Overseas Warehouse Deployment for Cross-Border E-Commerce in the Context of the Belt and Road Initiative
Abstract
:1. Introduction
2. Related Studies
2.1. Cross-Border E-Commerce and Cross-Border Logistics
2.2. Logistics Warehouse Deployment Methods
2.3. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
2.4. Incremental Contributions
3. Methodology
3.1. Weight Calculation
3.2. TOPSIS Method
4. Influence Factors of Overseas Warehouse Deployment
5. Empirical Study of Overseas Warehouse Deployment
5.1. Data Description
5.2. Empirical Results
5.3. Sensitivity Analysis
6. Conclusions and Implications
7. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MOFCOM. Report on Development of China’s Outward Investment and Economic Cooperation 2016. Available online: http://hzs.mofcom.gov.cn/article/date/201612/20161202103624.shtml (accessed on 6 November 2017).
- Wu, P.; Lin, K. Unstructured big data analytics for retrieving e-commerce logistics knowledge. Telemat. Inform. 2017, 35, 237–244. [Google Scholar] [CrossRef]
- Liu, X.; Chen, D.; Cai, J. The Operation of the cross-border e-commerce logistics in China. Int. J. Intell. Inf. Syst. 2015, 4, 15–18. [Google Scholar]
- Li, H.; Miao, X. Research on the status quo and operation model of logistics of cross-border e-commerce in China. Agro Food Ind. Hi Tech 2017, 28, 2845–2849. [Google Scholar]
- People’s-Daily-Online. Report on the Government’s Work in 2016. Available online: http://www.npc.gov.cn/npc/xinwen/2016-03/05/content_1969457.htm (accessed on 7 November 2017).
- Gomez-Herrera, E.; Martens, B.; Turlea, G. The drivers and impediments for cross-border e-commerce in the EU. Inf. Econ. Policy 2014, 28, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.-Y. Research of post-purchase evaluation on small amount cross border e-commercial based on ACSI model. Agro Food Ind. Hi Tech 2017, 28, 3149–3152. [Google Scholar]
- Aulkemeier, F.; Iacob, M.-E.; Van Hillegersberg, J. An architectural perspective on service adoption: A platform design and the case of pluggable cross-border trade compliance in e-commerce. J. Organ. Comput. Electron. Commer. 2017, 27, 325–341. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, Y.-H.; Chen, M.-C.; Liao, W.-C. Logistics service design for cross-border e-commerce using kansei engineering with text-mining-based online content analysis. Telemat. Inform. 2017, 34, 284–302. [Google Scholar] [CrossRef]
- Gessner, G.H.; Snodgrass, C.R. Designing e-commerce cross-border distribution networks for small and medium-size enterprises incorporating Canadian and US trade incentive programs. Res. Transp. Bus. Manag. 2015, 16, 84–94. [Google Scholar] [CrossRef]
- Lam, C.; Choy, K.; Ho, G.; Chung, S. A hybrid case-GA-based decision support model for warehouse operation in fulfilling cross-border orders. Expert Syst. Appl. 2012, 39, 7015–7028. [Google Scholar] [CrossRef]
- Giuffrida, M.; Mangiaracina, R.; Perego, A.; Tumino, A. Cross border B2C e-commerce to greater China and the role of logistics: A literature review. Int. J. Phys. Distrib. Logist. Manag. 2017, 47, 772–795. [Google Scholar] [CrossRef]
- Sinkovics, R.R.; Yamin, M.; Hossinger, M. Cultural adaptation in cross border e-commerce: A study of German companies. J. Electron. Commer. Res. 2007, 8, 221–235. [Google Scholar]
- Kawa, A. Supply chains of cross-border e-commerce. In Advanced Topics in Intelligent Information and Database Systems; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Cordeau, J.-F.; Pasin, F.; Solomon, M.M. An integrated model for logistics network design. Ann. Oper. Res. 2006, 144, 59–82. [Google Scholar] [CrossRef]
- Ozsen, L.; Coullard, C.R.; Daskin, M.S. Capacitated warehouse location model with risk pooling. Nav. Res. Logist. 2008, 55, 295–312. [Google Scholar] [CrossRef]
- Takeyasu, K.; Kainosho, M. Optimization technique by genetic algorithms for international logistics. J. Intell. Manuf. 2014, 25, 1043–1049. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, Y.; Hu, Q.; Li, H.; Stoeter, J. Evaluation of consolidation center cargo capacity and loctions for China railway express. Transp. Res. Part E Logist. Transp. Rev. 2018, 117, 58–81. [Google Scholar] [CrossRef]
- Ye, F.; Zhao, Q.; Xi, M.; Dessouky, M. Chinese national emergency warehouse location research based on VNS algorithm. Electron. Notes Discret. Math. 2015, 47, 61–68. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Q.; Batta, R.; Nagi, R. An integrated model for site selection and space determination of warehouses. Comput. Oper. Res. 2015, 62, 169–176. [Google Scholar] [CrossRef]
- Korpela, J.; Lehmusvaara, A. A customer oriented approach to warehouse network evaluation and design. Int. J. Prod. Econ. 1999, 59, 135–146. [Google Scholar] [CrossRef]
- Ren, S. Assessment on logistics warehouse fire risk based on analytic hierarchy process. Procedia Eng. 2012, 45, 59–63. [Google Scholar] [CrossRef]
- Dey, B.; Bairagi, B.; Sarkar, B.; Sanyal, S.K. Group heterogeneity in multi member decision making model with an application to warehouse location selection in a supply chain. Comput. Ind. Eng. 2017, 105, 101–122. [Google Scholar] [CrossRef]
- Ozcan, T.; Celebi, N.; Esnaf, S. Comparative analysis of multi-criteria decision making methodologies and implementation of a warehouse location selection problem. Expert Syst. Appl. 2011, 38, 9773–9779. [Google Scholar] [CrossRef]
- Demirel, T.; Demirel, N.Ç.; Kahraman, C. Multi-criteria warehouse location selection using Choquet integral. Expert Syst. Appl. 2010, 37, 3943–3952. [Google Scholar] [CrossRef]
- Jacyna-Gołda, I.; Izdebski, M. The multi-criteria decision support in choosing the efficient location of warehouses in the logistic network. Procedia Eng. 2017, 187, 635–640. [Google Scholar] [CrossRef]
- Yoon, K.P.; Kim, W.K. The behavioral TOPSIS. Expert Syst. Appl. 2017, 89, 266–272. [Google Scholar] [CrossRef]
- Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, C.; Fang, J.; Miao, Y. Paths and strategies for a resilient megacity based on the water-energy-food nexus. Sustain. Cities Soc. 2022, 82, 103892. [Google Scholar] [CrossRef]
- Arif, M.; Kumar, V.D.; Jayakumar, L.; Ungurean, I.; Izdrui, D.; Geman, O. DAHP-TOPSIS-based channel decision model for co-operative cr-enabled internet on vehicle (CR-IoV). Sustainability 2021, 13, 13966. [Google Scholar] [CrossRef]
- Erdogan, M.; Ayyildiz, E. Comparison of hospital service performances under COVID-19 pandemics for pilot regions with low vaccination rates. Expert Syst. Appl. 2022, 206, 117773. [Google Scholar] [CrossRef]
- Wang, C.-N.; Dang, T.-T.; Nguyen, N.-A.; Wang, J.-W. A combined Data Envelopment Analysis (DEA) and Grey Based Multiple Criteria Decision Making (G-MCDM) for solar PV power plants site selection: A case study in Vietnam. Energy Rep. 2022, 8, 1124–1142. [Google Scholar] [CrossRef]
- Cao, X.T.; Wei, C.F.; Xie, D.T. Evaluation of scale management suitability based on the entropy-TOPSIS method. Land 2021, 10, 416. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Mardani, A.; Turskis, Z.; Jusoh, A.; Nor, K.M. Development of TOPSIS method to solve complicated decision-making problems: An overview on developments from 2000 to 2015. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 645–682. [Google Scholar] [CrossRef]
- MOFCOM. Struggling to Achieve the Goal of a Strong Trade Country. Available online: http://lgj.mofcom.gov.cn/article/swsj/201804/20180402733862.shtml (accessed on 6 November 2017).
- Laxe, F.G.; Seoane, M.J.F.; Montes, C.P. Maritime degree, centrality and vulnerability: Port hierarchies and emerging areas in containerized transport (2008–2010). J. Transp. Geogr. 2012, 24, 33–44. [Google Scholar] [CrossRef]
- Lowry, M. Spatial interpolation of traffic counts based on origin—Destination centrality. J. Transp. Geogr. 2014, 36, 98–105. [Google Scholar] [CrossRef]
- Kim, A.-R. A Study on competitiveness analysis of ports in Korea and China by entropy weight TOPSIS. Asian J. Shipp. Logist. 2016, 32, 187–194. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The mathematical theory of communication. M.D.Comput. Comput. Med. Pract. 1950, 3, 31–32. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. [Google Scholar]
- Hwang, C.-L.; Lai, Y.-J.; Liu, T.-Y. A new approach for multiple objective decision making. Comput. Oper. Res. 1993, 20, 889–899. [Google Scholar] [CrossRef]
- Kwangsun, Y.; Lai, H.C. Multiple attribute decision making: An introduction. Eur. J. Oper. Res. 1995, 4, 287–288. [Google Scholar]
- Lee, P.T.-W.; Yang, Z. Multi-Criteria Decision Making in Maritime Studies and Logistics: Applications and Cases; Springer: Bergen, Norway, 2018. [Google Scholar]
- Ma, S.; Chai, Y.; Zhang, H. Rise of cross-border e-commerce exports in China. China World Econ. 2018, 26, 63–87. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef] [Green Version]
- iebrun. GST New Deal Officially Implemented. Available online: http://www.ebrun.com/20170706/237322.shtml (accessed on 8 December 2017).
- Nielsen. Global Consumer Consumption Habits Survey Report. Available online: http://www.nielsenccdata.com/insights/index.jhtml (accessed on 16 December 2017).
- Wang, Y.; Jia, F.; Schoenherr, T.; Gong, Y. Supply chain-based business model innovation: The case of a cross-border e-commerce company. Sustainability 2018, 10, 4362. [Google Scholar] [CrossRef] [Green Version]
- Millstein, M.A.; Bilir, C.; Campbell, J.F. The effect of optimizing warehouse locations on omnichannel designs. Eur. J. Oper. Res. 2022, 301, 576–590. [Google Scholar] [CrossRef]
- Lim, H.; Park, M. Modeling the spatial dimensions of warehouse rent determinants: A case study of Seoul metropolitan area, South Korea. Sustainability 2020, 12, 259. [Google Scholar] [CrossRef] [Green Version]
- Jia, F.Q.; Bennett, M.M. Chinese infrastructure diplomacy in Russia: The geopolitics of project type, location, and scale. Eurasian Geogr. Econ. 2018, 59, 340–377. [Google Scholar] [CrossRef]
ETV | Customs | Infrastructure | IS | LQC | |||||
Min | 5.0 | Min | 1.110 | Min | 1.240 | Min | 1.360 | Min | 1.390 |
1st Qu | 927.2 | 1st Qu | 2.305 | 1st Qu | 2.285 | 1st Qu | 2.450 | 1st Qu | 2.330 |
Median | 2565.0 | Median | 2.640 | Median | 2.660 | Median | 2.915 | Median | 2.775 |
Mean | 9452.6 | Mean | 2.657 | Mean | 2.726 | Mean | 2.870 | Mean | 2.777 |
3rd Qu | 9900.0 | 3rd Qu | 3.100 | 3rd Qu | 3.188 | 3rd Qu | 3.317 | 3rd Qu | 3.200 |
max | 61,094.0 | max | 4.180 | max | 4.200 | max | 3.960 | max | 4.090 |
TT | Timeliness | GDP | PCC | Outdegree | |||||
Min | 1.770 | Min | 2.040 | Min | 22.37 | Min | 390 | Min | 0.00 |
1st Qu | 2.447 | 1st Qu | 2.882 | 1st Qu | 216.42 | 1st Qu | 2408 | 1st Qu | 46.25 |
Median | 2.860 | Median | 3.345 | Median | 593.44 | Median | 6439 | Median | 58.50 |
Mean | 2.847 | Mean | 3.295 | Mean | 1992.03 | Mean | 11127 | Mean | 46.23 |
3rd Qu | 3.250 | 3rd Qu | 3.627 | 3rd Qu | 2167.15 | 3rd Qu | 12924 | 3rd Qu | 60.00 |
max | 4.050 | max | 4.400 | max | 22,640.00 | max | 73725 | max | 61.00 |
Indegree | Closeness | Betweenness | Eigenvector | ||||||
Min | 28.00 | Min | 64.89 | Min | 28.00 | Min | 64.89 | ||
1st Qu | 45.00 | 1st Qu | 88.12 | 1st Qu | 45.00 | 1st Qu | 88.12 | ||
Median | 47.00 | Median | 97.61 | Median | 47.00 | Median | 97.61 | ||
Mean | 46.23 | Mean | 93.45 | Mean | 46.23 | Mean | 93.45 | ||
3rd Qu | 49.00 | 3rd Qu | 100.00 | 3rd Qu | 49.00 | 3rd Qu | 100.00 | ||
max | 50.00 | max | 100.00 | max | 50.00 | max | 100.00 |
Attributes | ETV | Customs | Infrastructure | IS | LQC |
---|---|---|---|---|---|
0.3043 | 0.0080 | 0.0083 | 0.0058 | 0.0066 | |
Attributes | TT | Timeliness | GDP | PCC | Outdegree |
0.0066 | 0.0040 | 0.3167 | 0.1865 | 0.0733 | |
Attributes | Indegree | Closeness | Betweenness | Eigenvector | |
0.0012 | 0.0014 | 0.0752 | 0.0021 |
Country | Rank | Country | Rank | Country | Rank | |||
---|---|---|---|---|---|---|---|---|
India | 0.6278 | 1 | Lithuania | 0.2662 | 22 | Serbia | 0.1973 | 43 |
Singapore | 0.5042 | 2 | Greece | 0.2632 | 23 | Montenegro | 0.1970 | 44 |
Russia | 0.4695 | 3 | Hungary | 0.2596 | 24 | Ukraine | 0.1952 | 45 |
Qatar | 0.4460 | 4 | Brunei | 0.2504 | 25 | Mongolia | 0.1828 | 46 |
UAE | 0.4149 | 5 | Romania | 0.2441 | 26 | Maldives | 0.1791 | 47 |
Indonesia | 0.4048 | 6 | Estonia | 0.2399 | 27 | Nepal | 0.1787 | 48 |
Vietnam | 0.3796 | 7 | Cyprus | 0.2390 | 28 | Albania | 0.1782 | 49 |
Turkey | 0.3789 | 8 | Iran | 0.2378 | 29 | Kyrgyzstan | 0.1755 | 50 |
Israel | 0.3667 | 9 | Oman | 0.2351 | 30 | Georgia | 0.1744 | 51 |
Thailand | 0.3556 | 10 | Kazakhstan | 0.2233 | 31 | Afghanistan | 0.1679 | 52 |
Malaysia | 0.3542 | 11 | Latvia | 0.2228 | 32 | Uzbekistan | 0.1648 | 53 |
Poland | 0.3280 | 12 | Bosnia Herzegovina | 0.2212 | 33 | Yemen | 0.1600 | 54 |
Saudi Arabia | 0.3274 | 13 | Bulgaria | 0.2146 | 34 | Laos | 0.1524 | 55 |
Czech | 0.3062 | 14 | Croatia | 0.2115 | 35 | Armenia | 0.1428 | 56 |
Kuwait | 0.3040 | 15 | Belarus | 0.2109 | 36 | Bhutan | 0.1305 | 57 |
Philippines | 0.2893 | 16 | Cambodia | 0.2109 | 37 | Tajikistan | 0.1290 | 58 |
Bahrain | 0.2878 | 17 | Azerbaijan | 0.2108 | 38 | Myanmar | 0.1245 | 59 |
Slovenia | 0.2770 | 18 | Jordan | 0.2048 | 39 | Iraq | 0.1188 | 60 |
Pakistan | 0.2721 | 19 | Bangladesh | 0.2039 | 40 | Turkmenistan | 0.1072 | 61 |
Slovakia | 0.2701 | 20 | Lebanon | 0.1981 | 41 | Syria | 0.0895 | 62 |
Egypt | 0.2684 | 21 | Sri Lanka | 0.1977 | 42 |
Conditions | Weights of Criteria | |||
---|---|---|---|---|
Demand Value | Logistics Performance | Trade Potential | Centrality in Trade Network | |
main | 0.3043 | 0.0393 | 0.5032 | 0.1532 |
1 | 0.0393 | 0.3043 | 0.5032 | 0.1532 |
2 | 0.5032 | 0.0393 | 0.3043 | 0.1532 |
3 | 0.1532 | 0.0393 | 0.5032 | 0.3043 |
4 | 0.3043 | 0.5032 | 0.0393 | 0.1532 |
5 | 0.3043 | 0.1532 | 0.5032 | 0.0393 |
6 | 0.3043 | 0.0393 | 0.1532 | 0.5032 |
Alternatives | Main | Condition 1 | Condition 2 | Condition 3 | Condition 4 | Condition 5 | Condition 6 |
---|---|---|---|---|---|---|---|
1 | India | India | Bangladesh | Slovakia | India | Egypt | Romania |
2 | Russia | Qatar | Nepal | Nepal | Singapore | Bosnia Herzegovina | Estonia |
3 | Singapore | Russia | Ukraine | Albania | Russia | Montenegro | Ukraine |
4 | Qatar | Singapore | Tajikistan | Georgia | UAE | Turkmenistan | Slovakia |
5 | Indonesia | Israel | Bahrain | Cyprus | Turkey | Slovenia | Syria |
6 | UAE | Turkey | Syria | Armenia | Indonesia | Bhutan | Iraq |
7 | Israel | UAE | Yemen | Pakistan | Malaysia | Pakistan | Uzbekistan |
8 | Turkey | Saudi Arabia | Belarus | Laos | Thailand | Kyrgyzstan | Nepal |
9 | Saudi Arabia | Indonesia | Myanmar | Mongolia | Vietnam | Myanmar | Laos |
10 | Poland | Poland | Uzbekistan | Jordan | Israel | Azerbaijan | Georgia |
11 | Vietnam | Kuwait | Serbia | Romania | Qatar | Armenia | Jordan |
12 | Thailand | Czech | Kyrgyzstan | Uzbekistan | Saudi Arabia | Nepal | Oman |
13 | Malaysia | Malaysia | Slovakia | Greece | Poland | Lebanon | Czech |
14 | Kuwait | Thailand | Montenegro | Azerbaijan | Czech | Lithuania | Brunei |
15 | Czech | Greece | Brunei | Indonesia | Lithuania | Czech | Lithuania |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wu, J.; Lakshika Jayetileke, H. Overseas Warehouse Deployment for Cross-Border E-Commerce in the Context of the Belt and Road Initiative. Sustainability 2022, 14, 9642. https://doi.org/10.3390/su14159642
Liu C, Wu J, Lakshika Jayetileke H. Overseas Warehouse Deployment for Cross-Border E-Commerce in the Context of the Belt and Road Initiative. Sustainability. 2022; 14(15):9642. https://doi.org/10.3390/su14159642
Chicago/Turabian StyleLiu, Chanjuan, Jinran Wu, and Harshanie Lakshika Jayetileke. 2022. "Overseas Warehouse Deployment for Cross-Border E-Commerce in the Context of the Belt and Road Initiative" Sustainability 14, no. 15: 9642. https://doi.org/10.3390/su14159642