Biodiversity and Economy but Not Social Factors Predict Human Population Dynamics in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
2.3.1. Data Imputation and Data Rescaling
2.3.2. Selection of Indicators to Represent Each of the 5 Variables
2.3.3. Structural Equation Modelling
2.3.4. Ethical Considerations
3. Results
Drivers of Population Change
4. Discussion
4.1. Proximal Drivers of Population
4.2. Distal Drivers of Population
4.2.1. Economy, Air Pollution, and Biodiversity
4.2.2. Governance and Its Impact on the Economy and Biodiversity
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonggarts, J. Slow down population growth. Nature 2016, 530, 409–412. [Google Scholar] [CrossRef] [Green Version]
- Bongaarts, J. Human population growth and the demographic transition. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2985–2990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, R.D. The demographic transition: Three centuries of fundamental change. J. Econ. Perspect. 2003, 17, 167–190. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, A.; Guido, Z.; Tuholske, C.; Pakalniskis, A.; Lopus, S.; Caylor, K.; Evans, T. Dynamics of population growth in secondary cities across southern Africa. Landsc. Ecol. 2020, 35, 2501–2516. [Google Scholar] [CrossRef]
- Lima, M.; Abades, S. Malthusian Factors as Proximal Drivers of Human Population Crisis at Sub-Saharan Africa. Front. Ecol. Evol. 2015, 3, 130. [Google Scholar] [CrossRef] [Green Version]
- Nieves, J.; Stevens, F.; Gaughan, A.; Linard, C.; Sorichetta, A.; Hornby, G.; Patel, N.; Tatem, A. Examining the correlates and drivers of human population distributions across low- and middle-income countries. J. R. Soc. Interface 2017, 14, 20170401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, K.; Loreau, M. How ecological feedbacks between human population and land cover influence sustainability. PLoS Comput. Biol. 2018, 14, e1006389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UN DESA (United Nations Department of Economic and Social Affairs). Global Population Growth and Sustainable Development Goals. 2021. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/undesa_pd_2022_global_population_growth.pdf (accessed on 12 December 2021).
- Roser, M.; Ritchie, H.; Ortiz-Ospina, E. World Population Growth. 2019. Available online: https://ourworldindata.org/world-population-growth (accessed on 10 January 2021).
- Bucci, A. Product proliferation, population, and economic growth. J. Hum. Cap. 2015, 9, 170–197. [Google Scholar] [CrossRef]
- Peterson, E. The Role of Population in Economic Growth. SAGE Open 2017, 7, 215824401773609. [Google Scholar] [CrossRef] [Green Version]
- Hosen, A. The Stability of Population and GDP Growth: A Comparative Analysis Among Different Nations in the World. Int. J. Bus. Econ. Res. 2019, 8, 180. [Google Scholar] [CrossRef]
- Headey, D.D. Developmental drivers of nutritional change: A cross-country analysis. World Dev. 2013, 42, 76–88. [Google Scholar] [CrossRef]
- Coope, C.; Gunnell, D.; Hollingworth, W.; Hawton, K.; Kapur, N.; Fearn, V.; Wells, C.; Metcalfe, C. Suicide and the 2008 economic recession: Who is most at risk? Trends in suicide rates in England and Wales 2001–2011. Soc. Sci. Med. 2014, 117, 76–85. [Google Scholar] [CrossRef]
- Degu, A. The Nexus Between Population and Economic Growth in Ethiopia: An Empirical Inquiry. Int. J. Bus. Econ. Sci. Appl. Res. 2019, 12, 43–50. [Google Scholar] [CrossRef]
- Bretschger, L. Malthus in the light of climate change. Eur. Econ. Rev. 2020, 127, 103477. [Google Scholar] [CrossRef]
- Malthus, T. An Essay on the Principle of Population as it Affects the Future Improvement of Society; Electronic Scholarly Publishing: Bellingham, WA, USA, 1798. [Google Scholar]
- Strydom, N.; Struweg, J. Malthus revisited: Long-term Trends in South African Population Growth and Agricultural Output. Agrekon 2016, 55, 34–36. [Google Scholar] [CrossRef]
- Montano, B.; Garcia-Lopez, M. Malthusianism of the 21st century. Environ. Sustain. Indic. 2020, 6, 100032. [Google Scholar] [CrossRef]
- Myrskylä, M.; Kohler, H.-P.; Billari, F.C. Advances in Development Reverse Fertility Declines. Nature 2009, 460, 741–743. [Google Scholar] [CrossRef]
- Taagepera, R. A world population growth model: Interaction with Earth’s carrying capacity and technology in limited space. Technol. Forecast. Soc. Chang. 2014, 82, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Lanz, B.; Dietz, S.; Swanson, T. Global population growth, technology, and Malthusian constraints: A quantitative growth theoretic perspective. Int. Econ. Rev. 2017, 58, 973–1006. [Google Scholar] [CrossRef]
- Patnaik, R. Impact of Industrialization on Environment and Sustainable Solutions–Reflections from a South Indian Region. IOP Conf. Ser. Earth Environ. Sci. 2018, 120, 012016. [Google Scholar] [CrossRef]
- Nabi, A.; Shahid, Z.; Mubashir, K.; Ali, A.; Iqbal, A.; Zaman, K. Relationship between population growth, price level, poverty incidence, and carbon emissions in a panel of 98 countries. Environ. Sci. Pollut. Res. 2020, 27, 31778–31792. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.; Hochard, J. Land degradation and poverty. Nat. Sustain. 2018, 1, 623–631. [Google Scholar] [CrossRef]
- Temesgen, M.; Getahun, A.; Lemma, B. Livelihood Functions of Capture Fisheries in Sub-Saharan Africa: Food Security, Nutritional, and Economic Implications. Rev. Fish. Sci. Aquac. 2019, 27, 215–225. [Google Scholar] [CrossRef]
- Agbo, K.; Walgraeve, C.; Eze, J.; Ugwoke, P.; Ukoha, P.; Van Langenhove, H. A review on ambient and indoor air pollution status in Africa. Atmos. Pollut. Res. 2021, 12, 243–260. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [Green Version]
- Dalyop, G.T. Political instability and economic growth in Africa. Int. J. Econ. Policy Stud. 2019, 13, 217–257. [Google Scholar] [CrossRef]
- Lederman, D.; Loayza, N.V.; Soares, R.R. Accountability and corruption: Political institutions matter. Econ. Politics 2005, 17, 1–35. [Google Scholar] [CrossRef]
- Shabbir, G.; Anwar, M.; Adil, S. Corruption, political stability, and economic growth. Pak. Dev. Rev. 2016, 55, 689–702. [Google Scholar] [CrossRef] [Green Version]
- Kesar, A.; Kamaiah, B.; Jena, P.K.; Yadav, M.P. The Asymmetric Relationship between Corruption, Political Stability and Economic Growth: New Evidence from BRICS Countries. Indian Econ. J. 2022, 70, 249–270. [Google Scholar] [CrossRef]
- Zheng, Z. Reproductive behaviour and determinants in a low-fertility era in China. Asian Popul. Stud. 2018, 15, 127–130. [Google Scholar] [CrossRef]
- Alpermann, B.; Zhan, S. Population Planning after the One Child Policy: Shifting Modes of Political Steering in China. J. Contemp. China 2019, 28, 348–366. [Google Scholar] [CrossRef]
- Cillier, J.; Aucion, C.; Economics, Governance and Instability in South Africa. Institute for Security Studies. 2016. Available online: https://www.researchgate.net/publication/305034098_Economics_Governance_and_Instability_in_South_Africa (accessed on 17 March 2022).
- Matshoba, A. July Riots Rob SA Economy of above 5% Growth. 2022. Available online: https://www.moneyweb.co.za/news/economy/july-riots-rob-sa-economy-of-above-5-growth/ (accessed on 17 March 2022).
- RSA (Republic of South Africa). Geography and Climate. 2021. Available online: https://www.gov.za/about-sa/geography-and-climate (accessed on 17 March 2022).
- Rutherford, M.; Mucina, L.; Powrie, L. Biomes and bioregions of Southern Africa. In The Vegetation of South Africa, Lesotho and Swaziland; South African National Biodiversity Institute: Pretoria, South Africa, 2006. [Google Scholar]
- Bezeng, B.S.; Yessoufou, K.; Taylor, P.J.; Tesfamichael, S.G. Expected spatial patterns of alien woody plants in South Africa’s protected areas under current scenario of climate change. Sci. Rep. 2020, 10, 7038. [Google Scholar] [CrossRef]
- Germishuizen, G.; Meyer, N.L.; Steenkamp, Y.; Keith, M. A checklist of south African plants. In Southern African Botanical Diversity Network Report; No. 41. Pretoria: SABONET; IUCN: Gland, Switzerland, 2006. [Google Scholar]
- Mamathaba, M.P.; Yessoufou, K.; Moteetee, A. What Does It Take To Further Our Knowledge of Plant Diversity in The Megadiverse South Africa? Preprints 2022, 2022060066. [Google Scholar] [CrossRef]
- Adeeyo, A.O.; Ndlovu, S.S.; Ngwagwe, L.M.; Mudau, M.; Alabi, M.A.; Edokpayi, J.N. Wetland Resources in South Africa: Threats and Metadata Study. Resources 2022, 11, 54. [Google Scholar] [CrossRef]
- Seymore, R.; Inglesi-Lotz, R.; Blignaut, J. A greenhouse gas emissions inventory for South Africa: A comparative analysis. Renew. Sustain. Energy Rev. 2014, 34, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Stats SA (Statistics South Africa). Mid-Year Population Estimates. 2021. Available online: http://www.statssa.gov.za/publications/P0302/P03022021.pdf (accessed on 17 March 2022).
- Turok, I.; Borel-Saladin, J. Is urbanisation in South Africa on a sustainable trajectory? Dev. S. Afr. 2014, 31, 675–691. [Google Scholar] [CrossRef]
- Stats SA (Statistics South Africa). Quarterly Labour Force Survey (QLFS)–Q4:2021. 2022. Available online: http://www.statssa.gov.za/publications/P0211/Media%20release%20QLFS%20Q4%202021.pdf (accessed on 17 March 2022).
- Bruce, D. Addressing corruption in South Africa. S. Afr. Crime Q. 2014, 48, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Stats SA (Statistic South Africa). Inequality Trends in South Africa: A Multidimensional Diagnostic of Inequality. 2019. Available online: https://www.statssa.gov.za/publications/Report-03-10-19/Report-03-10-192017.pdf (accessed on 17 March 2022).
- Vhumbunu, C.H. The July 2021 Protests and Socio-Political Unrest in South Africa: Reflecting on the Causes, Consequences and Future Lessons. Confl. Trends 2021, 3, 3–13. [Google Scholar]
- Wendling, Z.A.; Emerson, J.W.; de Sherbinin, A.; Esty, D.C. 2020 Environmental Performance Index. 2020. Available online: https://epi.yale.edu/downloads/epi2020report20210112.pdf (accessed on 17 March 2022).
- R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. Available online: http://www.R-project.org/ (accessed on 17 March 2022).
- Van Buuren, S. Package ‘MICE’. 2021. Available online: https://cran.r-project.org/web/packages/mice/mice.pdf (accessed on 17 March 2022).
- Burgette, L.F.; Reiter, J.P. Multiple imputation for missing data via sequential regression trees. Am. J. Epidemiol. 2010, 172, 1070–1076. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, J.; Shirkey, G.; John, R.; Wu, S.; Park, H.; Shao, C. Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecol. Processes 2016, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Rosseel, Y. Package “Lavaan”. 2022. Available online: https://cran.r-project.org/web/packages/lavaan/lavaan.pdf (accessed on 17 March 2022).
- Savalei, V. Understanding Robust Corrections in Structural Equation Modeling. Struct. Equ. Modeling Multidiscip. J. 2014, 21, 149–160. [Google Scholar] [CrossRef]
- Capmourteres, V.; Anand, M. Assessing ecological integrity: A multi-scale structural and functional approach using Structural Equation Modeling. Ecol. Indic. 2016, 71, 258–269. [Google Scholar] [CrossRef]
- Balmford, A.; Moore, J.L.; Brooks, T.; Burgess, N.; Hansen, L.A.; Williams, P.; Rahbek, C. Conservation conflicts across Africa. Science 2001, 291, 2616–2619. [Google Scholar] [CrossRef]
- Chown, S.L.; Van Rensburg, B.J.; Gaston, K.J.; Rodrigues, A.S.L.; Van Jaarsveld, A.S. Energy, species richness, and human population size: Conservation implications at a national scale. Ecol. Appl. 2003, 13, 1233–1241. [Google Scholar] [CrossRef] [Green Version]
- Evans, K.L.; Van Rensburg, B.J.; Gaston, K.J.; Chown, S.L. People, species richness and human population growth. Glob. Ecol. Biogeogr. 2016, 15, 625–636. [Google Scholar] [CrossRef]
- Luck, G.W. A review of the relationships between human population density and biodiversity. Biol. Rev. 2007, 82, 607–645. [Google Scholar] [CrossRef]
- Davies, T.J.; Maurin, O.; Yessoufou, K.; Daru, B.H.; Bezeng, B.S.; Schaefer, H.; Thuiller, W.; Van der Bank, M. Tree phylogenetic diversity supports nature’s contribution to people, but is at risk from human population growth. bioRxiv 2021. [Google Scholar] [CrossRef]
- Daily, G.C. (Ed.) Nature’s Services; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Molina-Venegas, R. Conserving evolutionarily distinct species is critical to safeguard human well-being. Sci. Rep. 2021, 11, 24187. [Google Scholar] [CrossRef]
- Malthus, T.R. An Essay on the Principle of Population; Ward, Lock and Co.: London, UK, 1890. [Google Scholar]
- Verhoeven, J.T.A.; Arheimer, B.; Yin, C.; Hefting, M.M. Regional and global concerns over wetlands and water quality. Trends Ecol. Evol. 2006, 21, 96–103. [Google Scholar] [CrossRef]
- Nyman, J.A. Ecological Functions of Wetlands. In Wetlands; LePage, B., Ed.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Skowno, A.L.; Jewitt, D.; Slingsby, J.A. Rates and patterns of habitat loss across South Africa’s vegetation biomes. S. Afr. J. Sci. 2021, 117, 8182. [Google Scholar] [CrossRef]
- Mehring, M.; Mehlhaus, N.; Ott, E.; Hummel, D. A systematic review of biodiversity and demographic change: A misinterpreted relationship? Ambio 2020, 49, 1297–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baird, S.; Friedman, J.; Schady, N. Aggregate income shocks and infant mortality in the developing world. Rev. Econ. Stat. 2011, 93, 847–856. [Google Scholar] [CrossRef]
- Pavoine, S.; Bonsall, M.B.; Davies, T.J.; Masi, S. Mammal extinctions and the increasing isolation of humans on the tree of life. Ecol. Evol. 2019, 9, 914–924. [Google Scholar] [CrossRef] [Green Version]
- Stats SA (Statistic South Africa). The Importance of Coal. 2015. Available online: https://www.statssa.gov.za/?p=4820 (accessed on 17 March 2022).
- UNEP (United Nations Environmental Programme). Methane Emissions Are Driving Climate Change. Here’s How to Reduce Them. 2021. Available online: https://www.unep.org/news-and-stories/story/methane-emissions-are-driving-climate-change-heres-how-reduce-them#:~:text=Methane%20is%20also%20a%20powerful,keeping%20began%20in%20the%201980s (accessed on 17 March 2022).
- Altieri, K.; Stone, A. Prospective air pollutant emissions inventory for the development and production of unconventional natural gas in the Karoo basin, South Africa. Atmos. Environ. 2016, 129, 34–42. [Google Scholar] [CrossRef]
- Deshmukh, P.; Kimbrough, S.; Krabbe, S.; Logan, R.; Isakov, V.; Baldauf, R. Identifying air pollution source impacts in urban communities using mobile monitoring. Sci. Total Environ. 2020, 715, 136979. [Google Scholar] [CrossRef] [PubMed]
- Joshua, U.; Bekun, F.; Sarkodie, S. New insight into the causal linkage between economic expansion, FDI, coal consumption, pollutant emissions and urbanization in South Africa. Environ. Sci. Pollut. Res. 2020, 27, 18013–18024. [Google Scholar] [CrossRef] [Green Version]
- Haberl, H.; Wiedenhofer, D.; Virág, D.; Kalt, G.; Plank, B.; Brockway, P.; Fishman, T.; Hausknost, D.; Krausmann, F.; Leon-Gruchalski, B.; et al. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: Synthesizing the insights. Environ. Res. Lett. 2020, 15, 065003. [Google Scholar] [CrossRef]
- Ritchie, H. Many Countries Have Decoupled Economic Growth from CO₂ Emissions, Even If We Take Offshored Production into Account. 2021. Available online: https://ourworldindata.org/co2-gdp-decoupling (accessed on 17 March 2022).
- IEA (International Energy Agency). Global Energy Review: Coal. 2021. Available online: https://www.iea.org/reports/global-energy-review-2021/coal (accessed on 17 March 2022).
- Wang, W. Region EKC for Air Pollution: Evidence from China. Environ. Pollut. 2018, 7, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Shikwambana, L.; Mhangara, P.; Kganyago, M. Assessing the Relationship between Economic Growth and Emissions Levels in South Africa between 1994 and 2019. Sustainability 2021, 13, 2645. [Google Scholar] [CrossRef]
- Waldron, A.; Mooers, A.O.; Miller, D.C.; Nibbelink, N.; Redding, D.; Kuhn, T.S.; Roberts, J.T.; Gittleman, J.L. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl. Acad. Sci. USA 2013, 110, 12144–12148. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, P.A.; Miller, J.R.B.; Petracca, L.S.; Hunter, L.T.B. More than $1 billion needed annually to secure Africa’s protected areas with lions. Proc. Natl. Acad. Sci. USA 2018, 115, 10788–10796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kauano, É.; Silva, J.; Diniz Filho, J.; Michalski, F. Do protected areas hamper economic development of the Amazon region? An analysis of the relationship between protected areas and the economic growth of Brazilian Amazon municipalities. Land Use Policy 2020, 92, 104473. [Google Scholar] [CrossRef]
- Cowan, G.I.; Mpongoma, N.; Britton, P. (Eds.) Management Effectiveness of South Africa’s Protected Areas; Department of Environmental Affairs: Pretoria, South Africa, 2010. [Google Scholar]
- Welz, A. The Pandemic Has Undone South Africa’s National Parks. 2021. Available online: https://www.theatlantic.com/science/archive/2021/06/covid-19-tourism-conservation-south-africa/619091/ (accessed on 22 April 2022).
- Lupyan, G. How Reliable Is Perception? Philos. Top. 2017, 45, 81–106. [Google Scholar] [CrossRef] [Green Version]
- Sowman, M.; Hauck, M.; van Sittert, L.; Sundae, J. Marine Protected Area Management in South Africa: New Policies, Old Paradigms. Environ. Manag. 2011, 47, 573–583. [Google Scholar] [CrossRef]
- Niedziałkowski, K.; Paavola, J.; Jędrzejewska, B. Participation and protected areas governance: The impact of changing influence of local authorities on the conservation of the Białowieża Primeval Forest, Poland. Ecol. Soc. 2012, 17, 2. [Google Scholar] [CrossRef] [Green Version]
- Chidakel, A.; Candice, E.; Child, B. The comparative financial and economic performance of protected areas in the Greater Kruger National Park, South Africa: Functional diversity and resilience in the socio-economics of a landscape-scale reserve network. J. Sustain. Tour. 2020, 28, 1100–1119. [Google Scholar] [CrossRef]
Drivers | Model Path | Estimate (β1) | Standard Error | z-Value | p (>|z|) |
---|---|---|---|---|---|
Proximal drivers | |||||
Air pollution (Air) | Air → Pop | −0.029 | 0.065 | −0.451 | 0.652 |
Economy (Eco) | Eco → Pop | 0.736 | 0.091 | 8.339 | 0.000 * |
Biodiversity (Bio) | Bio → Pop | 0.350 | 0.069 | 5.045 | 0.000 * |
Governance (Gov) | Gov → Pop | 0.091 | 0.053 | 1.717 | 0.086 |
Distal drivers | |||||
Air pollution on Biodiversity | Air → Bio | 0.320 | 0.161 | 1.984 | 0.047 * |
Governance on Biodiversity | Gov → Bio | 0.261 | 0.131 | 1.994 | 0.046 * |
Economy on Biodiversity | Eco → Bio | 0.850 | 0.184 | 4.615 | 0.000 * |
Governance on Economy | Gov → Eco | −0.862 | 0.092 | −9.333 | 0.000 * |
Economy on Air pollution | Eco → Air | 0.812 | 0.146 | 5.550 | 0.000 * |
Governance on Air pollution | Gov → Air | −0.116 | 0.146 | −0.795 | 0.426 |
Drivers | Model Path | Estimate (β2) | Standard Error | z-Value | p (>|z|) |
---|---|---|---|---|---|
Proximal drivers | |||||
Air pollution (Air) | Air → Pop | 0.160 | 0.096 | 1.664 | 0.096 |
Economy (Eco) | Eco → Pop | 1.024 | 0.108 | 9.457 | 0.000 * |
Biodiversity (Bio)–Wetland area (size) | Bio → Pop | −0.191 | 0.077 | −2.482 | 0.013 * |
Governance (Gov) | Gov → Pop | 0.033 | 0.066 | 0.490 | 0.624 |
Distal drivers | |||||
Air pollution on Biodiversity | Air → Bio | 0.614 | 0.199 | 3.077 | 0.002 * |
Governance on Biodiversity | Gov → Bio | −0.059 | 0.157 | −0.374 | 0.709 |
Economy on Biodiversity | Eco → Bio | 0.251 | 0.253 | 0.990 | 0.322 |
Governance on Economy | Gov → Eco | −0.855 | 0.095 | −9.020 | 0.000 * |
Economy on Air pollution | Eco → Air | 1.000 | 0.143 | 6.994 | 0.000 * |
Governance on Air pollution | Gov → Air | 0.102 | 0.143 | 0.715 | 0.474 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phogole, B.; Yessoufou, K. Biodiversity and Economy but Not Social Factors Predict Human Population Dynamics in South Africa. Sustainability 2022, 14, 8668. https://doi.org/10.3390/su14148668
Phogole B, Yessoufou K. Biodiversity and Economy but Not Social Factors Predict Human Population Dynamics in South Africa. Sustainability. 2022; 14(14):8668. https://doi.org/10.3390/su14148668
Chicago/Turabian StylePhogole, Bopaki, and Kowiyou Yessoufou. 2022. "Biodiversity and Economy but Not Social Factors Predict Human Population Dynamics in South Africa" Sustainability 14, no. 14: 8668. https://doi.org/10.3390/su14148668
APA StylePhogole, B., & Yessoufou, K. (2022). Biodiversity and Economy but Not Social Factors Predict Human Population Dynamics in South Africa. Sustainability, 14(14), 8668. https://doi.org/10.3390/su14148668