The Development of Anammox and Chloroflexi Bacteria during the Composting of Sewage Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Characteristic and Experiment Configuration
2.2. Methods
2.2.1. Determination of the Physicochemical Properties of Compost Samples
2.2.2. Microbiology Community Analysis
- 16S_V3-F 357F: (5-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-CCTACGGGNGGCWGCAG-3) and;
- 16S_V4-R785R: (5-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-GACTACHVGGGTATCTAATCC-3).
- Sample A–95608;
- Samples B–95152;
- Sample C–125302.
3. Results and Discussion
3.1. Compost Characteristics and Temperature Changes during the Process
3.2. Community of Bacteria Structure Changes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sidełko, R.; Walendzik, B.; Smuga-Kogut, M.; Janowska, B.; Szymański, K.; Głowacka, A.; Leśniańska, A. Impact of Reduced Straw Content on the Sewage Sludge Composting Process. Arch. Environ. Prot. 2020, 46, 70–77. [Google Scholar] [CrossRef]
- Epstein, E. The Science of Composting; Technomic Publishing Co. Inc.: Lancaster, PA, USA, 1997. [Google Scholar]
- Stegenta-Dąbrowska, S.; Drabczyński, G.; Sobieraj, K.; Koziel, J.A.; Białowiec, A. The Biotic and Abiotic Carbon Monoxide Formation during Aerobic Co-Digestion of Dairy Cattle Manure with Green Waste and Sawdust. Front. Bioeng. Biotechnol. 2019, 7, 283. [Google Scholar] [CrossRef]
- Sweeten, J.M.; Auvermann, B.W. Composting Manure and Sludge. Available online: https://agrilifeextension.tamu.edu/library/ranching/composting-manure-and-sludge/ (accessed on 1 May 2022).
- Siebielska, I.; Sidełko, R. Polychlorinated Biphenyl Concentration Changes in Sewage Sludge and Organic Municipal Waste Mixtures during Composting and Anaerobic Digestion. Chemosphere 2015, 126, 88–95. [Google Scholar] [CrossRef]
- González, D.; Colón, J.; Gabriel, D.; Sánchez, A. The Effect of the Composting Time on the Gaseous Emissions and the Compost Stability in a Full-Scale Sewage Sludge Composting Plant. Sci. Total Environ. 2019, 654, 311–323. [Google Scholar] [CrossRef]
- Boer, E.D.; Jędrczak, A.; Kowalski, Z.; Kulczycka, J.; Szpadt, R. A review of municipal solid waste composition and quantities in Poland. Waste Manag. 2010, 30, 369–377. [Google Scholar] [CrossRef]
- Sidełko, R.; Janowska, B.; Walendzik, B.; Siebielska, I. Two Composting Phases Running in Different Process Conditions Timing Relationship. Bioresour. Technol. 2010, 101, 6692–6698. [Google Scholar] [CrossRef]
- Cáceres, R.; Malińska, K.; Marfà, O. Nitrification within Composting: A Review. Waste Manag. 2018, 72, 119–137. [Google Scholar] [CrossRef]
- Manu, M.K.; Li, D.; Liwen, L.; Jun, Z.; Varjani, S.; Wong, J.W.C. A Review on Nitrogen Dynamics and Mitigation Strategies of Food Waste Digestate Composting. Bioresour. Technol. 2021, 334, 125032. [Google Scholar] [CrossRef]
- Jetten, M.S.M.; van Niftrik, L.; Strous, M.; Kartal, B.; Keltjens, J.T.; Op Den Camp, H.J.M. Biochemistry and Molecular Biology of Anammox Bacteria. Crit. Rev. Biochem. Mol. Biol. 2009, 44, 65–84. [Google Scholar] [CrossRef]
- Spieck, E.; Spohn, M.; Wendt, K.; Bock, E.; Shively, J.; Frank, J.; Indenbirken, D.; Alawi, M.; Lücker, S.; Hüpeden, J. Extremophilic Nitrite-Oxidizing Chloroflexi from Yellowstone Hot Springs. ISME J. 2019, 14, 364–379. [Google Scholar] [CrossRef]
- Zheng, G.; Wang, T.; Niu, M.; Chen, X.; Liu, C.; Wang, Y.; Chen, T. Biodegradation of Nonylphenol during Aerobic Composting of Sewage Sludge under Two Intermittent Aeration Treatments in a Full-Scale Plant. Environ. Pollut. 2018, 238, 783–791. [Google Scholar] [CrossRef]
- Głąb, T.; Żabiński, A.; Sadowska, U.; Gondek, K.; Kopeć, M.; Mierzwa-Hersztek, M.; Tabor, S. Effects of Co-Composted Maize, Sewage Sludge, and Biochar Mixtures on Hydrological and Physical Qualities of Sandy Soil. Geoderma 2018, 315, 27–35. [Google Scholar] [CrossRef]
- Maeda, K.; Hanajima, D.; Toyoda, S.; Yoshida, N.; Morioka, R.; Osada, T. Microbiology of Nitrogen Cycle in Animal Manure Compost. Microb. Biotechnol. 2011, 4, 700–709. [Google Scholar] [CrossRef]
- Wang, T.; Cheng, L.; Zhang, W.; Xu, X.; Meng, Q.; Sun, X.; Liu, H.; Li, H.; Sun, Y. Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting. J. Microbiol. Biotechnol. 2017, 27, 1288–1299. [Google Scholar] [CrossRef]
- Bassey, I.U.; Edet, U.O.; Umoafia, N.G.; Nwachi, A.C.; Ebenge, I.A.; Odokuma, L. Microbial Structure and Function Diversity of Open Dumpsite Compost Used as Fertilizer by Peasant Farmers. Sci. Afr. 2021, 11, e00699. [Google Scholar] [CrossRef]
- Sorokin, D.Y.; Lücker, S.; Vejmelkova, D.; Kostrikina, N.A.; Kleerebezem, R.; Rijpstra, W.I.C.; Damsté, J.S.S.; le Paslier, D.; Muyzer, G.; Wagner, M.; et al. Nitrification Expanded: Discovery, Physiology and Genomics of a Nitrite-Oxidizing Bacterium from the Phylum Chloroflexi. ISME J. 2012, 6, 2245–2256. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of General 16S Ribosomal RNA Gene PCR Primers for Classical and Next-Generation Sequencing-Based Diversity Studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.H.; Lü, H.; Li, H.; Li, Y.W.; Mo, C.H.; Cai, Q.Y. Persistent Contamination of Polycyclic Aromatic Hydrocarbons (PAHs) and Phthalates Linked to the Shift of Microbial Function in Urban River Sediments. J. Hazard. Mater. 2021, 414, 125416. [Google Scholar] [CrossRef]
- Pulka, J.; Manczarski, P.; Koziel, J.A.; Białowiec, A. Torrefaction of Sewage Sludge: Kinetics and Fuel Properties of Biochars. Energies 2019, 12, 565. [Google Scholar] [CrossRef]
- Stegenta-Dąbrowska, S.; Randerson, P.F.; Białowiec, A. Aerobic Biostabilization of the Organic Fraction of Municipal Solid Waste—Monitoring Hot and Cold Spots in the Reactor as a Novel Tool for Process Optimization. Materials 2022, 15, 3300. [Google Scholar] [CrossRef]
- Robledo-Mahón, T.; Calvo, C.; Aranda, E. Enzymatic Potential of Bacteria and Fungi Isolates from the Sewage Sludge Composting Process. Appl. Sci. 2020, 10, 7763. [Google Scholar] [CrossRef]
- Ledezma-Villanueva, A.; Robledo-Mahón, T.; Gómez-Silván, C.; Paz, G.A.-D.; Pozo, C.; Manzanera, M.; Calvo, C.; Aranda, E. High-Throughput Microbial Community Analyses to Establish a Natural Fungal and Bacterial Consortium from Sewage Sludge Enriched with Three Pharmaceutical Compounds. J. Fungi 2022, 8, 668. [Google Scholar] [CrossRef]
- Soudejani, H.T.; Kazemian, H.; Inglezakis, V.J.; Zorpas, A.A. Application of Zeolites in Organic Waste Composting: A Review. Biocatal. Agric. Biotechnol. 2019, 22, 101396. [Google Scholar] [CrossRef]
- Pereira, A.D.; Cabezas, A.; Etchebehere, C.; Chernicharo, C.A.d.L.; de Araújo, J.C. Microbial Communities in Anammox Reactors: A Review. Microbial communities in anammox reactors: A review. Environ. Technol. Rev. 2017, 6, 74–93. [Google Scholar] [CrossRef]
- Malcheva, B.Z.; Petrov, P.G.; Stefanova, V.V. Microbiological Control in Decontamination of Sludge from Wastewater Treatment Plant. Processes 2022, 10, 406. [Google Scholar] [CrossRef]
- Gao, J.; Duan, Y.; Liu, Y.; Zhuang, X.; Liu, Y.; Bai, Z.; Ma, W.; Zhuang, G. Long- and Short-Chain AHLs Affect AOA and AOB Microbial Community Composition and Ammonia Oxidation Rate in Activated Sludge. J. Environ. Sci. 2019, 78, 53–62. [Google Scholar] [CrossRef]
- van der Star, W.R.L.; van de Graaf, M.J.; Kartal, B.; Picioreanu, C.; Jetten, M.S.M.; van Loosdrecht, M.C.M. Response of Anaerobic Ammonium-Oxidizing Bacteria to Hydroxylamine. Appl. Environ. Microbiol. 2008, 74, 4417–4426. [Google Scholar] [CrossRef]
- Isaka, K.; Date, Y.; Sumino, T.; Yoshie, S.; Tsuneda, S. Growth Characteristic of Anaerobic Ammonium-Oxidizing Bacteria in an Anaerobic Biological Filtrated Reactor. Appl. Microbiol. Biotechnol. 2006, 70, 47–52. [Google Scholar] [CrossRef]
- Rothrock, M.J.; Vanotti, M.B.; Szögi, A.A.; Gonzalez, M.C.G.; Fujii, T. Long-Term Preservation of Anammox Bacteria. Appl. Microbiol. Biotechnol. 2011, 92, 147–157. [Google Scholar] [CrossRef]
Sample | Moisture Content, % | Volatile Solids, % d. m. | pH | C, % | H, % | N, % | C/N |
---|---|---|---|---|---|---|---|
A | 66.3 | 78.7 ± 3.3 | 8.93 | 34 ± 7 | 4.8 ± 1.0 | 1.1 ± 0.2 | 36.3 |
B | 63.1 | 77.4 ± 1.8 | 8.98 | 40 ± 8 | 5.8 ± 1.2 | 1.1 ± 0.2 | 43.6 |
C | 66.7 | 84.0 ± 1.6 | 8.99 | 44 ± 9 | 6.3 ± 1.3 | 1.2 ± 0.2 | 42.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stegenta-Dąbrowska, S.; Sobieraj, K.; Rosik, J.; Sidełko, R.; Valentin, M.; Białowiec, A. The Development of Anammox and Chloroflexi Bacteria during the Composting of Sewage Sludge. Sustainability 2022, 14, 10248. https://doi.org/10.3390/su141610248
Stegenta-Dąbrowska S, Sobieraj K, Rosik J, Sidełko R, Valentin M, Białowiec A. The Development of Anammox and Chloroflexi Bacteria during the Composting of Sewage Sludge. Sustainability. 2022; 14(16):10248. https://doi.org/10.3390/su141610248
Chicago/Turabian StyleStegenta-Dąbrowska, Sylwia, Karolina Sobieraj, Joanna Rosik, Robert Sidełko, Marvin Valentin, and Andrzej Białowiec. 2022. "The Development of Anammox and Chloroflexi Bacteria during the Composting of Sewage Sludge" Sustainability 14, no. 16: 10248. https://doi.org/10.3390/su141610248
APA StyleStegenta-Dąbrowska, S., Sobieraj, K., Rosik, J., Sidełko, R., Valentin, M., & Białowiec, A. (2022). The Development of Anammox and Chloroflexi Bacteria during the Composting of Sewage Sludge. Sustainability, 14(16), 10248. https://doi.org/10.3390/su141610248