Towards Sustainable Agricultural Development for Edible Beans in China: Evidence from 848 Households
Abstract
:1. Introduction
2. Literature Review
3. Data and Methodology
3.1. Survey Design and Data Collection
3.2. Empirical Model
4. Results and Discussion
4.1. Descriptive Statistics of the Sample
4.2. Impacts of Weather on Farmers’ Planting Behavior
4.3. Impacts of Market on Farmers’ Planting Behavior
4.4. Impacts of Household and Individual Characteristics on Farmers’ Planting Behavior
5. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Agricultural Development |
M | Mean |
MIN | Minimum |
MB | Mung bean |
OLS | Ordinary Least Squares |
ICC | Intra-Class Correlation Coefficient |
AIC | Akaike Information Criterion |
CSM | Cluster Sampling Method |
EB | Edible bean |
S.E | Standard Error |
MIX | Maximum |
ML | Maximum Likelihood |
REML | Restricted Maximum Likelihood |
BB | Broad bean |
χ2 | Chi-Square |
N | Number of Samples |
References
- Fang, C.; Wang, Z.; Liu, H. Beautiful China Initiative: Human-nature harmony theory, evaluation index system and application. J. Geogr. Sci. 2020, 30, 691–704. [Google Scholar] [CrossRef]
- Xu, B.; Chen, W.; Zhang, G.; Wang, J.; Ping, W.; Luo, L.; Chen, J. How to achieve green growth in China’s agricultural sector. J. Clean. Prod. 2020, 271, 122770. [Google Scholar] [CrossRef]
- Lange, L.; Connor, K.O.; Arason, S.; Bundgård-Jørgensen, U.; Canalis, A.; Carrez, D.; Gallagher, J.; Gøtke, N.; Huyghe, C.; Jarry, B. Developing a sustainable and circular bio-based economy in EU: By partnering across sectors, upscaling and using new knowledge faster, and for the benefit of climate, environment & biodiversity, and people & business. Front. Bioeng. Biotechnol. 2021, 8, 619066. [Google Scholar] [PubMed]
- Charrua, A.B.; Havik, P.J.; Bandeira, S.; Catarino, L.; Ribeiro-Barros, A.; Cabral, P.; Moldão, M.; Romeiras, M.M. Food security and nutrition in mozambique: Comparative study with bean species commercialised in informal markets. Sustainability 2021, 13, 8839. [Google Scholar] [CrossRef]
- Li, L.; Yang, T.; Liu, R.; Redden, B.; Maalouf, F.; Zong, X. Food legume production in China. Crop J. 2017, 5, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Mahe, L.; Li, Y.; Wei, X.; Deng, X.; Zhang, D. Benefits of Crop Rotation on Climate Resilience and Its Prospects in China. Agronomy 2022, 12, 436. [Google Scholar] [CrossRef]
- Weber, M.T.; Staatz, J.M.; Holtzman, J.S.; Crawford, E.W.; Bernsten, R.H. Informing food security decisions in Africa: Empirical analysis and policy dialogue. Am. J. Agric. Econ. 1988, 70, 1044–1052. [Google Scholar] [CrossRef]
- Tankari, M.R. Cash crops reduce the welfare of farm households in Senegal. Food Secur. 2017, 9, 1105–1115. [Google Scholar] [CrossRef]
- Huang, C. Research on China’s path of development-oriented poverty reduction: Review and prospect. China Agric. Univ. J. Soc. Sci. Ed. 2016, 33, 5–17. [Google Scholar]
- Yu, F.; Chen, L. Interactive Development-oriented Poverty Reduction Model for Bijie Experimental Region under the Guidance of Scientific Outlook on Development. Asian Agric. Res. 2013, 5, 21. [Google Scholar]
- Christiaensen, L.J.; Demery, L.; Khl, J. The Role of Agriculture in Poverty Reduction: An Empirical Perspective; World Bank Publications: Washington, DC, USA, 2006; Volume 4013. [Google Scholar]
- Kennedy, E.; Bouis, H.; Von Braun, J. Health and nutrition effects of cash crop production in developing countries: A comparative analysis. Soc. Sci. Med. 1992, 35, 689–697. [Google Scholar] [CrossRef]
- Finnis, E. Why grow cash crops? Subsistence farming and crop commercialization in the Kolli Hills, South India. American Anthropologist 2006, 108, 363–369. [Google Scholar] [CrossRef]
- Masanjala, W.H. Cash crop liberalization and poverty alleviation in Africa: Evidence from Malawi. Agric. Econ. 2006, 35, 231–240. [Google Scholar] [CrossRef]
- Nguyen, C.V. Measuring the impact of cash crops on household expenditure and poverty in rural Viet Nam. Asia-Pac. Dev. J. 2012, 16, 87–112. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Ma, J.; Zhang, L.; Sun, Z.; Zhao, Z.; Khan, N. Does Adoption of Honeybee Pollination Promote the Economic Value of Kiwifruit Farmers? Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 8305. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Zhang, S.; Osabuohien, E.; Ihtisham, M. Influence of mobile phone and internet technology on income of rural farmers: Evidence from Khyber Pakhtunkhwa Province, Pakistan. Technol. Soc. 2022, 68, 101866. [Google Scholar] [CrossRef]
- Barbieri, P.; Pellerin, S.; Nesme, T. Comparing crop rotations between organic and conventional farming. Sci. Rep. 2017, 7, 13761. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Ray, R.L.; Kassem, H.S.; Hussain, S.; Zhang, S.; Khayyam, M.; Ihtisham, M.; Asongu, S.A. Potential role of technology innovation in transformation of sustainable food systems: A review. Agriculture 2021, 11, 984. [Google Scholar] [CrossRef]
- Poulton, C.; Tyler, G.; Hazell, P.; Dorward, A.; Kydd, J.; Stockbridge, M. All-Africa review of experiences with commercial agriculture. In Background Paper for the Competitive Commercial Agriculture in Sub-Saharan Africa (CCAA) Study; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Irz, X.; Lin, L.; Thirtle, C.; Wiggins, S. Agricultural productivity growth and poverty alleviation. Dev. Policy Rev. 2001, 19, 449–466. [Google Scholar] [CrossRef]
- Govereh, J.; Jayne, T.S. Cash cropping and food crop productivity: Synergies or trade-offs? Agric. Econ. 2003, 28, 39–50. [Google Scholar] [CrossRef]
- Meng, L.; Christopher, G.; Wanglin, M.; Jiang, W. Impact of cash crop cultivation on household income and migration decisions: Evidence from low-income regions in China. J. Integr. Agric. 2020, 19, 2571–2581. [Google Scholar]
- Khan, N.; Ray, R.L.; Kassem, H.S.; Ihtisham, M.; Siddiqui, B.N.; Zhang, S. Can Cooperative Supports and Adoption of Improved Technologies Help Increase Agricultural Income? Evidence from a Recent Study. Land 2022, 11, 361. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M.; Khayyam, M.; Ismail, S. Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustainability 2021, 13, 4883. [Google Scholar] [CrossRef]
- Orr, A. ‘Green Gold’? Burley tobacco, smallholder agriculture, and poverty alleviation in Malawi. World Dev. 2000, 28, 347–363. [Google Scholar] [CrossRef]
- Kuma, T.; Dereje, M.; Hirvonen, K.; Minten, B. Cash crops and food security: Evidence from Ethiopian smallholder coffee producers. J. Dev. Stud. 2019, 55, 1267–1284. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Wang, Z.; Liu, Y.; Yu, F. Rural households’ livelihood responses to industry-based poverty alleviation as a sustainable route out of poverty. Reg. Sustain. 2020, 1, 68–81. [Google Scholar] [CrossRef]
- Liu, M.-Y.; Feng, X.-L.; Wang, S.-G.; Zhong, Y. Does poverty-alleviation-based industry development improve farmers’ livelihood capital? J. Integr. Agric. 2021, 20, 915–926. [Google Scholar] [CrossRef]
- Su, S.; Zhou, X.; Wan, C.; Li, Y.; Kong, W. Land use changes to cash crop plantations: Crop types, multilevel determinants and policy implications. Land Use Policy 2016, 50, 379–389. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Jin, X.; Chen, J.; Zhang, S.; He, Z.; Li, S.; He, Z.; Zhang, H.; Xiao, H. Exploring the socioeconomic and ecological consequences of cash crop cultivation for policy implications. Land Use Policy 2018, 76, 46–57. [Google Scholar] [CrossRef]
- Lei, Z.; Yingyu, H.; Changling, Z.; Wei, L.; Liang, H.; Anhong, G.; Lu, C. The construction and application of assessing index to crop growing condition. J. Appli. Meteor. 2019, 30, 543–554. [Google Scholar]
- Jones, S.; Gibbon, P. Developing agricultural markets in Sub-Saharan Africa: Organic cocoa in rural Uganda. J. Dev. Stud. 2011, 47, 1595–1618. [Google Scholar] [CrossRef]
- Mtambanengwe, F.; Mapfumo, P.; Chikowo, R.; Chamboko, T. Climate change and variability: Smallholder farming communities in Zimbabwe portray a varied understanding. Afr. Crop Sci. J. 2012, 20, 227–241. [Google Scholar]
- Ajuang, C.O.; Abuom, P.O.; Bosire, E.K.; Dida, G.O.; Anyona, D.N. Determinants of climate change awareness level in upper Nyakach Division, Kisumu County, Kenya. SpringerPlus 2016, 5, 1015. [Google Scholar] [CrossRef] [Green Version]
- Fosu-Mensah, B.Y.; Vlek, P.L.; MacCarthy, D.S. Farmers’ perception and adaptation to climate change: A case study of Sekyedumase district in Ghana. Environ. Dev. Sustain. 2012, 14, 495–505. [Google Scholar] [CrossRef]
- Quiggin, J.; Adamson, D.; Chambers, S.; Schrobback, P. Climate change, uncertainty, and adaptation: The case of irrigated agriculture in the Murray–Darling Basin in Australia. Can. J. Agric. Econ. Rev. Can. D’agroeconomie 2010, 58, 531–554. [Google Scholar] [CrossRef] [Green Version]
- Asrat, P.; Simane, B. Farmers’ perception of climate change and adaptation strategies in the Dabus watershed, North-West Ethiopia. Ecol. Processes 2018, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Ojo, T.; Baiyegunhi, L. Climate change perception and its impact on net farm income of smallholder rice farmers in South-West, Nigeria. J. Clean. Prod. 2021, 310, 127373. [Google Scholar] [CrossRef]
- Maddison, D. The Perception of and Adaptation to Climate Change in Africa; World Bank Publications: Washington, DC, USA, 2007; Volume 4308. [Google Scholar]
- Hassan, R.M.; Nhemachena, C. Determinants of African farmers’ strategies for adapting to climate change: Multinomial choice analysis. Afr. J. Agric. Resour. Econ. 2008, 2, 83–104. [Google Scholar]
- Idrisa, Y.; Ogunbameru, B.; Ibrahim, A.; Bawa, D. Analysis of awareness and adaptation to climate change among farmers in the Sahel Savannah agro-ecological zone of Borno State, Nigeria. Int. J. Environ. Clim. Chang. 2012, 2, 216–226. [Google Scholar] [CrossRef]
- Huong, N.T.L.; Yao, S.; Fahad, S. Assessing household livelihood vulnerability to climate change: The case of Northwest Vietnam. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1157–1175. [Google Scholar] [CrossRef]
- Fahad, S.; Wang, J. Climate change, vulnerability, and its impacts in rural Pakistan: A review. Environ. Sci. Pollut. Res. 2020, 27, 1334–1338. [Google Scholar] [CrossRef]
- Fierros-Gonzalez, I.; Lopez-Feldman, A. Farmers’ perception of climate change: A review of the literature for Latin America. Front. Environ. Sci. 2021, 9, 205. [Google Scholar] [CrossRef]
- Grosh, M.; Glewwe, P. Designing Household Survey Questionnaires for Developing Countries; World Bank: Washington, DC, USA, 2000. [Google Scholar]
- Uyanık, G.K.; Güler, N. A study on multiple linear regression analysis. Procedia-Soc. Behav. Sci. 2013, 106, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Rabe-Hesketh, S.; Skrondal, A. Multilevel modelling of complex survey data. J. R. Stat. Soc. Ser. A (Stat. Soc.) 2006, 169, 805–827. [Google Scholar] [CrossRef]
- Reidsma, P.; Oude Lansink, A.; Ewert, F. Economic impacts of climatic variability and subsidies on European agriculture and observed adaptation strategies. Mitig. Adapt. Strateg. Glob. Chang. 2009, 14, 35–59. [Google Scholar] [CrossRef] [Green Version]
- Raudenbush, S.W.; Bryk, A.S. Hierarchical Linear Models: Applications and Data Analysis Methods; Sage: Thousand Oaks, CA, USA, 2002; Volume 1. [Google Scholar]
- Skrondal, A.; Rabe-Hesketh, S. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models; Chapman and Hall/CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Peng, L.; Zhou, X.; Tan, W.; Liu, J.; Wang, Y. Analysis of dispersed farmers’ willingness to grow grain and main influential factors based on the structural equation model. J. Rural. Stud. 2020, 93, 375–385. [Google Scholar] [CrossRef]
- Bergtold, J.S.; Fewell, J.E.; Duffy, P.A. Farmers’ Willingness to Grow Cover Crops: Examining the Economic Factors of Adoption in Alabama; Agricultural and Applied Economics Association: Denver, CO, USA, 2010. [Google Scholar]
- Zheng, S.; Wang, Z.; Song, S. Farmers’ behaviors and performance in cooperatives in Jilin Province of China: A case study. Soc. Sci. J. 2011, 48, 449–457. [Google Scholar] [CrossRef]
- Han, H.-Y.; Zhao, L.-G. Farmers’ character and behavior of fertilizer application-evidence from a survey of Xinxiang County, Henan Province, China. Agric. Sci. China 2009, 8, 1238–1245. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, C.; Gu, H.; Yue, C. Market incentive, government regulation and the behavior of pesticide application of vegetable farmers in China. Food Control 2018, 85, 308–317. [Google Scholar] [CrossRef]
- Bagheri, A.; Emami, N.; Damalas, C.A. Farmers’ behavior towards safe pesticide handling: An analysis with the theory of planned behavior. Sci. Total Environ. 2021, 751, 141709. [Google Scholar] [CrossRef]
- Jallow, M.F.; Awadh, D.G.; Albaho, M.S.; Devi, V.Y.; Thomas, B.M. Pesticide risk behaviors and factors influencing pesticide use among farmers in Kuwait. Sci. Total Environ. 2017, 574, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Damalas, C.A. Farmers’ intention to reduce pesticide use: The role of perceived risk of loss in the model of the planned behavior theory. Environ. Sci. Pollut. Res. 2021, 28, 35278–35285. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tan, Z.; Sun, G. The impact of climate change on the potential suitable distribution of major crops in Zambia and the Countermeasures. In Proceedings of the International Conference on Computer and Computing Technologies in Agriculture; (CCTA), 16–19 September 2014, Beijing, China. pp. 460–472.
- Yi, F.; Sun, D.; Zhou, Y. Grain subsidy, liquidity constraints and food security—Impact of the grain subsidy program on the grain-sown areas in China. Food Policy 2015, 50, 114–124. [Google Scholar] [CrossRef]
- Ma, J.; Maystadt, J.-F. The impact of weather variations on maize yields and household income: Income diversification as adaptation in rural China. Glob. Environ. Chang. 2017, 42, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yang, P.; Tang, H.; Wu, W.; Zhang, L.; Yu, Q.; Li, Z. Shifts in the extent and location of rice cropping areas match the climate change pattern in China during 1980–2010. Reg. Environ. Chang. 2015, 15, 919–929. [Google Scholar] [CrossRef]
- Cui, X. Climate change and adaptation in agriculture: Evidence from US cropping patterns. J. Environ. Econ. Manag. 2020, 101, 102306. [Google Scholar] [CrossRef]
- Song, C.-X.; Liu, R.-F.; Oxley, L. Do farmers care about climate change? Evidence from five major grain producing areas of China. J. Integr. Agric. 2019, 18, 1402–1414. [Google Scholar] [CrossRef]
- Dorward, A.; Chirwa, E. The Malawi agricultural input subsidy programme: 2005/06 to 2008/09. Int. J. Agric. Sustain. 2011, 9, 232–247. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Feder, G.; Umali, D.L. The adoption of agricultural innovations: A review. Technol. Forecast. Soc. Chang. 1993, 43, 215–239. [Google Scholar] [CrossRef]
- Ortega, D.L.; Waldman, K.B.; Richardson, R.B.; Clay, D.C.; Snapp, S. Sustainable intensification and farmer preferences for crop system attributes: Evidence from Malawi’s central and southern regions. World Dev. 2016, 87, 139–151. [Google Scholar] [CrossRef]
- Paulrud, S.; Laitila, T. Farmers’ attitudes about growing energy crops: A choice experiment approach. Biomass Bioenergy 2010, 34, 1770–1779. [Google Scholar] [CrossRef]
- Embaye, W.T.; Bergtold, J.S.; Archer, D.; Flora, C.; Andrango, G.C.; Odening, M.; Buysse, J. Examining farmers’ willingness to grow and allocate land for oilseed crops for biofuel production. Energy Econ. 2018, 71, 311–320. [Google Scholar] [CrossRef]
- Nkonya, E.; Schroeder, T.; Norman, D. Factors affecting adoption of improved maize seed and fertiliser in northern Tanzania. J. Agric. Econ. 1997, 48, 1–12. [Google Scholar] [CrossRef]
- McCord, P.F.; Cox, M.; Schmitt-Harsh, M.; Evans, T. Crop diversification as a smallholder livelihood strategy within semi-arid agricultural systems near Mount Kenya. Land Use Policy 2015, 42, 738–750. [Google Scholar] [CrossRef]
- Maas, C.J.; Hox, J.J. Sufficient sample sizes for multilevel modeling. Methodol. Eur. J. Res. Methods Behav. Soc. Sci. 2005, 1, 86. [Google Scholar]
- Vallejo, G.; Tuero-Herrero, E.; Núñez, J.C.; Rosário, P. Performance evaluation of recent information criteria for selecting multilevel models in behavioral and social sciences. Int. J. Clin. Health Psychol. 2014, 14, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Pataczek, L.; Zahir, Z.A.; Ahmad, M.; Rani, S.; Nair, R.; Schafleitner, R.; Cadisch, G.; Hilger, T. Beans with benefits—the role of Mungbean (Vigna radiate) in a changing environment. Am. J. Plant Sci. 2018, 9, 1577. [Google Scholar] [CrossRef] [Green Version]
- Poehlman, J.M. The Mungbean; Oxford & IBH: Oxford, UK, 1991. [Google Scholar]
- Wheeler, T.R.; Craufurd, P.Q.; Ellis, R.H.; Porter, J.R.; Prasad, P.V. Temperature variability and the yield of annual crops. Agric. Ecosyst. Environ. 2000, 82, 159–167. [Google Scholar] [CrossRef]
- Mani, J.; Abdullahi, A.; Ibrahim, L.; Yusuf, M. Supply response analysis of millet in funakaye local government area of Gombe state, Nigeria: A profit function approach. J. Agric. Environ. 2019, 15, 7–17. [Google Scholar]
Prefecture | Geographical Location | County/City | No. of Households | Share (%) |
---|---|---|---|---|
Dali | Belongs to Yunnan Province, located in the central and western part of China | Dali | 106 | 12.5 |
Erdu | 103 | 12.1 | ||
Midu | 94 | 11.1 | ||
Xiangyun | 85 | 10.0 | ||
Subtotal | 388 | 45.8 | ||
Baicheng | Belongs to Jilin Province, located in northeast China | Da’an | 30 | 3.5 |
Tiaobei | 41 | 4.8 | ||
Tiaonan | 146 | 17.2 | ||
Tongyu | 178 | 21.0 | ||
Zhenglai | 65 | 7.7 | ||
Subtotal | 460 | 54.2 | ||
Total | 848 | 100.0 |
Category | Variable | Unit | Mung Bean | Broad Bean | ||||||
---|---|---|---|---|---|---|---|---|---|---|
M | S.E | Min. | Max. | M | S.E | Min. | Max. | |||
Dependent Variable | Share of edible bean planting area | % | 0.38 | 0.25 | 0.01 | 1.00 | 0.59 | 0.32 | 0.01 | 1.00 |
Level 1: County/City Level | ||||||||||
Weather | Lowest temperature | °C | −6.06 | 1.37 | −8.50 | −4.50 | 7.83 | 2.13 | 4.50 | 11.50 |
Highest temperature | °C | 27.90 | 0.98 | 26.70 | 29.30 | 24.45 | 0.59 | 23.70 | 25.20 | |
Average rainfall | mm | 0.46 | 0.50 | 0 | 1.70 | 72.21 | 50.84 | 9.60 | 144.8 | |
Level 2: Household Level | ||||||||||
Market | Output price of last year | US$/kg | 0.94 | 0.06 | 0.82 | 1.11 | 0.57 | 0.11 | 0.43 | 0.87 |
Average cost | 1000 US$/ha | 0.63 | 0.53 | 0.05 | 3.83 | 1.13 | 0.73 | 0.02 | 3.89 | |
Household | Household size | 3.46 | 1.14 | 1.00 | 8.00 | 5.01 | 1.44 | 2.00 | 10.00 | |
Share of irrigated planting area | % | 0.38 | 0.38 | 0 | 1.00 | 0.78 | 0.32 | 0 | 1.00 | |
Wage share in total income | % | 0.05 | 0.14 | 0 | 0.91 | 0.46 | 0.36 | 0 | 1.27 | |
Individual | Age | Years | 48.27 | 9.57 | 21.00 | 74.00 | 52.23 | 9.35 | 29.00 | 87.00 |
Education | Years | 7.96 | 2.36 | 0 | 12.00 | 8.60 | 2.31 | 0 | 12.00 |
Category | Variable | Mung Bean | Broad Bean | ||
---|---|---|---|---|---|
ML | REML | ML | REML | ||
Fixed Effects | |||||
Weather | Lowest temperature | 0.033 ** | 0.031 * | 0.013 | 0.005 |
(0.016) | (0.018) | (0.041) | (0.042) | ||
Highest temperature | 0.02 | 0.021 | −0.043 * | −0.044 * | |
(0.015) | (0.016) | (0.023) | (0.027) | ||
Average rainfall | −0.070 ** | −0.064 * | −0.001 | −0.001 | |
(0.033) | (0.037) | (0.001) | (0.001) | ||
Market | Output price | 0.069 ** | 0.067 * | −0.076 | −0.083 |
(0.033) | (0.037) | (0.061) | (0.069) | ||
Average cost | −0.177 *** | −0.178 *** | −0.088 ** | −0.089 ** | |
(0.042) | (0.043) | (0.041) | (0.041) | ||
Household | Household size | −0.041 *** | −0.042 *** | −0.001 | −0.002 |
(0.010) | (0.010) | (0.010) | (0.010) | ||
Share of irrigated planting area | −0.048 * | −0.047 * | 0.149 *** | 0.144 *** | |
(0.027) | (0.028) | (0.048) | (0.048) | ||
Wage share in total income | 0.054 | 0.056 | 0.156 *** | 0.156 *** | |
(0.073) | (0.074) | (0.039) | (0.039) | ||
Individual | Age | 0.003 ** | 0.003 ** | 0.001 | 0.001 |
(0.001) | (0.001) | (0.002) | (0.002) | ||
Education | −0.002 | −0.002 | 0.001 | 0.001 | |
(0.004) | (0.005) | (0.006) | (0.007) | ||
Constant | −0.755 | −0.693 | 0.695 | 0.931 | |
(0.522) | (0.567) | (1.126) | (1.180) | ||
Random Effects | |||||
Level 2 Error | 0.046 | 0.047 | 0.067 | 0.069 | |
(0.003) | (0.003) | (0.005) | (0.005) | ||
Level 1 Error | 0.001 | 0.002 | 0.021 | 0.029 | |
(0.001) | (.001) | (0.010) | (0.016) | ||
ICC | 0.132 | 0.142 | 0.304 | 0.327 | |
Observations | 460 | 460 | 388 | 388 | |
Chi-square | 118.804 *** | 107.193 *** | 40.395 *** | 38.189 *** | |
AIC | −73.258 | 12.796 | 106.676 | 193.105 |
Category | Variable | Mung Bean | Broad Bean |
---|---|---|---|
Weather | Lowest temperature | 1.473 | −1.777 * |
Highest temperature | 0.528 ** | 0.172 | |
Average rainfall | −0.085 ** | −0.122 | |
Market | Output price | 1.182 ** | −0.506 |
Average cost | −0.137 *** | −0.078 ** | |
Household | Household size | −0.374 *** | −0.008 |
Share of irrigated planting area | −0.048 * | 0.197 *** | |
Wage share in total income | 0.008 | 0.121 *** | |
Individual | Household head age | 0.382 ** | 0.088 |
Household head education | −0.042 | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Qu, J.; Khan, N.; Zhang, H. Towards Sustainable Agricultural Development for Edible Beans in China: Evidence from 848 Households. Sustainability 2022, 14, 9328. https://doi.org/10.3390/su14159328
Ma J, Qu J, Khan N, Zhang H. Towards Sustainable Agricultural Development for Edible Beans in China: Evidence from 848 Households. Sustainability. 2022; 14(15):9328. https://doi.org/10.3390/su14159328
Chicago/Turabian StyleMa, Jiliang, Jiajia Qu, Nawab Khan, and Huijie Zhang. 2022. "Towards Sustainable Agricultural Development for Edible Beans in China: Evidence from 848 Households" Sustainability 14, no. 15: 9328. https://doi.org/10.3390/su14159328