Latin American Cattle Ranching Sustainability Debate: An Approach to Social-Ecological Systems and Spatial-Temporal Scales
Abstract
:1. Introduction
- (1)
- to understand the role of LA cattle ranching in the current sustainability debate, considering the conceptual frameworks for SES and ecosystem services (ES), and the concepts of multifunctionality (MF) and collective action (CA) as critical tools for a comprehensive analysis;
- (2)
- to identify the main ecological, social, and economic components frequently studied in livestock research in LA;
- (3)
- to assess the institutional (the scale of management) and ecological (the scale of the process being managed) interactions of livestock studies by identifying spatial and temporal scales at which research is conducted, and cattle ranching components are developed.
Approaches and Concepts
- Social-ecological systems (SES) are complex adaptive systems formed by humans and nature. They comprise heterogeneous individual modules that interact and are physically, behaviorally, and even spatially transformed over time [46].
- Ecosystem services (ES) are the benefits that people obtain from the environment (support, provision, regulation, and culture) to satisfy their needs [47].
- Collective action (CA) is the voluntary cooperation of various stakeholders to address a common ES management issue in each territory [42].
2. Materials and Methods
- Search
- Appraisal
- −
- It characterized cattle management in a LA country.
- −
- It analyzed livestock systems using the SES approach.
- −
- It analyzed the ES or trade-offs of cattle ranching.
- −
- It examined or mentioned the MF or CA concepts in livestock systems.
- Synthesis
- Analysis
3. Results and Perspectives
3.1. Trends in Livestock Research in Latin America
3.2. The Components of Cattle Ranching in LA
3.3. Institutional and Ecological Interactions across Spatial Scales
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thornton, P. Livestock production: Recent trends, future prospects. Philos. Transcr. R. Soc. Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; De Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.T.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M.; et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Chang. 2016, 6, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Engler, J.O.; von Wehrden, H. Global assessment of the non-equilibrium theory of rangelands: Revisited and refined. Land Use Policy 2018, 70, 479–484. [Google Scholar] [CrossRef]
- Herrero, M.; Grace, D.; Njuki, J.; Johnson, N.; Enahoro, D.; Silvestri, S.; Rufino, M.C. The roles of livestock in developing countries. Animal 2013, 7, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Gordon, I.J. Livestock production increasingly influences wildlife across the globe. Animal 2018, 12, s372–s382. [Google Scholar] [CrossRef] [Green Version]
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision. 2012. Available online: https://ageconsearch.umn.edu/record/288998/ (accessed on 8 February 2022).
- Lerner, A.M.; Zuluaga, A.F.; Chará, J.; Etter, A.; Searchinger, T. Sustainable cattle ranching in practice: Moving from theory to planning in Colombia’s livestock sector. Environ. Manag. 2017, 60, 176–184. [Google Scholar] [CrossRef]
- Arango, J.; Ruden, A.; Martinez-Baron, D.; Loboguerrero, A.M.; Berndt, A.; Chacón, M.; Torres, C.F.; Oyhantcabal, W.; Gomez, C.A.; Ricci, P.; et al. Ambition meets reality: Achieving GHG emission reduction targets in the livestock sector of Latin America. Front. Sustain. Food Syst. 2020, 4, 65. [Google Scholar] [CrossRef]
- Herrero, M.T.; Mason-D’Croz, D.; Godde, C.M.; Palmer, J.; Thornton, P.K.; Gill, M. Livestock, land and the environmental limits of animal source-food consumption. In Proceedings of the Science Forum 2018, Stellenbosch, South Africa, 10–12 October 2018. [Google Scholar]
- Guevara, S.A.D.A.; Lira-Noriega, A. De los pastos de la selva a la selva de los pastos: La introducción de la ganadería en México. Pastos 2011, 34, 109–150. [Google Scholar]
- Hérnandez, L. Historia Ambiental de la Ganadería en México. No. 636.2 S4. 2001. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers11-03/010026355.pdf (accessed on 23 June 2022).
- D’Antonio, C.M.; Vitousek, P.M. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 1992, 23, 63–87. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Livestock Production in Latin America and the Caribbean, Regional Office for Latin America and the Caribbean. 2017. Available online: http://www.fao.org/americas/perspectivas/produccion-pecuaria/en/ (accessed on 12 January 2022).
- Food and Agriculture Organization of the United Nations (FAO). Food and Agriculture Organization Corporate Statistical Database (FAOSTAT); FAO: Rome, Italy, 2019; Available online: http://www.fao.org/faostat/en/#home (accessed on 12 January 2022).
- World Bank. Agriculture, Forestry, and Fishing, Value Added (% of GDP). World Bank Databank. 2019. Available online: https://data.worldbank.org/indicator/nv.agr.totl.zs (accessed on 12 January 2022).
- Marshall, G. A social-ecological systems framework for food systems research: Accommodating transformation systems and their products. Int. J. Commons 2015, 9, 881–908. [Google Scholar] [CrossRef]
- Cumming, G.S.; Cumming, D.H.M.; Redman, C.L. Scale mismatches in social-ecological systems: Causes, consequences, and solutions. Ecol. Society 2006, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Sandström, C.; Di Gasper, S.W.; Öhman, K. Conflict resolution through ecosystem-based management: The case of Swedish moose management. Int. J. Commons 2013, 7, 549–570. [Google Scholar] [CrossRef]
- Oteros-Rozas, E.; Martín-López, B.; Daw, T.M.; Bohensky, E.L.; Butler, J.R.; Hill, R.; Martin-Ortega, J.; Quinlan, A.; Ravera, F.; Ruiz-Mallén, I.; et al. Participatory scenario planning in place-based social-ecological research: Insights and experiences from 23 case studies. Ecol. Soc. 2015, 20, 32. [Google Scholar] [CrossRef]
- Van Zanten, H.H.; Herrero, M.; Van Hal, O.; Röös, E.; Muller, A.; Garnett, T.; Gerber, P.J.; Schader, C.; De Boer, I.J. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. 2018, 24, 4185–4194. [Google Scholar] [CrossRef]
- Becker, E. Social-ecological systems as epistemic objects. In Human-Nature Interactions in the Anthropocene; Routledge: London, UK, 2012; pp. 55–77. [Google Scholar]
- Cundill, G.; Cumming, G.S.; Biggs, D.; Fabricius, C. Soft systems thinking and social learning for adaptive management. Conserv. Biol. 2012, 26, 13–20. [Google Scholar] [CrossRef]
- Resilience Alliance. Adaptive Cycle. Available online: https://www.resalliance.org/adaptive-cycle (accessed on 23 June 2022).
- Holling, C.S. Understanding the complexity of economic, ecological, and social systems. Ecosystems 2001, 4, 390–405. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Holling, C.S. (Eds.) Panarchy: Understanding transformations in human and natural systems; Island Press: Washington, DC, USA, 2002; p. 450. ISBN 1559638575. [Google Scholar]
- Walker, B.; Salt, D. Resilience Practice; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- Duru, M.; Therond, O. Livestock system sustainability and resilience in intensive production zones: Which form of ecological modernization? Reg. Environ. Chang. 2015, 15, 1651–1665. [Google Scholar] [CrossRef]
- Folke, C.; Carpenter, S.R.; Walker, B.; Scheffer, M.; Chapin, T.; Rockström, J. Resilience thinking: Integrating resilience, adaptability and transformability. Ecol. Soc. 2010, 15, 20. [Google Scholar] [CrossRef]
- Antoni, C.; Huber-Sannwald, E.; Hernández, H.R.; van’t Hooft, A.; Schoon, M. Socio-ecological dynamics of a tropical agricultural region: Historical analysis of system change and opportunities. Land Use Policy 2019, 81, 346–359. [Google Scholar] [CrossRef]
- Torralba, M.; Fagerholm, N.; Hartel, T.; Moreno, G.; Plieninger, T. A social-ecological analysis of ecosystem services supply and trade-offs in European wood-pastures. Sci. Adv. 2018, 4, eaar2176. [Google Scholar] [CrossRef] [Green Version]
- Ruiz Rivera, N.; Galicia, L. La escala geográfica como concepto integrador en la comprensión de problemas socio-ambientales. Investig. Geográficas 2016, 89, 137–153. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, C.D. Exploring Spatial Scale in Geography; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Hein, L.; Van Koppen, K.; De Groot, R.S.; Van Ierland, E.C. Spatial scales, stakeholders and the valuation of ecosystem services. Ecol. Econ. 2006, 57, 209–228. [Google Scholar] [CrossRef]
- Binder, C.R.; Hinkel, J.; Bots, P.W.; Pahl-Wostl, C. Comparison of frameworks for analyzing social-ecological systems. Ecol. Soc. 2013, 18, 26. [Google Scholar] [CrossRef] [Green Version]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef] [Green Version]
- Burkhard, B.; Maes, J. Mapping ecosystem services. Adv. Books 2017, 1, e12837. [Google Scholar]
- Manning, P.; Van Der Plas, F.; Soliveres, S.; Allan, E.; Maestre, F.T.; Mace, G.; Whittingham, M.J.; Fischer, M. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2018, 2, 427–436. [Google Scholar] [CrossRef]
- Hodbod, J.; Barreteau, O.; Allen, C.; Magda, D. Managing adaptively for multifunctionality in agricultural systems. J. Environ. Manag. 2016, 183, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Dumont, B.; Ryschawy, J.; Duru, M.; Benoit, M.; Chatellier, V.; Delaby, L.; Donnars, C.; Dupraz, P.; Lemauviel-Lavenant, S.; Méda, B.; et al. Associations among goods, impacts and ecosystem services provided by livestock farming. Animal 2019, 13, 1773–1784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Barnaud, C.; Corbera, E.; Muradian, R.; Salliou, N.; Sirami, C.; Vialatte, A.; Choisis, J.P.; Dendoncker, N.; Mathevet, R.; Moreau, C.; et al. Ecosystem services, social interdependencies, and collective action. Ecol. Society 2018, 23, 15. [Google Scholar] [CrossRef]
- Apan-Salcedo, G.W.; Jiménez-Ferrer, G.; Nahed-Toral, J.; Pérez-Luna, E.; Piñeiro-Vázquez, Á.T. Masificación de sistemas silvopastoriles: Un largo y sinuoso camino. Trop. Subtrop. Agroecosyst. 2021, 24, 103. [Google Scholar]
- Reed, M.S.; Bonn, A.; Slee, W.; Beharry-Borg, N.; Birch, J.; Brown, I.; Burt, T.P.; Chapman, D.; Chapman, P.J.; Clay, G.D.; et al. The future of the uplands. Land Use Policy 2009, 26, S204–S216. [Google Scholar] [CrossRef]
- Ten Napel, J.; Van der Veen, A.A.; Oosting, S.J.; Koerkamp, P.G. A conceptual approach to design livestock production systems for robustness to enhance sustainability. Livest. Sci. 2011, 139, 150–160. [Google Scholar] [CrossRef]
- Martín-López, B.; Gómez-Baggethun, E.; González, J.A.; Lomas, P.L.; Montes, C. The assessment of ecosystem services provided by biodiversity: Re-thinking concepts and research needs. In Handbook of Nature Conservation: Global, Environmental and Economic Issues; Nova Science Publishers: Hauppauge, NY, USA, 2009; pp. 261–282. [Google Scholar]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Berry, P.; Turkelboom, F.; Verheyden, W.; Martín-López, B.; Ecosystem services bundles. In OpenNESS: Operationalisation of Natural Capital and Ecosystem Services. Ecosystem Services Reference Book. 2016. Available online: http://www.openness-project.eu/library/reference-book/sp-ES-bundles (accessed on 24 January 2022).
- Delgado, C.; Rosegrant, M.; Meijer, S. The coming livestock revolution. Choices 1999, 14, 46. [Google Scholar]
- Economic Commission for Latin America and the Caribbean (ECLAC). The Outlook for Agriculture and Rural Development in the Americas: A Perspective on Latin America and the Caribbean 2017–2018; ECLAC: Santiago, Chile, 2017. [Google Scholar]
- Sánchez-Romero, R.; Balvanera, P.; Castillo, A.; Mora, F.; García-Barrios, L.E.; González-Esquivel, C.E. Management strategies, silvopastoral practices and socioecological drivers in traditional livestock systems in tropical dry forests: An integrated analysis. For. Ecol. Manag. 2021, 479, 118506. [Google Scholar] [CrossRef]
- Mao, Z.; Centanni, J.; Pommereau, F.; Stokes, A.; Gaucherel, C. Maintaining biodiversity promotes the multifunctionality of social-ecological systems: Holistic modelling of a mountain system. Ecosyst. Serv. 2021, 47, 101220. [Google Scholar] [CrossRef]
- Broom, D.M. Livestock sustainability and animal welfare. In Proceedings of the International Meeting of Advances in Animal Science, São Paulo, Brazil, 8–10 June 2016; Volume 1. [Google Scholar] [CrossRef] [Green Version]
- Barrett, C.B.; Christian, P.; Shiferaw, B.A. The structural transformation of African agriculture and rural spaces: Introduction to a special section. Agric. Econ. 2017, 48, 5–10. [Google Scholar] [CrossRef]
- Gwaka, L.; May, J.; Tucker, W. The Impacts of Digital Infrastructure Transformation on Livestock System Sustainability in Rural Communities. 2020. Available online: https://www.preprints.org/manuscript/202006.0332/v1 (accessed on 16 December 2021).
- Rich, K.M.; Baker, D.; Negassa, A.; Ross, R.B. Concepts, Applications, and Extensions of Value Chain Analysis to Livestock Systems in Developing Countries. 2009. (No. 1005-2016-79380). Available online: https://ageconsearch.umn.edu/record/51922/ (accessed on 2 December 2021).
- Meadows, D.H. Thinking in Systems: A Primer; Chelsea Green Publishing: Vermont, VT, USA, 2008. [Google Scholar]
- Gallo, C.S.; Tadich, T.G. Perspective from Latin America. In Woodhead Publishing Series in Food Science, Technology and Nutrition; Mench, J.A., Ed.; Advances in Agricultural Animal Welfare; Woodhead Publishing: Sawston, UK, 2018; pp. 197–218. [Google Scholar] [CrossRef]
- González-Quintero, R.; Barahona-Rosales, R.; Bolívar-Vergara, D.M.; Chirinda, N.; Arango, J.; Pantévez, H.A.; Correa-Londoño, G.; Sánchez-Pinzón, M.S. Technical and environmental characterization of dual-purpose cattle farms and ways of improving production: A case study in Colombia. Pastoralism 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Peri, P.L.; Bahamonde, H.A.; Lencinas, M.V.; Gargaglione, V.; Soler, R.; Ormaechea, S.; Pastur, G.M. A review of silvopastoral systems in native forests of Nothofagus antarctica in southern Patagonia, Argentina. Agrofor. Syst. 2016, 90, 933–960. [Google Scholar] [CrossRef]
- Boillat, S.; Scarpa, F.M.; Robson, J.P.; Gasparri, I.; Aide, T.M.; Aguiar, A.P.D.; Anderson, L.O.; Batistella, M.; Fonseca, M.G.; Futemma, C.; et al. Land system science in Latin America: Challenges and perspectives. Curr. Opin. Environ. Sustain. 2017, 26, 37–46. [Google Scholar] [CrossRef]
- Coppock, D.L.; Fernández-Giménez, M.; Hiernaux, P.; Huber-Sannwald, E.; Schloeder, C.; Valdivia, C.; Arredondo, J.T.; Jacobs, M.; Turin, C.; Turner, M. Rangeland systems in developing nations: Conceptual advances and societal implications. In Rangeland Systems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 569–642. [Google Scholar] [CrossRef]
- Hölting, L.; Beckmann, M.; Volk, M.; Cord, A.F. Multifunctionality assessments–More than assessing multiple ecosystem functions and services? A quantitative literature review. Ecol. Indic. 2019, 103, 226–235. [Google Scholar] [CrossRef]
- Quero-Carrillo, A.R.; Quiroz, J.F.E.; Jiménez, L.M. Evaluación de especies forrajeras en América tropical, avances o status quo. Interciencia 2007, 32, 566–571. [Google Scholar]
- Bacab, H.M.; Madera, N.B.; Solorio, F.J.; Vera, F.; Marrufo, D.F. Los sistemas silvopastoriles intensivos con Leucaena leucocephala: Una opción para la ganadería tropical. Av. En Investig. Agropecu. 2013, 17, 67–81. [Google Scholar]
- Murgueitio, E.; Calle, Z.; Uribe, F.; Calle, A.; Solorio, B. Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For. Ecol. Manag. 2011, 261, 1654–1663. [Google Scholar] [CrossRef]
- Calle, Z.; Murgueitio, E.; Chará, J.; Molina, C.H.; Zuluaga, A.F.; Calle, A. A strategy for scaling-up intensive silvopastoral systems in Colombia. J. Sustain. For. 2013, 32, 677–693. [Google Scholar] [CrossRef]
- Chará, J.; Rivera, J.; Barahona, R.; Murgueitio, E.; Calle, Z.; Giraldo, C. Intensive silvopastoral systems with Leucaena leucocephala in Latin America. Trop. Grassl.-Forrajes Trop. 2019, 7, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, M.; Holwell, S. (Eds.) Systems Approaches to Managing Change: A Practical Guide; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Dragicevic, A.Z. Emergence and dynamics of short food supply chains. Netw. Spat. Econ. 2021, 21, 31–55. [Google Scholar] [CrossRef]
- Sayre, N.F.; McAllister, R.R.; Bestelmeyer, B.T.; Moritz, M.; Turner, M.D. Earth stewardship of rangelands: Coping with ecological, economic, and political marginality. Front. Ecol. Environ. 2013, 11, 348–354. [Google Scholar] [CrossRef]
- Gaudin, Y.; Padilla Pérez, R. Los Intermediarios en Cadenas de valor Agropecuarias: Un análisis de la Apropiación y Generación de Valor Agregado. 2020. Available online: https://repositorio.cepal.org/handle/11362/45796 (accessed on 18 March 2022).
- Romano-Armada, N.; Amoroso, M.J.; Rajal, V.B. Impacts of agriculture in Latin America: Problems and solutions. In Bioremediation in Latin America; Springer: Cham, Switzerland, 2014; pp. 1–16. [Google Scholar] [CrossRef]
- Galeana-Pizaña, J.M.; Couturier, S.; Figueroa, D.; Jiménez, A.D. Is rural food security primarily associated with smallholder agriculture or with commercial agriculture?: An approach to the case of Mexico using structural equation modeling. Agric. Syst. 2021, 190, 103091. [Google Scholar] [CrossRef]
- Rivera-Huerta, A.; Rubio Lozano, M.D.L.S.; Padilla-Rivera, A.; Güereca, L.P. Social sustainability assessment in livestock production: A social life cycle assessment approach. Sustainability 2019, 11, 4419. [Google Scholar] [CrossRef] [Green Version]
- Marinidou, E.; Jiménez-Ferrer, G.; Soto-Pinto, L.; Ferguson, B.G.; Saldívar-Moreno, A. Proceso de adopción de árboles en áreas ganaderas: Estudio de casos en Chiapas, México. Soc. Ambiente 2018, 18, 201–230. [Google Scholar] [CrossRef] [Green Version]
- Astier, M.; Speelman, E.N.; López-Ridaura, S.; Masera, O.R.; Gonzalez-Esquivel, C.E. Sustainability indicators, alternative strategies and trade-offs in peasant agroecosystems: Analysing 15 case studies from Latin America. Int. J. Agric. Sustain. 2011, 9, 409–422. [Google Scholar] [CrossRef]
- Van Loon, J.; Woltering, L.; Krupnik, T.J.; Baudron, F.; Boa, M.; Govaerts, B. Scaling agricultural mechanization services in smallholder farming systems: Case studies from sub-Saharan Africa, South Asia, and Latin America. Agric. Syst. 2020, 180, 102792. [Google Scholar] [CrossRef]
- Galeana-Pizaña, J.M.; Couturier, S.; Monsivais-Huertero, A. Assessing food security and environmental protection in Mexico with a GIS-based Food Environmental Efficiency index. Land Use Policy 2018, 76, 442–454. [Google Scholar] [CrossRef]
- Figueroa, D.; Galeana-Pizaña, J.M.; Núñez, J.M.; Gomez, C.A.; Hernández-Castro, J.R.; Sánchez-Ramírez, M.; Garduño, A. Assessing drivers and deterrents of deforestation in Mexico through a public policy tool. The adequacy of the index of economic pressure for deforestation. For. Policy Econ. 2021, 133, 102608. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Summary for Policymakers; Fifth Assessment Report; IPCC: Geneva, Switzerland, 2013; p. 36. [Google Scholar]
- Solorio, S.F.J.; Wright, J.; Franco, M.J.A.; Basu, S.K.; Sarabia, S.L.; Ramírez, L.; Ayala, B.A.; Aguilar, P.C.; Ku, V.J.C. Silvopastoral systems: Best agroecological practice for resilient production systems under dryland and drought conditions. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability; Springer: Cham, Switzerland, 2017; pp. 233–250. [Google Scholar] [CrossRef]
- Eshel, G.; Shepon, A.; Makov, T.; Milo, R. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 11996–12001. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Mooney, H.; Hull, V.; Davis, S.J.; Gaskell, J.; Hertel, T.; Lubchenco, J.; Seto, K.C.; Gleick, P.; Kremen, C.; et al. Systems integration for global sustainability. Science 2015, 347, 1258832. [Google Scholar] [CrossRef] [Green Version]
- Zimmerer, K.S.; Lambin, E.F.; Vanek, S.J. Smallholder telecoupling and potential sustainability. Ecol. Soc. 2018, 23, 30. [Google Scholar] [CrossRef] [Green Version]
- Chung, M.G.; Liu, J. Telecoupled impacts of livestock trade on non-communicable diseases. Glob. Health 2019, 15, 1–12. [Google Scholar] [CrossRef]
- Ibarrola-Rivas, M.J.; Granados-Ramírez, R. Diversity of Mexican diets and agricultural systems and their impact on the land requirements for food. Land Use Policy 2017, 66, 235–240. [Google Scholar] [CrossRef]
- Tello, J.; Garcillán, P.P.; Ezcurra, E. How dietary transition changed land use in Mexico. Ambio 2020, 49, 1676–1684. [Google Scholar] [CrossRef]
- Webster, E.; Gaudin, A.; Pulleman, M.; Siles, P.; Fonte, S.J. Improved pastures support early indicators of soil restoration in low-input agroecosystems of Nicaragua. Environ. Manag. 2019, 64, 201–212. [Google Scholar] [CrossRef]
- Gerssen-Gondelach, S.J.; Lauwerijssen, R.B.; Havlík, P.; Herrero, M.; Valin, H.; Faaij, A.P.; Wicke, B. Intensification pathways for beef and dairy cattle production systems: Impacts on GHG emissions, land occupation and land use change. Agric. Ecosyst. Environ. 2017, 240, 135–147. [Google Scholar] [CrossRef]
- Figueroa, D.; Ortega-Fernández, P.; Abbruzzini, T.F.; Rivero-Villlar, A.; Galindo, F.; Chavez-Vergara, B.; Etchevers, J.D.; Campo, J. Effects of Land Use Change from Natural Forest to Livestock on Soil C, N and P Dynamics along a Rainfall Gradient in Mexico. Sustainability 2020, 12, 8656. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Miranda-de la Lama, G.C.; Teixeira, D.L.; Enríquez-Hidalgo, D.; Tadich, T.; Lensink, J. Farm animal welfare influences on markets and consumer attitudes in Latin America: The cases of Mexico, Chile and Brazil. J. Agric. Environ. Ethics 2017, 30, 697–713. [Google Scholar] [CrossRef]
- Magliocca, N.R.; Ellis, E.C.; Allington, G.R.; De Bremond, A.; Dell’Angelo, J.; Mertz, O.; Messerli, P.; Meyfroidt, P.; Seppelt, R.; Verburg, P.H. Closing global knowledge gaps: Producing generalized knowledge from case studies of social-ecological systems. Glob. Environ. Chang. 2018, 50, 1–14. [Google Scholar] [CrossRef]
- Zurlini, G.; Riitters, K.; Zaccarelli, N.; Petrosillo, I.; Jones, K.B.; Rossi, L. Disturbance patterns in a socio-ecological system at multiple scales. Ecol. Complex. 2006, 3, 119–128. [Google Scholar] [CrossRef]
- Rivera-Huerta, A.; Güereca, L.P.; Rubio Lozano, M.D.L.S. Environmental impact of beef production in Mexico through life cycle assessment. Resour. Conserv. Recycl. 2016, 109, 44–53. [Google Scholar] [CrossRef]
- Uwizeye, A.; Gerber, P.J.; Opio, C.I.; Falcucci, A.; Tempio, G.; Teillard, F.; Steinfeld, H.; Schulte, R.; de Boer, I. The role of globalizing livestock supply chains in the disruption of global nitrogen cycles. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2018; Volume 2018. [Google Scholar]
- Ávila Foucat, V.S.; Perevochtchikova, M. Sistemas Socio-Ecológicos: Marcos Analíticos y Estudios de Caso en Oaxaca, México. 2019. Available online: http://librosoa.unam.mx/handle/123456789/2760 (accessed on 13 October 2021).
- Berrouet, L.M.; Machado, J.; Villegas-Palacio, C. Vulnerability of socio—ecological systems: A conceptual Framework. Ecol. Indicators 2018, 84, 632–647. [Google Scholar] [CrossRef]
- Reyes, E.; Bellagamba, A.; Molina, J.J.; Izquierdo, L.; Deblitz, C.; Chará, J.; Mitchell, L.; Romanowicz, B.; Gómez, M.; Murgueitio, E. Measuring Sustainability on Cattle Ranches: Silvopastoral Systems; Agri Benchmark: Braunschweig, Germany, 2017. [Google Scholar]
- Figueroa, D.; Galicia, L. Ganadería bovina con menor costo ambiental: Un desafío entre lo personal y lo político. Soc. Ambiente 2021, 24, 1–17. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueroa, D.; Galicia, L.; Suárez Lastra, M. Latin American Cattle Ranching Sustainability Debate: An Approach to Social-Ecological Systems and Spatial-Temporal Scales. Sustainability 2022, 14, 8924. https://doi.org/10.3390/su14148924
Figueroa D, Galicia L, Suárez Lastra M. Latin American Cattle Ranching Sustainability Debate: An Approach to Social-Ecological Systems and Spatial-Temporal Scales. Sustainability. 2022; 14(14):8924. https://doi.org/10.3390/su14148924
Chicago/Turabian StyleFigueroa, Daniela, Leopoldo Galicia, and Manuel Suárez Lastra. 2022. "Latin American Cattle Ranching Sustainability Debate: An Approach to Social-Ecological Systems and Spatial-Temporal Scales" Sustainability 14, no. 14: 8924. https://doi.org/10.3390/su14148924
APA StyleFigueroa, D., Galicia, L., & Suárez Lastra, M. (2022). Latin American Cattle Ranching Sustainability Debate: An Approach to Social-Ecological Systems and Spatial-Temporal Scales. Sustainability, 14(14), 8924. https://doi.org/10.3390/su14148924