Cross-Layer and Energy-Aware AODV Routing Protocol for Flying Ad-Hoc Networks
Abstract
:1. Introduction
2. FANET Topology
3. Related Works
4. Materials and Methods
4.1. AODV Routing Protocol
4.2. Cross-Layer and Energy-Aware–AODV (CLEA-AODV) Protocol
4.3. Energy Efficient Routing Algorithm Based on AODV for FANETs
Algorithm 1. Node selection (intermediate nodes). |
Begin |
Initially find the RREQ’s realness with referring source and broadcast id; |
If RREQ coincides with sequence number and dates of REM, TRE, and RREQ field |
REM = min(inter_res_ener,REM_rx); |
TRE = (inter_res_ener+REM_rx); |
Else |
remove RREQ; |
End |
End |
Algorithm 2. Node selection (destination node). |
Begin |
Initially, find the RREQ’s realness with referring source and broadcast id; |
If the solution is ready |
put the solution in a table; |
Else |
wait for some time (wait_time); |
End |
Do till wait_time expires: |
locates the proper value and compares it to the pre-stored rate; |
if new_value is larger or equal to predefined_value with a reduced hop count |
replaces the old value or throws away the fresh RREQ; |
End |
send RREP packet directly to origin through a route with the highest value; |
End |
Energy Threshold Selection
4.4. Mathematical Model of GSO
4.5. GSO-Based Cluster Head Selection
Algorithm 3. Selection of cluster head and formation of the cluster. |
Begin |
X(m) = hello packet; |
Y(tab) = table of neighbor; |
T(tab) = table of topology; |
= cluster formation text; |
= cluster joinable text; |
Select UAVs in the network; |
Initially find the fitness function; |
Do (transfer the X(m) with the support of fitness); |
While (UAV receives X(m): |
Crosscheck in Y(tab); |
Compare (fitness of UAVs); |
Design the T(tab); |
Sort out (T(tab) with fitness factor); |
Update the entities in the table; |
End |
Check again the fitness function; |
If (UAV has more fitness parameter) |
Start the transmission process; |
Else |
Wait for ; |
Predict the UAV with the fitness value; |
Transfer the data; |
End |
End |
Cluster Management
Algorithm 4. Management of cluster. |
Begin |
For the UAV in network a = 1,2,3,….B; |
Y(CONF_MEG) = pattern text; |
T(tab) = table of topology; |
= cluster structure text; |
C_ text= confirming text; |
Initialize the Luciferin value (LUC_VAL); |
While ( gets transfer data): |
Evaluate (LUC_VAL) from T(tab); |
Update the UAV position with ; |
Transfer the data by defining C_ text along with ; |
End |
End |
4.6. Cooperative MAC Design for Cross-Layer Approach
- Topology Discovery
- 2.
- Assignment of TDMA Slot
- 3.
- Regional Time Synchronization
- 4.
- Urgency Queue
- 5.
- Prioritization of MAC
5. Performance Evaluations
5.1. Simulation Setup
5.2. Results and Discussion
5.2.1. Packet Success Ratio (PSR)
5.2.2. Network Throughput Calculation
5.2.3. E2E-Delay Calculation
5.2.4. Packet Drop Ratio Calculation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merwaday, A.; Guvenc, I. UAV assisted heterogeneous networks for public safety communications. In Proceedings of the 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), New Orleans, LA, USA, 9–12 March 2015; pp. 329–334. [Google Scholar] [CrossRef]
- Khan, A.; Aftab, F.; Zhang, Z. Self-organization based clustering scheme for FANETs using Glowworm Swarm Optimization. Phys. Commun. 2019, 36, 100769. [Google Scholar] [CrossRef]
- de Moraes, R.S.; de Freitas, E.P. Multi-UAV Based Crowd Monitoring System. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 1332–1345. [Google Scholar] [CrossRef]
- Pustokhina, I.V.; Pustokhin, D.A.; Lydia, E.L.; Elhoseny, M.; Shankar, K. Energy Efficient Neuro-Fuzzy Cluster based Topology Construction with Metaheuristic Route Planning Algorithm for Unmanned Aerial Vehicles. Comput. Netw. 2021, 196, 108214. [Google Scholar] [CrossRef]
- Orfanus, D.; de Freitas, E.P.; Eliassen, F. Self-Organization as a Supporting Paradigm for Military UAV Relay Networks. IEEE Commun. Lett. 2016, 20, 804–807. [Google Scholar] [CrossRef]
- Muniyandi, R.C.; Qamar, F.; Jasim, A.N. Genetic Optimized Location Aided Routing Protocol for VANET Based on Rectangular Estimation of Position. Appl. Sci. 2020, 10, 5759. [Google Scholar] [CrossRef]
- Pignaton de Freitas, E.; da Costa, L.A.L.F.; Felipe Emygdio de Melo, C.; Basso, M.; Rodrigues Vizzotto, M.; Schein Cavalheiro Corrêa, M.; Dapper e Silva, T. Design, Implementation and Validation of a Multipurpose Localization Service for Cooperative Multi-UAV Systems. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 1–4 September 2020; pp. 295–302. [Google Scholar] [CrossRef]
- Tilwari, V.; Bani-Bakr, A.; Qamar, F.; Hindia, M.N.; Jayakody, D.N.K.; Hassan, R. Mobility and Queue Length Aware Routing Approach for Network Stability and Load Balancing in MANET. In Proceedings of the 2021 International Conference on Electrical Engineering and Informatics (ICEEI), Kuala Terengganu, Malaysia, 12–13 October 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Boukoberine, M.N.; Zhou, Z.; Benbouzid, M. A critical review on unmanned aerial vehicles power supply and energy management: Solutions, strategies, and prospects. Appl. Energy 2019, 255, 113823. [Google Scholar] [CrossRef]
- Srivastava, A.; Prakash, J. Future FANET with application and enabling techniques: Anatomization and sustainability issues. Comput. Sci. Rev. 2021, 39, 100359. [Google Scholar] [CrossRef]
- Jubair, M.A.; Mostafa, S.A.; Muniyandi, R.C.; Mahdin, H.; Mustapha, A.; Hassan, M.H.; Mahmoud, M.A.; Al-Jawhar, Y.A.; Al-Khaleefa, A.S.; Mahmood, A.J. Bat Optimized Link State Routing Protocol for Energy-Aware Mobile Ad-Hoc Networks. Symmetry 2019, 11, 1409. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.H.; Audah, M.I.L.; Alduais, N.A.M. A Novel Intelligent Cluster-Head (ICH) to Mitigate the Handover Problem of Clustering in VANETs. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 149–203. [Google Scholar] [CrossRef]
- Habelalmateen, M.I.; Abbas, A.H.; Audah, L.; Alduais, N.A.M. Dynamic multiagent method to avoid duplicated information at intersections in VANETs. TELKOMNIKA Telecommun. Comput. Electron. Control 2020, 18, 613–621. [Google Scholar] [CrossRef]
- Wen, S.; Deng, L.; Liu, Y. Distributed optimization via primal and dual decompositions for delay-constrained FANETs. Ad Hoc Netw. 2020, 109, 102288. [Google Scholar] [CrossRef]
- Bekmezci, İ.; Sahingoz, O.K.; Temel, Ş. Flying Ad-Hoc Networks (FANETs): A survey. Ad Hoc Netw. 2013, 11, 1254–1270. [Google Scholar] [CrossRef]
- Kakamoukas, G.A.; Sarigiannidis, P.G.; Economides, A.A. FANETs in Agriculture—A routing protocol survey. Int. Things 2022, 18, 100183. [Google Scholar] [CrossRef]
- Oubbati, O.S.; Lakas, A.; Zhou, F.; Güneş, M.; Yagoubi, M.B. A survey on position-based routing protocols for Flying Ad hoc Networks (FANETs). Veh. Commun. 2017, 10, 29–56. [Google Scholar] [CrossRef]
- Mostafa, S.A.; Tang, A.Y.C.; Hassan, M.H.; Jubair, M.A.; Khaleefah, S.H. A Multi-Agent Ad Hoc On-Demand Distance Vector for Improving the Quality of Service in MANETs. In Proceedings of the 2018 International Symposium on Agent, Multi-Agent Systems and Robotics (ISAMSR), Putrajaya, Malaysia, 27–28 August 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Abbas, A.H.; Audah, L.; Alduais, N.A.M. An Efficient Load Balance Algorithm for Vehicular Ad-Hoc Network. In Proceedings of the 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), Batu, Indonesia, 9–11 October 2018; pp. 207–212. [Google Scholar] [CrossRef] [Green Version]
- Jubair, M.A.; Hassan, M.H.; Mostafa, S.A.; Mahdin, H.; Mustapha, A.; Audah, L.H.; Shaqwi, F.S.; Abbas, A.H. Competitive analysis of single and multi-path routing protocols in mobile Ad-Hoc network. Indones. J. Electr. Eng. Comput. Sci. 2020, 19, 293. [Google Scholar] [CrossRef]
- Chriki, A.; Touati, H.; Snoussi, H.; Kamoun, F. FANET: Communication, mobility models and security issues. Comput. Netw. 2019, 163, 106877. [Google Scholar] [CrossRef]
- Khanna, A. A mutual exclusion algorithm for flying Ad Hoc networks. Comput. Electr. Eng. 2019, 76, 82–93. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; He, C.; Jaffrès-Runser, K.; Xu, Y.; Li, Z.; Xu, Y. QMR:Q-learning based Multi-objective optimization Routing protocol for Flying Ad Hoc Networks. Comput. Commun. 2020, 150, 304–316. [Google Scholar] [CrossRef]
- Hassan, M.H.; Mostafa, S.A.; Mahdin, H.; Mustapha, A.; Ramli, A.A.; Hassan, M.H.; Jubair, M.A. Mobile Ad-Hoc Network Routing Protocols of Time-Critical Events for Search and Rescue Missions. Bull. Electr. Eng. Inform. 2021, 10, 192–199. [Google Scholar] [CrossRef]
- Hassan, M.H.; Jubair, M.A.; Mostafa, S.A.; Kamaludin, H.; Mustapha, A.; Fudzee MF, M.; Mahdin, H. A general framework of genetic multi-agent routing protocol for improving the performance of MANET environment. IAES Int. J. Artif. Intell. IJ-AI 2020, 9, 310. [Google Scholar] [CrossRef]
- Jubair, M.A.; Alabdullah, A.I.M.; Mostafa, S.A.; Mustapha, A.; Hassan, M.H.; Gunasekaran, S.S. Exploring the Roles of Agents and Multi-Agent in Improving Mobile Ad Hoc Networks. In Proceedings of the 2021 4th International Symposium on Agents, Multi-Agent Systems and Robotics (ISAMSR), Batu Pahat, Malaysia, 6–8 September 2021; pp. 91–95. [Google Scholar] [CrossRef]
- Mariyappan, K. Implementation of FANET energy efficient AODV routing protocols for flying ad hoc networks [FEEAODV]. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Simulator | NS-2.34 |
Simulation time | 100 ms |
Area | 1300 × 1300 m2 |
Transmission range | 300 m |
No. of UAV | 30-180:30 |
Simulation time | 0-100:10 |
Propagation model | Two ray propagation model |
Position exchange interval | 3 s |
Antenna | Omni-direction Antenna |
Traffic type | CBR |
Traffic rate | 0.01 to 0.50 s |
Packet size | 1024 bytes |
Initial power | 100 J |
Idle power | 0.05 J |
Queue type | Drop-Tail |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, H.S.; Mutar, M.H.; Aziz, I.A.; Mostafa, S.A.; Mahdin, H.; Abbas, A.H.; Hassan, M.H.; Abdulsattar, N.F.; Jubair, M.A. Cross-Layer and Energy-Aware AODV Routing Protocol for Flying Ad-Hoc Networks. Sustainability 2022, 14, 8980. https://doi.org/10.3390/su14158980
Mansour HS, Mutar MH, Aziz IA, Mostafa SA, Mahdin H, Abbas AH, Hassan MH, Abdulsattar NF, Jubair MA. Cross-Layer and Energy-Aware AODV Routing Protocol for Flying Ad-Hoc Networks. Sustainability. 2022; 14(15):8980. https://doi.org/10.3390/su14158980
Chicago/Turabian StyleMansour, Hassnen Shakir, Mohammed Hasan Mutar, Izzatdin Abdul Aziz, Salama A. Mostafa, Hairulnizam Mahdin, Ali Hashim Abbas, Mustafa Hamid Hassan, Nejood Faisal Abdulsattar, and Mohammed Ahmed Jubair. 2022. "Cross-Layer and Energy-Aware AODV Routing Protocol for Flying Ad-Hoc Networks" Sustainability 14, no. 15: 8980. https://doi.org/10.3390/su14158980