Utilization of Corncob Biochar in Cultivation Media for Cordycepin Production and Biomass of Cordyceps militaris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cordyceps militaris Mycelium
2.2. Cultivation of Cordyceps militaris in Solid Media
2.3. Cordycepin and Adenosine Analyses Using High-Performance Liquid Chromatography (HPLC)
2.4. Mycelium Characteristics of C. militaris in Solid Media
3. Results
3.1. Biomass of C. militaris in Different Media Components
3.2. Cordycepin and Adenosine Production
3.3. SEM Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sung, G.H.; Hywel-Jones, N.L.; Sung, J.M.; Luangsa-ard, J.J.; Shrestha, B.; Spatafora, J.W. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 2007, 57, 5–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olatunji, O.J.; Tang, J.; Tola, A.; Auberon, F.; Oluwaniyi, O.; Ouyang, Z. The genus Cordyceps: An extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia 2018, 129, 293–316. [Google Scholar] [CrossRef]
- Gao, X.H. Mating system of Cordyceps militaris. Acta Edulis Fungi 2008, 15, 6–10. [Google Scholar]
- Kang, N.; Lee, H.H.; Park, I.; Seo, Y.S. Development of high cordycepin-producing cordyceps militaris strains. Mycobiology 2017, 45, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Wen, T.C.; Kang, C.; Meng, Z.B.; Qi, B.; Hyde, K.D.; Kang, J.C. Enhanced production of cordycepin by solid state fermentation of cordyceps militaris using additives. Chiang Mai J. Sci. 2016, 43, 972–984. [Google Scholar]
- Singh, S.; Arif, M.; Ranjan, S.; Nasim, M. Comparative in Vitro Antioxidant Activity of Natural and Cultured Ophiocordyceps Sinensis. Int. J. Adv. Life Sci. Res. 2018, 1, 30–39. [Google Scholar] [CrossRef]
- Gibbs, P.A.; Seviour, R.J.; Schmid, F. Growth of filamentous fungi in submerged culture: Problems and possible solutions. Crit. Rev. Biotechnol. 2000, 20, 17–48. [Google Scholar] [CrossRef]
- Karimi, S.; Soofiani, N.M.; Mahboubi, A.; Taherzadeh, M.J. Use of organicwastes and industrial by-products to produce filamentous fungi with potential as aqua-feed ingredients. Sustainability 2018, 10, 3296. [Google Scholar] [CrossRef] [Green Version]
- Karahalil, E.; Coban, H.B.; Turhan, I. A current approach to the control of filamentous fungal growth in media: Microparticle enhanced cultivation technique. Crit. Rev. Biotechnol. 2019, 39, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.C.; Long, F.Y.; Kang, C.; Wang, F.; Zeng, W. Effects of additives and bioreactors on cordycepin production from Cordyceps militaris in liquid static culture. Mycosphere 2017, 8, 886–898. [Google Scholar] [CrossRef]
- Wen, T.C.; Li, G.R.; Kang, J.C.; Kang, C.; Hyde, K.D. Optimization of solid-state fermentation for fruiting body growth and cordycepin production by Cordyceps militaris. Chiang Mai J. Sci. 2014, 41, 858–872. [Google Scholar]
- Mao, X.B.; Zhong, J.J. Hyperproduction of cordycepin by two-stage dissolved oxygen control in submerged cultivation of medicinal mushroom Cordyceps militaris in bioreactors. Biotechnol. Prog. 2004, 20, 1408–1413. [Google Scholar] [CrossRef] [PubMed]
- Shih, I.L.; Tsai, K.L.; Hsieh, C. Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris. Biochem. Eng. J. 2007, 33, 193–201. [Google Scholar] [CrossRef]
- Kim, H.O.; Yun, J.W. A comparative study on the production of exopolysaccharides between two entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submerged mycelial cultures. J. Appl. Microbiol. 2005, 99, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.S.; Lee, J.S.; Shin, W.C.; Lee, K.E.; Hong, E.K. Optimization of culture conditions and medium components for the production of mycelial biomass and exo-polysaccharides with Cordyceps militaris in liquid culture. Biotechnol. Bioprocess Eng. 2009, 14, 756–762. [Google Scholar] [CrossRef]
- Xu, L.; Wang, F.; Zhang, Z.; Terry, N. Optimization of polysaccharide production from cordyceps militaris by solid-state fermentation on rice and its antioxidant activities. Foods 2019, 8, 590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.S.; Liu, B.L.; Chang, Y.N. Effects of light and heavy metals on Cordyceps militaris fruit body growth in rice grain-based cultivation. Korean J. Chem. Eng. 2011, 28, 875–879. [Google Scholar] [CrossRef]
- Masuda, M.; Urabe, E.; Sakurai, A.; Sakakibara, M. Production of cordycepin by surface culture using the medicinal mushroom Cordyceps militaris. Enzyme Microb. Technol. 2006, 39, 641–646. [Google Scholar] [CrossRef]
- Gu, Y.X.; Wang, Z.S.; Li, S.X.; Yuan, Q.S. Effect of multiple factors on accumulation of nucleosides and bases in Cordyceps militaris. Food Chem. 2007, 102, 1304–1309. [Google Scholar] [CrossRef]
- Cui, J.D. Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine. Crit. Rev. Biotechnol. 2015, 35, 475–484. [Google Scholar] [CrossRef]
- Guo, C.; Zhu, J.; Zhang, C.; Zhang, L. Determination of adenosine and 3’-deoxyadenosine in Cordyceps militaris (L.) Link. by HPLC. Zhongguo Zhong Yao Za Zhi= Zhongguo Zhongyao Zazhi China J. Chinese Mater. Medica 1998, 23, 236–237. [Google Scholar]
- Xie, C.; Liu, G.; Gu, Z.; Fan, G.; Zhang, L.; Gu, Y. Effects of culture conditions on mycelium biomass and intracellular cordycepin production of Cordyceps militaris in natural medium. Ann. Microbiol. 2009, 59, 293–299. [Google Scholar] [CrossRef]
- Das, S.K.; Masuda, M.; Hatashita, M.; Sakurai, A.; Sakakibara, M. Optimization of culture medium for cordycepin production using Cordyceps militaris mutant obtained by ion beam irradiation. Process Biochem. 2010, 45, 129–132. [Google Scholar] [CrossRef]
- Lee, S.K.; Lee, J.H.; Kim, H.R.; Chun, Y.; Lee, J.H.; Yoo, H.Y.; Park, C.; Kim, S.W. Improved cordycepin production by Cordyceps militaris KYL05 using casein hydrolysate in submerged conditions. Biomolecules 2019, 9, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiengmoon, B.; Sujipuli, K.; Prasarnpun, S.; Chindaruksa, S. Mycelial growth and fruiting body production of Cordyceps militaris in different culture chambers. NU. Int. J. Sci. 2019, 16, 58–68. [Google Scholar]
- Cui, B.; Chen, Z.; Guo, D.; Liu, Y. Investigations on the pyrolysis of microalgal-bacterial granular sludge: Products, kinetics, and potential mechanisms. Bioresour. Technol. 2022, 349, 126328. [Google Scholar] [CrossRef]
- Deem, L.M.; Crow, S.E. Reference Module in Earth Systems and Environmental Sciences. 2017. Available online: https://www.scienceopen.com/book?vid=7cd1117e-fbef-4585-87c7-a3466fffe1dc (accessed on 21 June 2022).
- Barnett, J.A. The Utilization of Disaccharides and Some Other Sugars RY Yeasts. Adv. Carbohydr. Chem. Biochem. 1981, 39, 347–404 ISBN 0120072394. [Google Scholar]
- Suwunwong, T.; Hussain, N.; Chantrapromma, S.; Phoungthong, K. Facile synthesis of corncob biochar via in-house modified pyrolysis for removal of methylene blue in wastewater. Mater. Res. Express 2020, 7, 015518. [Google Scholar] [CrossRef]
- Choi, J.; Paje, L.A.; Kwon, B.; Noh, J.; Lee, S. “Quantitative analysis of Cordycepin in Cordycepis militaris under defferent extraction methods”. J. Appl. Biol. Chem. 2021, 62, 153–158. Available online: https://koreascience.kr/article/JAKO202120461840878.pd (accessed on 21 June 2022). [CrossRef]
- Kim, S.-Y.; Shrestha, B.; Sung, G.-H.; Han, S.-K.; Sung, J.-M. Optimum Conditions for Artificial Fruiting Body Formation of Cordyceps cardinalis. Mycobiology 2010, 38, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.Y.; Song, B.; Huang, H.; Li, T.H. Optimization of selected cultivation parameters for Cordyceps guangdongensis. Lett. Appl. Microbiol. 2010, 51, 219–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, T.-C.; Kang, J.-C.; Li, G.-R. Effects of Different Solid Culture Condition on Fruit Body and Cordycepin Output of Cordyceps militaris. Guizhou Agric. Sci. 2008, 36, 92–94. [Google Scholar]
- Shen, Z.; Zhang, J.; Hou, D.; Tsang, D.C.W.; Ok, Y.S.; Alessi, D.S. Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. Environ. Int. 2019, 122, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Hur, H. Chemical analysis of C. militaris. Mycobiology 2008, 36, 233–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, H.-P.; Ye, X.-L.; Zhang, H.-Y.; Li, X.-G. Investigations on cordycepin production by solid culture of Cordyceps militaris. China J. Chinese Mater. Medica 2008, 33, 2159–2162. [Google Scholar]
- Chen, Z.-H.; Yu, H.; Zeng, W.-B.; Yang, J.-Y.; Yang, Z.-L.; Yuan, J. Study on Optimizing the Solid Fermentation Condition of Paecilomyces militaris. Edible Fungi of China 2009, 28, 45–47. [Google Scholar]
- Ha, S.Y.; Jung, J.Y.; Yang, J. Optimization of Monochamus alternatus media and culture period for cordycepin production in Cordyceps militaris culture using solid-state fermentation. J. Mushroom 2021, 19, 126–133. [Google Scholar]
- Chao, S.C.; Chang, S.L.; Lo, H.C.; Hsu, W.K.; Lin, Y.T.; Hsu, T.H. Enhanced production of fruiting body and bioactive ingredients of cordyceps militaris with led light illumination optimization. J. Agric. Sci. Technol. 2019, 21, 451–462. [Google Scholar]
Chemical Compositions | Unit | Biochar |
---|---|---|
C | %wt | 80.60 ± 0.38 |
H | %wt | 2.08 ± 0.01 |
N | %wt | 0.58 ± 0.01 |
S | %wt | 0.01 ± 0.00 |
O | %wt | 6.72 ± 0.27 |
Volatile | %wt | 10.94 ± 0.41 |
Fixed carbon | %wt | 76.43 ± 0.43 |
Ash | %wt | 5.02 ± 0.07 |
TOC | g kg−1 | 700.06 |
Condition | Cordycepin Content (mg/g) | Adenosine Content (mg/g) |
---|---|---|
Rice berry + 0.1 g biochar | 11.73 | 0.55 |
Rice berry + 0.3 g biochar | 11.08 | 0.49 |
Rice berry + 0.5 g biochar | 12.4 | 0.43 |
Rice berry + 1 g biochar | 14.19 | 0.45 |
Rice berry + 5 g biochar | 14.24 | 0.43 |
Rice berry + 10 g biochar | 20.05 | 0.44 |
Control | 10.17 | 0.45 |
No. | Strain | Fruit Bodies Weight (g) | Cordycepin in Fruit Bodies (mg/g) | Cordycepin in Medium (mg/g) | Cultivation Time (days) | Reference |
---|---|---|---|---|---|---|
1 | C. militaris | 8.14 | 50 | [1] | ||
2 | C. militaris CM-2 | 5.49 | 35 | [5] | ||
3 | C. militaris CM016 | 18.92 | 39 | [5] | ||
4 | C. militaris | 9.7 | [35] | |||
5 | C. militaris C-10376 | 12.9 | 60 | [31] | ||
6 | C. militaris 067 | 1.35 | 18.7 | 2.1 | 70 | [33] |
7 | C. militaris | 4.6 | 57–60 | [32] | ||
8 | C. militaris | 5.57 | 50 | [31] | ||
9 | C. militaris JF-1 | 6.0 | 13 | [36] | ||
10 | C. militaris cmily-02 | 1.85 | 16 | [37] | ||
11 | C. militaris | 52.8 | 0.082 | 0.135 | 21 | [38] |
12 | C. militaris | 2.11 | 15.63 | 23.17 | 33 | [39] |
13 | C. militaris P-1-012 | 3.685 | 20.05 | 50 | In this study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phoungthong, K.; Aiphuk, W.; Maneerat, T.; Suwunwong, T.; Choto, P.; Chomnunti, P. Utilization of Corncob Biochar in Cultivation Media for Cordycepin Production and Biomass of Cordyceps militaris. Sustainability 2022, 14, 9362. https://doi.org/10.3390/su14159362
Phoungthong K, Aiphuk W, Maneerat T, Suwunwong T, Choto P, Chomnunti P. Utilization of Corncob Biochar in Cultivation Media for Cordycepin Production and Biomass of Cordyceps militaris. Sustainability. 2022; 14(15):9362. https://doi.org/10.3390/su14159362
Chicago/Turabian StylePhoungthong, Khamphe, Waraporn Aiphuk, Tharakorn Maneerat, Thitipone Suwunwong, Patcharanan Choto, and Putarak Chomnunti. 2022. "Utilization of Corncob Biochar in Cultivation Media for Cordycepin Production and Biomass of Cordyceps militaris" Sustainability 14, no. 15: 9362. https://doi.org/10.3390/su14159362