Water Environment Quality Evaluation and Pollutant Source Analysis in Tuojiang River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Data Sources
2.2. Major Pollutant Identification
2.3. Grey Water Footprint
2.4. Water Environment Decoupling Theory
2.5. Correlation Analysis Method
3. Results and Discussion
3.1. Water Environment Quality Evaluation
3.1.1. Distribution and Proportion of Grey Water Footprint
3.1.2. Decoupling of Economy and Water Environment
3.2. Pollution Source Analysis of River
3.2.1. Distribution Characteristics of Pollutants in Sections
3.2.2. Relationship of Pollutants between Sections
3.2.3. Correlation Analysis between Pollutants and Industry Indicators
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, Y.; Sun, C. Comprehensive carrying capacity, economic growth and the sustainable development of urban areas: A case study of the Yangtze River economic belt. J. Clean. Prod. 2018, 195, 486–496. [Google Scholar] [CrossRef]
- Que, S.S.; Luo, H.Y.; Wang, L.; Zhou, W.Q.; Yuan, S.C. Canonical correlation study on the relationship between shipping development and water environment of the Yangtze River. Sustainability 2020, 12, 3279. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.S.; Zhang, S.H.; Huang, D.S.; Li, B.L.; Liu, J.G.; Liu, W.J.; Ma, J.; Wang, F.; Wang, Y.; Wu, S.J.; et al. The development of China’s Yangtze River Economic Belt: How to make it in a green way? Sci. Bull. 2017, 62, 648–651. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.D.; Bai, L.; Qiao, Q.; Zhang, Y. Anthropogenic total phosphorus emissions to the Tuojiang River Basin, China. J. Clean. Prod. 2021, 294, 126325. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Jin, X.; Cao, H.M.; Zhao, Y.; Shan, B.Q. Water quality in representative Tuojiang river network in southwest China. Water 2018, 10, 864. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.Y.; Wang, Q.G.; Zhang, J.; Li, Q.S.; Wang, Y.Q.; Wang, M.J.; Huang, X. Distribution and characteristics of microplastics in urban waters of seven cities in the Tuojiang River basin, China. Environ. Res. 2020, 189, 109893. [Google Scholar] [CrossRef]
- Kumar, V.; Parihar, R.D.; Sharma, A.; Bakshi, P.; Sidhu, G.P.S.; Bali, A.S.; Karaouzas, L.; Bhardwaj, R.; Thukral, A.K.; Gyasi-Agyei, Y.; et al. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.Z.; Liu, Y.B.; Liu, C.H.; Zhao, W.B.; Hao, N.X.; Guo, W.; Yuan, J.H.; Zhao, J.J. Water quality characteristics, sources, and assessment of surface water in an industrial mining city, southwest of China. Environ. Monit. Assess. 2022, 194, 259. [Google Scholar] [CrossRef]
- Maier, H.R.; Dandy, G.C. Neural networks for the prediction and forecasting of water resources variables a review of modelling issues and applications. Environ. Modell. Softw. 2000, 15, 101–124. [Google Scholar] [CrossRef]
- Jang, D.; Choi, G. Estimation of Non-Revenue Water Ratio for Sustainable Management Using Artificial Neural Network and Z-Score in Incheon, Republic of Korea. Sustainability 2017, 9, 1933. [Google Scholar] [CrossRef] [Green Version]
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Xia, X.H.; Zhang, X.; Yang, Z.F.; Shen, Z.Y.; Dong, L.I. Integrated water quality and quantity evaluation of the Yellow River. J. Nat. Resour. 2004, 19, 293–299. [Google Scholar] [CrossRef]
- Wang, X.Q.; Liu, C.M.; Zhang, Y. Water quantity/quality combined evaluation method for rivers’ water requirements of the instream environmental flow in dualistic water cycle: A case study of Liaohe river basin. J. Geogr. Sci. 2007, 3, 304–316. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Nat. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar]
- Ansorge, L.; Stejskalová, L.; Dlabal, J. Grey water footprint as a tool for implementing the Water Framework Directive-Temelín nuclear power station. J. Clean. Prod. 2020, 263, 121541. [Google Scholar] [CrossRef]
- Miglietta, P.P.; Toma, P.; Fanizzi, F.P.; De Donno, A.; Coluccia, B.; Migoni, D.; Bagordo, F.; Serio, F. A Grey Water Footprint Assessment of Groundwater Chemical Pollution: Case Study in Salento (Southern Italy). Sustainability 2017, 9, 799. [Google Scholar]
- Allocca, V.; Marzano, E.; Tramontano, M.; Celico, F. Environmental impact of cattle grazing on a karst aquifer in the southern Apennines (Italy): Quantification through the grey water footprint. Ecol. Indic. 2018, 93, 830–837. [Google Scholar]
- Hu, Y.C.; Huang, Y.F.; Tang, J.X.; Gao, B.; Yang, M.H. Evaluating agricultural grey water footprint with modeled nitrogen emission data. Resour. Conserv. Recycl. 2018, 138, 64–73. [Google Scholar]
- Muratoglu, A. Grey water footprint of agricultural production: An assessment based on nitrogen surplus and high-resolution leaching runoff fractions in Turkey. Sci. Total Environ. 2020, 742, 140553. [Google Scholar] [PubMed]
- Zhao, D.D.; Tang, Y.; Liu, J.G.; Tillotson, M.R. Water footprint of Jing-Jin-Ji urban agglomeration in China. J. Clean. Prod. 2017, 167, 919–928. [Google Scholar]
- Johnson, M.B.; Mehrvar, M. An assessment of the grey water footprint of winery wastewater in the Niagara region of Ontario, Canada. J. Clean. Prod. 2019, 214, 623–632. [Google Scholar] [CrossRef]
- Ma, X.T.; Yang, D.L.; Shen, X.X.; Zhai, Y.J.; Zhang, R.R.; Hong, J.L. How much water is required for coal power generation: An analysis of gray and blue water footprints. Sci. Total Environ. 2018, 636, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Alcala, I.; Pellicer-Martinez, F.; Fernandez-Lopez, C. Pharmaceutical grey water footprint: Accounting, influence of wastewater treatment plants and implications of the reuse. Water Res. 2018, 135, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Liu, B.; Zhang, B. Evolution of Chinese urban household’s water footprint. J. Clean. Prod. 2019, 208, 1–10. [Google Scholar] [CrossRef]
- Chukalla, A.D.; Krol, M.S.; Hoekstra, A.Y. Trade-off between blue and grey water footprint of crop production at different nitrogen application rates under various field management practices. Sci. Total Environ. 2018, 626, 962–970. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water. Environ. Sci. Technol. 2015, 49, 12860–12868. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Lutter, S.; Martinez, A. Anthropogenic nitrogen and phosphorus emissions and related grey water footprints caused by EU-27′s crop production and consumption. Water 2016, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, S.; Pandey, V.P.; Chanamai, C.; Ghosh, D.K. Green, blue and grey water footprints of primary crops production in Nepal. Water Resour. Manag. 2014, 27, 5223–5243. [Google Scholar] [CrossRef]
- Wan, L.Y.; Cai, W.J.; Jiang, Y.K.; Wang, C. Impacts on quality-induced water scarcity: Drivers of nitrogen-related water pollution transfer under globalization from 1995 to 2009. Environ. Res. Lett. 2016, 11, 074017. [Google Scholar] [CrossRef]
- Li, H.; Liu, G.Y.; Yang, Z.F. Improved gray water footprint calculation method based on a mass-balance model and on fuzzy synthetic evaluation. J. Clean. Prod. 2019, 219, 377–390. [Google Scholar] [CrossRef]
- Feng, H.; Sun, F.; Liu, Y.; Zeng, P.; Che, Y. Mapping multiple water pollutants across China using the grey water footprint. Sci. Total Environ. 2021, 785, 147255. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.X.; Wang, A.Z.; Chen, L.F.; Chen, J.W.; Zhang, X.X.; Zhao, R.Q.; Zhang, C.C. Study on the decoupling relationship between the economic development and water environment in Henan province based on the grey water footprint theory. Innov. Sci. Technol. 2018, 18, 32–36. [Google Scholar]
- Lertpaitoonpan, W.; Ong, S.; Moorman, T. Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere 2009, 76, 558–564. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, J.; Jiang, B.; Han, J.; Chen, M. Experimental study on the mechanism of water-rock interaction in the coal mine underground reservoir. Meitan Xuebao 2019, 44, 3760–3772. [Google Scholar]
- Guo, Y.Z.; Wang, X.Y.; Zhou, L.; Melching, C.; Li, Z.Q. Identification of Critical Source Areas of Nitrogen Load in the Miyun Reservoir Watershed under Different Hydrological Conditions. Sustainability 2020, 12, 964. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Li, X.N.; Song, Z.Y.; Yan, J.Y.; Chen, M.Y.; Yin, J.C. Human health risk distribution and safety threshold of Cadmium in soil of coal chemical industry area. Minerals 2021, 11, 678. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Chen, Y.; Luo, Y.; Zhang, H. Sources identification of antibiotic pollution combining land use information and multivariate statistics. Environ. Monit. Assess. 2016, 188, 430. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.N.; Chen, J.H.; Guo, Y.L. A Multi-Dimensional Investigation on Water Quality of Urban Rivers with Emphasis on Implications for the Optimization of Monitoring Strategy. Sustainability 2022, 14, 4174. [Google Scholar] [CrossRef]
- Li, L.; Liu, D.; Zhang, Q.; Song, K.; Zhou, X. Occurrence and ecological risk assessment of selected antibiotics in the freshwater lakes along the middle and lower reaches of Yangtze River Basin. J. Environ. Manag. 2019, 249, 109396. [Google Scholar] [CrossRef]
- Zhang, K.; Zheng, X.H.; Li, X.N.; Li, J.H.; Ji, Y.N.; Gao, H. The pollution assessment and source analysis of groundwater in a region of southwest China. J. Henan Norm. Univ. (Nat. Sci. Ed.) 2020, 48, 64–73. [Google Scholar]
- Kang, W.; Lin, Z.; Zhang, R. Impact of phosphate mining and separation of mined materials on the hydrology and water environment of the Huangbai River basin, China. Sci. Total Environ. 2016, 543, 347–356. [Google Scholar]
- Zhang, M.; Chen, X.L.; Yang, S.H.; Song, Z.; Wang, Y.G.; Yu, Q. Basin-scale pollution loads analyzed based on coupled empirical models and numerical models. Int. J. Environ. Res. Public Health 2021, 18, 12481. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Luo, W.G.; Wang, Z.; Yi, F.C. Water pollution and its causes in the Tuojiang river basin, China: An artificial neural network analysis. Sustainability 2021, 13, 792. [Google Scholar] [CrossRef]
- Wu, B.; Zeng, W.H.; Chen, H.H.; Zhao, Y. Grey water footprint combined with ecological network analysis for assessing regional water quality metabolism. J. Clean. Prod. 2016, 112, 3138–3151. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Li, J.; Hou, L.P.; Wang, L.; Tang, L.N. Decoupling Analysis between Economic Growth and Air Pollution in Key Regions of Air Pollution Control in China. Sustainability 2021, 13, 6600. [Google Scholar] [CrossRef]
- Cahill, S.A. Calculating the rate of decoupling for crops under cap/oilseeds reform. J. Agric. Econ. 1997, 48, 349–378. [Google Scholar] [CrossRef]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Vehmas, J.; Luukkanen, J.; Kaivo-Oja, J. Linking analyses and environmental Kuznets curves for aggregated material flows in the EU. J. Clean. Prod. 2007, 15, 1662–1673. [Google Scholar] [CrossRef]
- Her, Q.L.; Wong, J. Significant correlation versus strength of correlation. Am. J. Health-Syst. Pharm. 2020, 77, 73–75. [Google Scholar] [CrossRef] [Green Version]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Edelmann, D.; Mori, T.F.; Szekely, G.J. On relationships between the Pearson and the distance correlation coefficients. Stat. Probab. Lett. 2021, 169, 108960. [Google Scholar] [CrossRef]
- Cui, S.B.; Dong, H.J.; Wilson, J. Grey water footprint evaluation and driving force analysis of eight economic regions in China. Environ. Sci. Pollut. Res. 2020, 27, 20380–20391. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, S.; Imani, S.; Delavar, M. An approach to quantifying the grey water footprint of agricultural productions in basins with impaired environment. J. Hydrol. 2022, 606, 127458. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Wang, Y.D.; Li, T.X.; Zheng, Z.C.; Pu, Y. Characteristics analysis of agricultural non-point source pollution on Tuojiang River basin. Sci. Agric. Sin. 2015, 48, 3654–3665. [Google Scholar]
- Yao, J.; Yang, L.J.; Xiao, Y.T.; Fan, M.; Zhan, S.; Liu, Y.F.; Wang, H.W.; Chen, W.; Deng, Y.; Wang, M.L. Spatial-temporal evolution of agricultural non-point sources of total phosphorus pollution loads in Tuojiang River watershed based on correction of social-economic factors. J. Agro-Environ. Sci. 2022, 41, 1022–1035. [Google Scholar]
- Meng, W.; Feagin, R.A. Mariculture is a double-edged sword in China. Estuar. Coast. Shelf Sci. 2019, 222, 147–150. [Google Scholar] [CrossRef]
- Cai, C.F.; Gu, X.H.; Ye, Y.T.; Yang, C.G.; Dai, X.Y.; Chen, D.X.; Yang, C. Assessment of pollutant loads discharged from aquaculture ponds around Taihu Lake, China. Aquac. Res. 2011, 44, 795–806. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.L.; Zhang, Q.; Lin, C.W.; Zhai, L.M.; Liu, H.T.; Pu, B. Emission characteristics of nitrogen and phosphorus in a typical agricultural small watershed in Tuojiang river basin. Environ. Sci. 2020, 41, 4547–4554. [Google Scholar]
- Cao, Y. Analysis of water quality of backwater of farmland irrigation and its influence on examination section. Environ. Sci. Technol. 2021, 34, 67–71. [Google Scholar]
- Zhang, K.; Bai, L.; Wang, P.F.; Zhu, Z. Field measurement and numerical modelling study on mining-induced subsidence in a typical underground mining area of northwestern China. Adv. Civ. Eng. 2021, 2021, 5599925. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, J.; Men, D.; Zhao, X.; Wu, S. Insight into the heavy metal binding properties of dissolved organic matter in mine water affected by water-rock interaction of coal seam goaf. Chemosphere 2021, 265, 129134. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.Q.; Qin, Y.W.; Zheng, B.H.; Zhang, L.; Zhao, Y.M. Seasonal variation of enrichment, accumulation and sources of heavy metals in suspended particulate matter and surface sediments in the Daliao river and Daliao river estuary, Northeast China. Environ. Earth Sci. 2015, 73, 5107–5117. [Google Scholar] [CrossRef]
- Li, S.P.; Gong, Q.X.; Yang, S.L. Analysis of the agricultural economy and agricultural pollution using the decoupling index in Chengdu, China. Int. J. Environ. Res. Public Health 2019, 16, 4233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Monitoring Section Name | Number | Section Properties |
---|---|---|
Falun estuary | S1 | Entry section |
Qiuxi estuary | S2 | Section of the estuary entering the Tuojiang River |
Shunhechang | S3 | Entry section |
Yinshan Town | S4 | control section |
Gaosi ferry | S5 | control section |
Laomutan | S6 | Exit section |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Wang, S.; Liu, S.; Liu, K.; Yan, J.; Li, X. Water Environment Quality Evaluation and Pollutant Source Analysis in Tuojiang River Basin, China. Sustainability 2022, 14, 9219. https://doi.org/10.3390/su14159219
Zhang K, Wang S, Liu S, Liu K, Yan J, Li X. Water Environment Quality Evaluation and Pollutant Source Analysis in Tuojiang River Basin, China. Sustainability. 2022; 14(15):9219. https://doi.org/10.3390/su14159219
Chicago/Turabian StyleZhang, Kai, Shunjie Wang, Shuyu Liu, Kunlun Liu, Jiayu Yan, and Xuejia Li. 2022. "Water Environment Quality Evaluation and Pollutant Source Analysis in Tuojiang River Basin, China" Sustainability 14, no. 15: 9219. https://doi.org/10.3390/su14159219