopadhyay, K.K.; Manna, M.C. Assessment of nutrient competition and nutrient requirement in soybean/sorghum intercropping system. Eur. J. Agron. 2009, 31, 43–50. [Google Scholar] [CrossRef]
- Traoré, A.; Falconnier, G.N.; Ba, A.; Sissoko, F.; Sultan, B.; Affholder, F. Modeling sorghum-cowpea intercropping for a site in the savannah zone of Mali: Strengths and weaknesses of the Stics model. Field Crops Res. 2022, 285, 108581. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Beusen, A.H.W.; Lassaletta, L.; Van Apeldoorn, D.F.; Van Grinsven, H.J.M.; Zhang, J. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci. Rep. 2017, 7, 40366. [Google Scholar] [CrossRef]
- Holden, S.T. Fertilizer and sustainable intensification in Sub-Saharan Africa. Glob. Food Secur. 2018, 18, 20–26. [Google Scholar] [CrossRef]
- Bonilla Cedrez, C.; Chamberlin, J.; Guo, Z.; Hijmans, R.J. Spatial variation in fertilizer prices in Sub-Saharan Africa. PLoS ONE 2020, 15, e0227764. [Google Scholar] [CrossRef]
- Datta, A.; Mandal, B.; Badole, S.; Majumder, S.P.; Padhan, D.; Basak, N.; Barman, A.; Kundu, R.; Narkhede, W.N. Interrelationship of biomass yield, carbon input, aggregation, carbon pools and its sequestration in Vertisols under long-term sorghum-wheat cropping system in semi-arid tropics. Soil Tillage Res. 2018, 184, 164–175. [Google Scholar] [CrossRef]
- Hadebe, S.T.; Mabhaudhi, T.; Modi, A.T. Water use of sorghum (Sorghum bicolor L. Moench) in response to varying planting dates evaluated under rainfed conditions. Water SA 2017, 43, 91–103. [Google Scholar] [CrossRef]
- Hadebe, S.T.; Modi, A.T.; Mabhaudhi, T. Drought tolerance and water use of cereal crops: A focus on sorghum as a food security crop in sub-Saharan Africa. J. Agron. Crop Sci. 2016, 203, 177–191. [Google Scholar] [CrossRef]
- Parra, G.; Borrás, L.; Gambin, B.L. Crop attributes explaining current grain yield dominance of maize over sorghum. Field Crops Res. 2022, 275, 108346. [Google Scholar] [CrossRef]
- Reddy, B.V.S.; Ramesh, S.; Reddy, P.S. Sorghum breeding research at ICRISAT-goals, strategies, methods and accomplishments. Int. Sorghum Millets Newsl. 2004, 45, 5–12. [Google Scholar]
- Shimelis, H.; Gwata, E.T.; Laing, M.D. Crop improvement for agricultural transformation in Southern Africa. In Transforming Agriculture in Southern Africa, 1st ed.; Sikora, R.A., Terry, E.R., Vlek, P.L.G., Chitja, J., Eds.; Taylor and Francis: London, UK, 2019; pp. 97–103. [Google Scholar] [CrossRef]
- Abreha, K.B.; Enyew, M.; Carlsson, A.S.; Vetukuri, R.R.; Feyissa, T.; Motlhaodi, T.; Ng’uni, D.; Geleta, M. Sorghum in dryland: Morphological, physiological, and molecular responses of sorghum under drought stress. Planta 2022, 255, 20. [Google Scholar] [CrossRef] [PubMed]
- Gano, B.; Dembele, J.S.B.; Tovignan, T.K.; Sine, B.; Vadez, V.; Diouf, D.; Audebert, A. Adaptation responses to early drought stress of West Africa sorghum varieties. Agronomy 2021, 11, 443. [Google Scholar] [CrossRef]
- Raymundo, R.; Sexton-Bowser, S.; Ciampitti, I.A.; Morris, G.P. Crop modeling defines opportunities and challenges for drought escape, water capture, and yield increase using chilling-tolerant sorghum. Plant Direct 2021, 5, e349. [Google Scholar] [CrossRef]
Region | Constituency | Village | Number of Farmers Sampled | Gender | Ecological Region | Latitude | Longitude | Altitude (masl) | |
---|---|---|---|---|---|---|---|---|---|
Male | Female | ||||||||
Kavango West | Kapako | Sinzogoro | 10 | 2 | 8 | Zambezian Baikiaea woodlands and Kalahari acacia–baikiaea woodlands | 17°53′09.8″ S | 19°29′42.5″ E | 1120 |
Mukundu | 10 | 4 | 6 | 17°56′57.7″ S | 19°32′59.7″ E | ||||
Mpungu | Mpungu | 10 | 1 | 9 | 17°40′26.9″ S | 18°14′38.1″ E | |||
Silikunga | 10 | 4 | 6 | 17°41′00.6″ S | 18°18′54.8″ E | ||||
Ohangwena | Eenhana | Eenhana | 20 | 13 | 7 | Angolan Mopane woodlands and Zambezian Baikiaea woodlands | 17°29′58.9″ S | 16°19′11.0″ E | 1100 |
Elundu | 15 | 10 | 5 | 17°28′58.2″ S | 16°25′05.3″ E | ||||
Ohaihana | 15 | 7 | 8 | 17°27′20.6″ S | 16°22′44.5″ E | ||||
Endola | Onepandaulo | 15 | 8 | 7 | 17°39′16.7″ S | 15°40′40.4″ E | |||
Endola | 20 | 9 | 11 | 17°35′30.2″ S | 15°42′48.1″ E | ||||
Oshapwa | 15 | 6 | 9 | 17°38′28.0″ S | 15°39′38.6″ E | ||||
Zambezi | Katima | Mubiza | 18 | 10 | 8 | Zambezian and mopane woodlands, and Zambezian Baikiaea woodlands | 17°30′40.9″ S | 24°19′20.9″ E | 950 |
Kwena | 10 | 7 | 3 | 17°48′25.0″ S | 24°23′04.8″ E | ||||
Kongola | Kongola | 15 | 9 | 6 | 17°45′00.9″ S | 23°25′52.6″ E | |||
Sachona | 15 | 9 | 6 | 17°46′45.3″ S | 23°25′02.6″ E | ||||
Total | 198 | 99 | 99 |
Variable | Kapako | Mpungu | Eenhana | Endola | Katima | Kongola | Mean |
---|---|---|---|---|---|---|---|
Gender | |||||||
Male | 30.0 | 25.0 | 60.0 | 46.0 | 60.7 | 60.0 | 50.0 |
Female | 70.0 | 75.0 | 40.0 | 54.0 | 39.3 | 40.0 | 50.0 |
Chi-Square test | DF = 5 | χ2 = 13.22 | p-value = 0.02 | ||||
Age of farmers | |||||||
18–29 | 5.0 | 10.0 | 46.0 | 38.0 | 10.0 | 0.0 | 24.2 |
30–39 | 35.0 | 55.0 | 30.0 | 38.0 | 43.3 | 46.4 | 39.4 |
40–49 | 50.0 | 20.0 | 16.0 | 16.0 | 30.0 | 39.3 | 25.3 |
>50 | 10.0 | 15.0 | 8.0 | 8.0 | 16.7 | 14.3 | 11.1 |
Chi-Square test | DF = 15 | χ2 = 43.80 | p-value = 0.00 | ||||
Level of Education | |||||||
None | 65.0 | 50.0 | 22.0 | 20.0 | 10.0 | 0.0 | 23.7 |
Primary | 15.0 | 35.0 | 18.0 | 20.0 | 13.3 | 21.4 | 19.7 |
Secondary | 20.0 | 5.0 | 46.0 | 38.0 | 26.7 | 67.9 | 37.4 |
Diploma | 0.0 | 5.0 | 4.0 | 6.0 | 23.3 | 7.1 | 7.6 |
Degree | 0.0 | 5.0 | 10.0 | 16.0 | 26.7 | 3.6 | 11.6 |
Chi-Square test | DF = 20 | χ2 = 73.00 | p-value = 0.00 | ||||
Household size | |||||||
1–3 | 5.0 | 5.0 | 34.0 | 26.0 | 23.3 | 14.3 | 21.7 |
4–6 | 20.0 | 10.0 | 52.0 | 48.0 | 20.0 | 50.0 | 38.4 |
7–9 | 50.0 | 55.0 | 14.0 | 22.0 | 43.3 | 32.1 | 30.8 |
≥10 | 25.0 | 30.0 | 0.0 | 4.0 | 13.3 | 3.6 | 9.1 |
Chi-Square test | DF = 15 | χ2 = 59.30 | p-value = 0.00 |
Variables | Kapako | Mpungu | Eenhana | Endola | Katima | Kongola | Mean |
---|---|---|---|---|---|---|---|
Land size (ha) | |||||||
≤1 | 15.0 | 10.0 | 0.0 | 0.0 | 10.0 | 3.6 | 4.5 |
2–3 | 20.0 | 35.0 | 8.0 | 16.0 | 43.3 | 28.6 | 22.2 |
4–5 | 25.0 | 15.0 | 44.0 | 34.0 | 13.3 | 25.0 | 29.3 |
6–7 | 5.0 | 20.0 | 32.0 | 38.0 | 10.0 | 28.6 | 25.8 |
≥8 | 35.0 | 20.0 | 16.0 | 12.0 | 23.3 | 14.3 | 18.2 |
Chi-Square test | DF = 20 | χ2 = 49.77 | p-value = 0.00 | ||||
Cropping system | |||||||
Mono-cropping | 0.00 | 0.0 | 16.0 | 0.0 | 20.0 | 17.9 | 9.6 |
Intercropping with pearl millet, maize, cowpea and groundnut | 100.0 | 85.0 | 68.0 | 72.0 | 73.3 | 57.1 | 73.2 |
Crop rotation with cowpea | 0.00 | 15.0 | 16.0 | 28.0 | 6.7 | 25.0 | 17.2 |
Chi-Square test | DF = 10 | χ2 = 29.54 | p-value = 0.00 | ||||
Perception of respondent farmers on soil status of their crop lands | |||||||
Poor | 20.0 | 10.0 | 2.0 | 4.0 | 6.7 | 0.0 | 5.6 |
Medium | 55.0 | 60.0 | 80.0 | 80.0 | 63.3 | 57.1 | 69.7 |
Fertile | 25.0 | 30.0 | 18.0 | 16.0 | 30.0 | 42.9 | 24.7 |
Chi-Square test | DF = 10 | χ2 = 21.16 | p-value = 0.02 | ||||
Fertilizer use | |||||||
Yes | 5.0 | 0.0 | 52.0 | 42.0 | 23.3 | 14.3 | 29.8 |
No | 95.0 | 100.0 | 48.0 | 58.0 | 76.7 | 85.7 | 70.2 |
Chi-Square test | DF = 5 | χ2 = 33.53 | p-value = 0.00 | ||||
Land preparation method | |||||||
Hand hoeing | 15.0 | 15.0 | 0.0 | 0.00 | 20.0 | 3.6 | 6.6 |
Plough | 85.0 | 80.0 | 100.0 | 100.0 | 66.7 | 67.9 | 86.9 |
Conservation agriculture | 0.0 | 5.0 | 0.0 | 0.0 | 13.3 | 28.6 | 6.6 |
Chi-Square test | DF = 10 | χ2 = 54.90 | p-value = 0.00 |
Crop | Kapako (N = 20) | Mpungu (N = 20) | Eenhana (N = 50) | Endola (N = 50) | Katima (N = 30) | Kongola (N = 28) | Total (N = 198) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Rank | Mean | Rank | Mean | Rank | Mean | Rank | Mean | Rank | Mean | Rank | Mean | Rank | |
Millet | 1.6 | 2 | 1.3 | 1 | 1.0 | 1 | 1.0 | 1 | 2.4 | 2 | 2.1 | 2 | 1.5 | 1 |
Maize | 1.4 | 1 | 1.9 | 2 | 3.2 | 3 | 2.6 | 2 | 1.1 | 1 | 1.0 | 1 | 2.1 | 2 |
Cowpea | 3.3 | 3 | 3.7 | 3 | 2.7 | 2 | 3.2 | 3 | 3.9 | 4 | 4.0 | 4 | 3.4 | 3 |
Sorghum | 4.5 | 5 | 4.2 | 5 | 3.9 | 4 | 4.2 | 5 | 2.8 | 3 | 2.9 | 3 | 3.7 | 4 |
Groundnut | 4.3 | 4 | 4.0 | 4 | 4.2 | 5 | 3.9 | 4 | 4.8 | 5 | 5.0 | 5 | 4.3 | 5 |
Variable | Kapako | Mpungu | Eenhana | Endola | Katima | Kongola | Mean |
---|---|---|---|---|---|---|---|
Varieties grown | |||||||
Introduced | 10.0 | 10.0 | 4.0 | 0.0 | 20.0 | 28.6 | 10.1 |
Landraces | 90.0 | 90.0 | 96.0 | 100.0 | 80.0 | 71.4 | 89.9 |
Chi-Square test | DF = 5 | χ2 = 21.43 | p-value = 0.00 | ||||
Use type | |||||||
Food | 85.0 | 70.0 | 18.0 | 10.0 | 60.0 | 46.4 | 38.4 |
Feed | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 2.0 |
Market | 0.0 | 5.0 | 6.0 | 4.0 | 3.3 | 3.6 | 4.0 |
Food and feed | 0.0 | 0.0 | 16.0 | 6.0 | 6.7 | 3.6 | 7.1 |
Food and Market | 15.0 | 25.0 | 42.0 | 62.0 | 30.0 | 35.7 | 39.9 |
Feed and market | 0.0 | 0.0 | 6.0 | 4.0 | 0.0 | 0.0 | 2.5 |
Food, feed and market | 0.0 | 0.0 | 4.0 | 14.0 | 0.0 | 10.7 | 6.1 |
Chi-Square test | DF = 30 | χ2 = 86.17 | p-value = 0.00 | ||||
Household requirements of sorghum grain (kg) | |||||||
<99 | 0.0 | 5.0 | 4.0 | 2.0 | 3.3 | 7.1 | 3.5 |
100–199 | 55.0 | 60.0 | 30.0 | 36.0 | 30.0 | 46.4 | 39.4 |
200–299 | 40.0 | 35.0 | 50.0 | 58.0 | 23.3 | 17.9 | 40.9 |
300–399 | 0.0 | 0.0 | 12.0 | 4.0 | 20.0 | 10.7 | 8.6 |
≥400 | 5.0 | 0.0 | 4.0 | 0.0 | 23.3 | 17.9 | 7.6 |
Chi-Square test | DF = 20 | χ2 = 48.67 | p-value = 0.00 |
Constraints | Kapako (N = 20) | Mpungu (N = 20) | Eenhana (N = 50) | Endola (N = 50) | Katima (N = 30) | Kongola (N = 28) | Total (N = 198) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Rank | Mean | Rank | Mean | Rank | Mean | Rank | Mean | Rank | Mean | Rank | Mean | Rank | |
Drought and heat stress | 1.9 | 2 | 2.2 | 2 | 1.9 | 3 | 1.5 | 1 | 1.6 | 2 | 2.0 | 4 | 1.8 | 1 |
Poor soil fertility | 2.4 | 6 | 1.8 | 1 | 1.7 | 2 | 2.0 | 6 | 2.1 | 4 | 1.7 | 3 | 1.9 | 2 |
Pests (aphid, fall armyworms, birds) | 3.1 | 8 | 3.0 | 9 | 2.3 | 7 | 1.5 | 2 | 1.5 | 1 | 1.5 | 2 | 2.0 | 3 |
High cost of production inputs | 2.7 | 7 | 2.9 | 8 | 1.5 | 1 | 1.6 | 4 | 2.8 | 7 | 2.1 | 6 | 2.1 | 4 |
Unavailability of improved seed | 1.8 | 1 | 2.6 | 5 | 1.9 | 4 | 1.5 | 3 | 3.0 | 8 | 2.4 | 8 | 2.1 | 5 |
Lack of varieties with farmers’ preferred traits | 2.3 | 4 | 2.2 | 3 | 2.6 | 9 | 2.4 | 8 | 2.0 | 3 | 1.4 | 1 | 2.2 | 6 |
Lack of organic manure | 3.2 | 9 | 2.7 | 7 | 2.1 | 5 | 1.8 | 5 | 2.3 | 5 | 2.2 | 7 | 2.2 | 7 |
Limited access to market | 2.3 | 5 | 2.7 | 6 | 2.2 | 6 | 2.0 | 7 | 3.2 | 9 | 3.3 | 9 | 2.5 | 8 |
Limited extension service | 2.2 | 3 | 2.4 | 4 | 2.3 | 8 | 3.0 | 9 | 2.4 | 6 | 2.0 | 5 | 2.5 | 9 |
Variety | Preferred Traits | Drawbacks |
---|---|---|
Macia | Early- to medium-maturity, short plant height, white grain colour | Sensitive to moisture stress at germination, susceptible to bird |
Red sorghum | Medium- to late-maturity, medium plant height, red grain colour | Susceptible to stalk borer and weevil |
Ekoko, Okambete, Saye-saye, Makonga, Tumbi, Tou, Mombe, Nakare, Kamburo, Nkutji and Katoma | White grain colour for flour to prepare porridge and non-alcoholic beverages | Late-maturity, susceptible to aphid and ergot |
Okatombo, Dommy, Murwa, Nehutu, Kawumbe and Mutjuma gongombe | Red grain colour to prepare local beverages non-alcoholic and alcoholic | Late-maturity, susceptible to weevil |
Nyova, Okalya, Nswe and Kamburo | High stem sugar | Poor grain yield |
Esha/Eha | Fresh grain roasted and eaten as a snack | Poor grain yield |
Oshilyalyaka, Tjwatama, Tou, and Makonga. | Tall plant height for animal feed and construction of a fence around the homestead | Poor grain yield, lodges and late maturity |
Tumbi, Kawumbe, and Okatombo | Short plant height and early maturity | Susceptible to bird |
Nakafo | Drought tolerance and stem sugar | Poor grain yield |
Fuba | Flooding tolerance | Late-maturity and poor grain yield |
Siboni zuba | Non preferred by birds | Poor grain yield and difficult to thresh |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanga, M.A.; Shimelis, H.; Mengistu, G. Sorghum Production in Northern Namibia: Farmers’ Perceived Constraints and Trait Preferences. Sustainability 2022, 14, 10266. https://doi.org/10.3390/su141610266
Wanga MA, Shimelis H, Mengistu G. Sorghum Production in Northern Namibia: Farmers’ Perceived Constraints and Trait Preferences. Sustainability. 2022; 14(16):10266. https://doi.org/10.3390/su141610266
Chicago/Turabian StyleWanga, Maliata Athon, Hussein Shimelis, and Girma Mengistu. 2022. "Sorghum Production in Northern Namibia: Farmers’ Perceived Constraints and Trait Preferences" Sustainability 14, no. 16: 10266. https://doi.org/10.3390/su141610266
APA StyleWanga, M. A., Shimelis, H., & Mengistu, G. (2022). Sorghum Production in Northern Namibia: Farmers’ Perceived Constraints and Trait Preferences. Sustainability, 14(16), 10266. https://doi.org/10.3390/su141610266