Urban Low-Carbon Consumption Performance Assessment: A Case Study of Yangtze River Delta Cities, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Low-Carbon Consumption Performance
2.2. Structural Decomposition Model
2.3. Data Sources
3. Results and Discussion
3.1. Carbon Consumption Intensity Estimates
3.2. Determinants of Changes in Carbon Consumption Intensity
3.3. Carbon Consumption Intensity vs. Carbon Emission Intensity
4. Conclusions and Policy Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kotcher, J.; Maibach, E.; Miller, J.; Campbell, E.; Alqodmani, L.; Maiero, M.; Wyns, A. Views of health professionals on climate change and health: A multinational survey study. Lancet Planet. Health 2021, 5, e316–e323. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Z.; Zheng, H.; Li, M.; Tan, T. How urban agglomeration improve the emission efficiency? A spatial econometric analysis of the Yangtze River Delta urban agglomeration in China. J. Environ. Manag. 2020, 260, 110061. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Fang, S.; Cai, B.; Zhou, Y.; Li, D.; Feng, K.; Hubacek, K. Chinese cities exhibit varying degrees of decoupling of economic growth and CO2 emissions between 2005 and 2015. One Earth 2021, 4, 124–134. [Google Scholar] [CrossRef]
- Zhang, N.; Luo, Z.; Liu, Y.; Feng, W.; Zhou, N.; Yang, L. Towards low-carbon cities through building-stock-level carbon emission analysis: A calculating and mapping method. Sustain. Cities Soc. 2022, 78, 103633. [Google Scholar] [CrossRef]
- Kinzig, A.P.; Kammen, D.M. National trajectories of carbon emissions: Analysis of proposals to foster the transition to low-carbon economies. Glob. Environ. Chang. 1998, 8, 183–208. [Google Scholar] [CrossRef]
- Wimbadi, R.W.; Djalante, R. From decarbonization to low carbon development and transition: A systematic literature review of the conceptualization of moving toward net-zero carbon dioxide emission (1995–2019). J. Clean. Prod. 2020, 256, 120307. [Google Scholar] [CrossRef]
- NDRC. Notice on Carrying Out Low Carbon Province and Low Carbon City Pilots. 2010. Available online: https://www.ndrc.gov.cn/xxgk/zcfb/tz/201008/t20100810_964674.html?code=&state=123 (accessed on 17 July 2010).
- Zhang, M.; Yang, Y.; Xia-Bauer, C. Measuring Urban Low-Carbon Sustainability in Four Chinese Cities. Sustainability 2021, 13, 12281. [Google Scholar] [CrossRef]
- Ali, S.S.; Ersöz, F.; Kaur, R.; Altaf, B.; Weber, G.-W. A quantitative analysis of low carbon performance in industrial sectors of developing world. J. Clean. Prod. 2021, 284, 125268. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, D. The Spatial-Temporal Evolution of China’s Carbon Emission Intensity and the Analysis of Regional Emission Reduction Potential under the Carbon Emissions Trading Mechanism. Sustainability 2022, 14, 7442. [Google Scholar] [CrossRef]
- Cheng, Y.; Yao, X. Carbon intensity reduction assessment of renewable energy technology innovation in China: A panel data model with cross-section dependence and slope heterogeneity. Renew. Sustain. Energy Rev. 2021, 135, 110157. [Google Scholar] [CrossRef]
- Oda, J.; Akimoto, K. Carbon intensity of the Japanese Iron and steel Industry: Analysis of factors from 2000 to 2019. J. Clean. Prod. 2022, 345, 130920. [Google Scholar] [CrossRef]
- Xu, R.; Xu, B. Exploring the effective way of reducing carbon intensity in the heavy industry using a semiparametric econometric approach. Energy 2022, 243, 123066. [Google Scholar] [CrossRef]
- Feng, T.; Lin, Z.; Du, H.; Qiu, Y.; Zuo, J. Does low-carbon pilot city program reduce carbon intensity? Evidence from Chinese cities. Res. Int. Bus. Financ. 2021, 58, 101450. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Inekwe, J.N.; Sadorsky, P. Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries. Energy Econ. 2020, 86, 104632. [Google Scholar] [CrossRef]
- Robaina, M.; Neves, A. Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe. Res. Transp. Econ. 2021, 90, 101074. [Google Scholar] [CrossRef]
- Chen, H.; Qi, S.; Tan, X. Decomposition and prediction of China’s carbon emission intensity towards carbon neutrality: From perspectives of national, regional and sectoral level. Sci. Total Environ. 2022, 825, 153839. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Guo, S.; Xu, H.; Tian, M.; Pan, X.; Chu, J. China’s carbon intensity factor decomposition and carbon emission decoupling analysis. Energy 2022, 239, 122175. [Google Scholar] [CrossRef]
- Yan, J.; Su, B.; Liu, Y. Multiplicative structural decomposition and attribution analysis of carbon emission intensity in China, 2002–2012. J. Clean. Prod. 2018, 198, 195–207. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Z.; Zhang, Z.; Li, X.; Shan, Y.; Song, M.; Mi, Z.; Meng, J.; Ou, J.; Guan, D. Mapping Carbon and Water Networks in the North China Urban Agglomeration. One Earth 2019, 1, 126–137. [Google Scholar] [CrossRef]
- Handayani, W.; Insani, T.D.; Fisher, M.; Gim, T.-H.T.; Mardhotillah, S.; Adam, U.E.-F. Effects of COVID-19 restriction measures in Indonesia: A comparative spatial and policy analysis of selected urban agglomerations. Int. J. Disaster Risk Reduct. 2022, 76, 103015. [Google Scholar] [CrossRef]
- Liu, C.; Tang, R.; Guo, Y.; Sun, Y.; Liu, X. Research on the Structure of Carbon Emission Efficiency and Influencing Factors in the Yangtze River Delta Urban Agglomeration. Sustainability 2022, 14, 6114. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Li, H. China’s inter-regional embodied carbon emissions: An industrial transfer perspective. Environ. Sci. Pollut. Res. 2022, 29, 4062–4075. [Google Scholar] [CrossRef]
- Wen, W.; Wang, Q. Re-examining the realization of provincial carbon dioxide emission intensity reduction targets in China from a consumption-based accounting. J. Clean. Prod. 2020, 244, 118488. [Google Scholar] [CrossRef]
- Wiedmann, T.; Minx, J. A definition of ‘carbon footprint’. Ecol. Econ. Res. Trends 2007, 1, 1–11. [Google Scholar]
- Lohmann, P.M.; Gsottbauer, E.; Doherty, A.; Kontoleon, A. Do carbon footprint labels promote climatarian diets? Evidence from a large-scale field experiment. J. Environ. Econ. Manag. 2022, 114, 102693. [Google Scholar] [CrossRef]
- El Geneidy, S.; Baumeister, S.; Govigli, V.M.; Orfanidou, T.; Wallius, V. The carbon footprint of a knowledge organization and emission scenarios for a post-COVID-19 world. Environ. Impact Assess. Rev. 2021, 91, 106645. [Google Scholar] [CrossRef]
- Kander, A.; Jiborn, M.; Moran, D.D.; Wiedmann, T. National greenhouse-gas accounting for effective climate policy on international trade. Nat. Clim. Chang. 2015, 5, 431–435. [Google Scholar] [CrossRef]
- Lenzen, M.; Sun, Y.-Y.; Faturay, F.; Ting, Y.-P.; Geschke, A.; Malik, A. The carbon footprint of global tourism. Nat. Clim. Chang. 2018, 8, 522–528. [Google Scholar] [CrossRef]
- Zhang, Z.; Guan, D.; Wang, R.; Meng, J.; Zheng, H.; Zhu, K.; Du, H. Embodied carbon emissions in the supply chains of multinational enterprises. Nat. Clim. Chang. 2020, 10, 1096–1101. [Google Scholar] [CrossRef]
- Wu, X.; Li, C.; Guo, J.; Wu, X.; Meng, J.; Chen, G. Extended carbon footprint and emission transfer of world regions: With both primary and intermediate inputs into account. Sci. Total Environ. 2021, 775, 145578. [Google Scholar] [CrossRef]
- Arce, G.; López, L.A.; Guan, D. Carbon emissions embodied in international trade: The post-China era. Appl. Energy 2016, 184, 1063–1072. [Google Scholar] [CrossRef]
- Theine, H.; Humer, S.; Moser, M.; Schnetzer, M. Emissions inequality: Disparities in income, expenditure, and the carbon footprint in Austria. Ecol. Econ. 2022, 197, 107435. [Google Scholar] [CrossRef]
- Yu, J.; Yang, T.; Ding, T.; Zhou, K. “New normal” characteristics show in China’s energy footprints and carbon footprints. Sci. Total Environ. 2021, 785, 147210. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, H.; Löschel, A.; Zhou, P. Patterns and determinants of carbon emission flows along the Belt and Road from 2005 to 2030. Ecol. Econ. 2022, 192, 107260. [Google Scholar] [CrossRef]
- Yi-Ming, W.; Meng, J.; Guan, D.; Shan, Y.; Song, M.; Wei, Y.-M.; Liu, Z.; Hubacek, K. Chinese CO2 emission flows have reversed since the global financial crisis. Nat. Commun. 2017, 8, 1712. [Google Scholar] [CrossRef]
- Hiloidhari, M.; Vijay, V.; Banerjee, R.; Baruah, D.; Rao, A.B. Energy-carbon-water footprint of sugarcane bioenergy: A district-level life cycle assessment in the state of Maharashtra, India. Renew. Sustain. Energy Rev. 2021, 151, 111583. [Google Scholar] [CrossRef]
- Yuan, X.; Sheng, X.; Chen, L.; Tang, Y.; Li, Y.; Jia, Y.; Zuo, J. Carbon footprint and embodied carbon transfer at the provincial level of the Yellow River Basin. Sci. Total Environ. 2022, 803, 149993. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Zheng, H.; Meng, J.; Shan, Y.; Zhou, Y.; Guan, D. Large inter-city inequality in consumption-based CO2 emissions for China’s pearl river basin cities. Resour. Conserv. Recycl. 2022, 176, 105923. [Google Scholar] [CrossRef]
- Xia, C.; Zheng, H.; Meng, J.; Li, S.; Du, P.; Shan, Y. The evolution of carbon footprint in the yangtze river delta city cluster during economic transition 2012–2015. Resour. Conserv. Recycl. 2022, 181, 106266. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, C.; Peng, S. How do urbanization and consumption patterns affect carbon emissions in China? A decomposition analysis. J. Clean. Prod. 2019, 211, 1201–1208. [Google Scholar] [CrossRef]
- Ding, Z.; Jiang, X.; Liu, Z.; Long, R.; Xu, Z.; Cao, Q. Factors affecting low-carbon consumption behavior of urban residents: A comprehensive review. Resour. Conserv. Recycl. 2018, 132, 3–15. [Google Scholar] [CrossRef]
- Leontief, W. Environmental Repercussions and the Economic Structure: An Input-Output Approach. Rev. Econ. Stat. 1970, 52, 262–271. [Google Scholar] [CrossRef]
- Radwan, A.; Hongyun, H.; Achraf, A.; Mustafa, A.M. Energy use and energy-related carbon dioxide emissions drivers in Egypt’s economy: Focus on the agricultural sector with a structural decomposition analysis. Energy 2022, 258, 124821. [Google Scholar] [CrossRef]
- Zheng, H.; Többen, J.; Dietzenbacher, E.; Moran, D.; Meng, J.; Wang, D.; Guan, D. Entropy-based Chinese city-level MRIO table framework. Econ. Syst. Res. 2021, 1–26. [Google Scholar] [CrossRef]
- Shan, Y.; Huang, Q.; Guan, D.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s recent emission pattern shifts. Earth’s Future 2021, 9, e2021EF002241. [Google Scholar] [CrossRef]
- Shen, L.; Du, X.; Cheng, G.; Shi, F.; Wang, Y. Temporal-spatial evolution analysis on low carbon city performance in the context of China. Environ. Impact Assess. Rev. 2021, 90, 106626. [Google Scholar] [CrossRef]
- Cheng, J.; Yi, J.; Dai, S.; Xiong, Y. Can low-carbon city construction facilitate green growth? Evidence from China’s pilot low-carbon city initiative. J. Clean. Prod. 2019, 231, 1158–1170. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Ding, Y. Assessing the influence of urban transportation infrastructure construction on haze pollution in China: A case study of Beijing-Tianjin-Hebei region. Environ. Impact Assess. Rev. 2021, 87, 106547. [Google Scholar] [CrossRef]
- Guan, D.; Meng, J.; Reiner, D.M.; Zhang, N.; Shan, Y.; Mi, Z.; Shao, S.; Liu, Z.; Zhang, Q.; Davis, S.J. Structural decline in China’s CO2 emissions through transitions in industry and energy systems. Nat. Geosci. 2018, 11, 551–555. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, T. The impact of cross-region industrial structure optimization on economy, carbon emissions and energy consumption: A case of the Yangtze River Delta. Sci. Total Environ. 2021, 778, 146089. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Z.; Wei, W.; Song, M.; Dietzenbacher, E.; Wang, X.; Guan, D. Regional determinants of China’s consumption-based emissions in the economic transition. Environ. Res. Lett. 2020, 15, 074001. [Google Scholar] [CrossRef]
- Cai, B.; Guo, H.; Ma, Z.; Wang, Z.; Dhakal, S.; Cao, L. Benchmarking carbon emissions efficiency in Chinese cities: A com-parative study based on high-resolution gridded data. Appl. Energy 2019, 242, 994–1009. [Google Scholar] [CrossRef]
- Zheng, J.; Mi, Z.; Coffman, D.; Shan, Y.; Guan, D.; Wang, S. The Slowdown in China’s Carbon Emissions Growth in the New Phase of Economic Development. One Earth 2019, 1, 240–253. [Google Scholar] [CrossRef]
Cities | 2012 | 2015 | Mean | Rank | Cities | 2012 | 2015 | Mean | Rank |
---|---|---|---|---|---|---|---|---|---|
Shanghai | 1.051 | 0.979 | 1.015 | 1 | Huzhou | 1.296 | 1.262 | 1.279 | 13 |
Nanjing | 1.180 | 1.037 | 1.109 | 5 | Shaoxing | 1.659 | 1.616 | 1.637 | 24 |
Wuxi | 1.137 | 1.004 | 1.071 | 2 | Jinhua | 1.534 | 1.495 | 1.515 | 21 |
Changzhou | 1.185 | 1.060 | 1.123 | 6 | Zhoushan | 1.112 | 1.065 | 1.088 | 4 |
Suzhou | 1.144 | 1.002 | 1.073 | 3 | TaizhouZJ | 1.385 | 1.360 | 1.372 | 17 |
Nantong | 1.267 | 1.177 | 1.222 | 8 | Hefei | 1.535 | 1.457 | 1.496 | 20 |
Yancheng | 1.266 | 1.211 | 1.239 | 11 | Wuhu | 1.643 | 1.585 | 1.614 | 23 |
Yangzhou | 1.323 | 1.220 | 1.271 | 12 | Maanshan | 1.682 | 1.738 | 1.710 | 25 |
Zhenjiang | 1.178 | 1.130 | 1.154 | 7 | Tongling | 1.689 | 1.758 | 1.724 | 26 |
TaizhouJS | 1.270 | 1.204 | 1.237 | 10 | Anqing | 1.315 | 1.343 | 1.329 | 16 |
Hangzhou | 1.301 | 1.277 | 1.289 | 14 | Chuzhou | 1.549 | 1.634 | 1.591 | 22 |
Ningbo | 1.284 | 1.308 | 1.296 | 15 | Chizhou | 1.405 | 1.465 | 1.435 | 19 |
Jiaxing | 1.277 | 1.172 | 1.225 | 9 | Xuancheng | 1.400 | 1.352 | 1.376 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Wang, J.; Zhang, J.; Xing, Z. Urban Low-Carbon Consumption Performance Assessment: A Case Study of Yangtze River Delta Cities, China. Sustainability 2022, 14, 10089. https://doi.org/10.3390/su141610089
Zhu M, Wang J, Zhang J, Xing Z. Urban Low-Carbon Consumption Performance Assessment: A Case Study of Yangtze River Delta Cities, China. Sustainability. 2022; 14(16):10089. https://doi.org/10.3390/su141610089
Chicago/Turabian StyleZhu, Mingming, Jigan Wang, Jie Zhang, and Zhencheng Xing. 2022. "Urban Low-Carbon Consumption Performance Assessment: A Case Study of Yangtze River Delta Cities, China" Sustainability 14, no. 16: 10089. https://doi.org/10.3390/su141610089