Analysis of Agro Alternatives to Boost Cameroon’s Socio-Environmental Resilience, Sustainable Development, and Conservation of Native Forests
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Theoretical-Bibliographic Review
3.1.1. Sustainable Development
3.1.2. Governance
3.1.3. The Natural Resource “Curse” and Socio-Ecological Resilience
3.1.4. The Opportunity Cost of Cassava
- Access to new production techniques through mechanization and agricultural consultancies.
- Access to agricultural credit with the opening of micro-finance establishments and banks interested in this specialized line of credit.
- Access to markets through improved marketing channels and support for the promotion of Cameroonian agricultural products (such as yucca and maize) on the international market.
3.2. Empirical Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bele, M.; Somorin, O.; Sonwa, D.; Nkem, J.; Locatelli, B. Forests and climate change adaptation policies in Cameroon. Mitig. Adapt. Strateg. Glob. Change 2011, 16, 369–385. [Google Scholar] [CrossRef] [Green Version]
- Aquilas, N.; Mukong, A.; Kimengsi, J.; Ngangnchi, F. Economic activities and deforestation in the Congo basin: An environmental kuznets curve framework analysis. Environ. Chall. 2022, 8, 100553. [Google Scholar] [CrossRef]
- Tieguhong, J.C.; Ketchatang, P.T.; Chia, E.; Assembe-Mvondo, S.; Oeba, V.O. The role of the private forestry sector in response to climate change in central Africa: The case of Cameroon. Int. For. Rev. 2019, 21 (Suppl. S1), 112–125. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.; Tyukavina, A.; Thau, D.; Stehman, S.; Goetz, S.; Loveland, T. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Chia, E.; Tiani, A.; Sonwa, D. The State of Research on Effectiveness and Equity (2Es) in Forests Management Regimes in Cameroon and Its Relevance for REDD+. Environ. Nat. Resour. Res. 2013, 3, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Duguma, L.A.; Minang, P.A.; Foundjem-Tita, D.; Makui, P.; Mandiefe Piabuo, S. Prioritizing enablers for effective community forestry in Cameroon. Ecol. Soc. 2018, 23, 1. [Google Scholar] [CrossRef] [Green Version]
- Alemagi, D. Sustainable development in Cameroon’s forestry sector: Progress. Challenges and strategies for improvement. Afr. J. Environ. Sci. Technol. 2011, 5, 65–72. [Google Scholar] [CrossRef]
- Carodenuto, S.; Cerutti, P. Forest Law Enforcement, Governance and Trade (FLEGT) in Cameroon: Perceived private sector benefits from VPA implementation. For. Policy Econ. 2014, 48, 55–62. [Google Scholar] [CrossRef]
- Auzel, G.; Nguenang, M.; Feteké, R.; Delvingt, W. L’exploitation forestière artisanale des forêts communautaires au Cameroun: Vers des compromis écologiquement plus durables et socialement plus acceptable. Réseau For. Pour Développement Rural. 2001, 25, 1–12. [Google Scholar]
- World Resources Institute (WRI). Cameroon’s Forest Estate; Ministry of Forestry and Wildlife; World Resources Institute: Washington, DC, USA, 2014; Available online: http://wriorg.s3.amazonaws.com/s3fs-public/uploads/CMR_Poster_2014_english.pdf (accessed on 12 July 2021).
- Institut National de la Statistique (INS). Répertoire et Démographie des Entreprises Modernes en 2015. 3 ème Edition. 2015. Available online: www.statistics-cameroon.org (accessed on 3 September 2021).
- FAO (Food and Agriculture Organization). Global Forest Resources Assessment 2020: Main Report; Food and Agriculture Organization: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- African Development Bank (AFDB) Socio Economic Database: Cameroon, from Soci. Available online: https://dataportal.opendataforafrica.org/nbyenxf/afdb-socio-economic-database-1960-2020 (accessed on 20 June 2021).
- Hoare, A. Illegal Logging and Related Trade: The Response in Cameroon. Energy, Environment and Resources; Chatham House, the Royal Institute of International Affairs: London, UK, 2015; ISBN 978-1-78413-0312. [Google Scholar]
- Global Forest Review (GFR). 2020. Available online: https://www.globalforestwatch.org/dashboards/country/CMR. (accessed on 17 November 2020).
- Ickowitz, A.; Sills, E.; de Sassi, C. Estimating smallholder opportunity costs of REDD+: A pantropical analysis from households to carbon and back. World Dev. 2017, 95, 15–26. [Google Scholar] [CrossRef]
- Bayiha, B.; Yamb, E.; Valdès, J.; Sontia, J.; Metekong Ndigui Billong Nzengwa, R. Optimizing the Choice of Limestone Deposits for the Production of Portland Cement in Cameroon. Int. J. Mater. Sci. Appl. 2018, 7, 174–185. [Google Scholar] [CrossRef] [Green Version]
- D’Aquin Biyindi, T.; Kwefeu Mbakop, F.; Toumi, E.; Woumbeng Etonleu, B.; Pondi, J. Comparative Physico Mechanical Study of Cements CEM II 42.5R in Cameroon: Case of DANGOTE and CIMENCAM. Open J. Civ. Eng. 2019, 9, 18–34. [Google Scholar] [CrossRef] [Green Version]
- Crépy, L.; Petit, J.; Joly, N.; Wirquin, E.; Martin, P. First step towards bio-superplasticizers. In Proceedings of the 13th International Congress on the Chemistry of Cement, Madrid, Spain, 3–8 July 2011. [Google Scholar]
- Patel, G.; Deo, S. Parametric study of natural organic materials as admixture in concrete. Int. J. Appl. Eng. Res. 2016, 11, 6271–6277. [Google Scholar]
- FAO & UNEP. The State of the World’s Forests 2020. Forests, Biodiversity and People; FAO & UNEP: Rome, Italy, 2020; Available online: https://doi.org/10.4060/ca8642en (accessed on 8 September 2020).
- Spreafico, C. An analysis of design strategies for circular economy through life cycle assessment. Environ. Monit. Assess. 2022, 194, 180. [Google Scholar] [CrossRef] [PubMed]
- Penalva, C.; Alaminos, A.; Francés, F.; Santacreu, O. La Investigación Cualitativa, Técnicas de Investigación y Análisis con atlas.ti, Pydlos Ediciones; Universidad de Cuenca: Quito, Ecuador, 2015; ISBN 978-9978-14-303-2. [Google Scholar]
- Herrera, C. Investigación cualitativa y análisis de contenido temático. Orientación intelectual de revista Universum. Rev. Gen. Inf. Doc. 2017, 28, 119–142. [Google Scholar] [CrossRef] [Green Version]
- Baena Paz, G. Metodología de la Investigación; Grupo Editorial Patria: Mexico City, Mexico, 2008. [Google Scholar]
- Troncoso Pantoja, C.; Amaya-Placencia, A. Entrevista: Guía práctica para la recolección de datos cualitativos en investigación de salud Interview: A practical guide for qualitative data collection in health research. Rev. Fac. Med. 2017, 65, 329–332. [Google Scholar] [CrossRef]
- Efroymson, R.; Kline, K.; Angelsen, A.; Verburg, P.; Dale, V.; Langeveld, J.; McBride, A. A causal analysis framework for land-use change and the potential role of bioenergy policy. Land Use Policy 2016, 59, 516–527. [Google Scholar] [CrossRef] [Green Version]
- Leeman, J.; Baquero, B.; Bender, M.; Choy-Brown, M.; Ko, L.; Nilsen, P.; Wangen, M.; Birken, S. Advancing the use of organization theory in implementation science. Prev. Med. 2019, 129, 105832. [Google Scholar] [CrossRef]
- Eisenhardt, K. Building Theory from case study research. Acad. Manag. 1989, 4, 532–550. [Google Scholar] [CrossRef]
- Lihtonen, V. Metsätalouden Suunnittelu ja Järjestely [Planning and Organizing Forestry]; WSOY: Porvoo, Finland, 1959. [Google Scholar]
- Hall, R.; Ashford, N. Primer on the Emergence and Evolution of Sustainable Development (1951 to 2012); Virginia Tech: Blacksburg, VA, USA, 2012; Available online: https://ralphphall.files.wordpress.com/2012/11/primer_sustdev_2012-11-26.pdf (accessed on 22 January 2022).
- Broman, G.; Robert, K.-H. A framework for strategic sustainable development. J. Clean. Prod. 2017, 147, 17–31. [Google Scholar] [CrossRef]
- Jovovic, R.; Draskovic, M.; Delibasic, M.; Jovovic, M. The concept of sustainable regional development—Institutional aspects, policies and prospects. J. Int. Stud. 2017, 10, 255–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopnina, H. Sustainability: New strategic thinking for business. Environ. Dev. Sustain. 2017, 19, 27–43. [Google Scholar] [CrossRef] [Green Version]
- Cherrington, E.; Griffin, R.; Anderson, E.; Hernandez Sandoval, B.; Flores-Anderson, A.; Muench, R.; Markert, K.; Adams, E.; Limaye, A.; Irwin, D. Use of public Earth observation data for tracking progress in sustainable management of coastal forest ecosystems in Belize, Central America. Remote Sens. Environ. 2020, 245, 111798. [Google Scholar] [CrossRef]
- Carson, R. Silent Spring; Houghton Mifflin Company: Boston, MA, USA; Riverside Press: Cambridge, UK, 1962. [Google Scholar]
- Meadows, D.; Randers, J.; Meadows, D. The Limits to Growth: The 30-Year Update; Earthscan: London, UK, 2006. [Google Scholar]
- Ashrafi, M.; Adams, M.; Walker, T.; Magnan, G. How corporate social responsibility can be integrated into corporate sustainability: A theoretical review of their relationships. Int. J. Sustain. Dev. World Ecol. 2018, 25, 672–682. [Google Scholar] [CrossRef]
- Johnston, P.; Everard, M.; Santillo, D.; Robèrt, K.-H. Reclaiming the Definition of Sustainability. Environ. Sci. Pollut. Res. 2007, 14, 60–66. [Google Scholar] [CrossRef]
- Missimer, M.; Robèrt, K.-H.; Broman, G. A strategic approach to social sustainability—part 1: Exploring the social system. J. Clean. Prod. 2016, 140, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Peterson, N. Introduction to the special issue on social sustainability: Integration, context, and governance, Sustainability. Sci. Pract. Policy 2016, 12, 3–7. [Google Scholar] [CrossRef]
- Mensah, J. Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent Soc. Sci. 2019, 5, 1653531. [Google Scholar] [CrossRef]
- Goslinga, J.; Jonesa, M.; Arnella, A.; Watson, J.; Ventere, O.; Baqueroa, A.; Burgess, N. A global mapping template for natural and modified habitat across terrestrial. Earth Biol. Conserv. 2021, 250, 108674. [Google Scholar] [CrossRef]
- Lacroix, P.; Moser, F.; Benvenuti, A.; Piller, T.; Jensen, D.; Petersen, I.; Planque, M.; Ray, N. MapX: An open geospatial platform to manage, analyze and visualize data on natural resources and the environment. SoftwareX 2019, 9, 77–84. [Google Scholar] [CrossRef]
- Tobias, T. Preserving Ecosystem Services in Urban Regions: Challenges for Planning and Best Practice Examples from Switzerland. Integr. Environ. Assess. Manag. 2013, 9, 243–251. Available online: https://www.researchgate.net/figure/The-relationships-between-the-natural-resources-ecosystem-functions-and-ecosystem_fig1_234105361 (accessed on 26 June 2022). [CrossRef] [PubMed]
- Juma, C.; Lee, K.; Mathews, J. Innovation Capabilities for Sustainable Development in Africa. UNU-WIDER, Helsinki, Finland. 2014. Available online: https://www.wider.unu.edu (accessed on 6 January 2022).
- Fadhilah, Z.; Ramayah, T. Behind the Green Doors: What Management Practices Lead to Sustainable Innovation? Procedia-Soc. Behav. Sci. 2012, 65, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Tseng, M.-L.; Chiu, A.; Tan, R.; Siriban-Manalang, A. Sustainable consumption and production for Asia: Sustainability through green design and practice. J. Clean. Prod. 2013, 40, 1–5. [Google Scholar] [CrossRef]
- Rytteri, T.; Peltola, T.; Leskinen, L. Co-production of forestry science and society: Evolving interpretations of economic sustainability in Finnish forestry textbooks. J. For. Econ. 2016, 24, 21–36. [Google Scholar] [CrossRef]
- Stojanović, I.; Ateljević, J.; Stević, R. Good Governance as a Tool of Sustainable Development. Eur. J. Sustain. Dev. 2016, 5, 558–573. [Google Scholar] [CrossRef]
- Roper, S.; Tapinos, E. Taking risks in the face of uncertainty: An exploratory analysis of green innovation. Technol. Forecast. Soc. Change 2016, 112, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Thongplew, N.; Spaargaren, G.; Van Koppen, K. Companies in search of the green consumer: Sustainable consumption and production strategies of companies and intermediary organizations in Thailand. NJAS—Wagening J. Life Sci. 2017, 83, 12–21. [Google Scholar] [CrossRef]
- Zhang, D.; Morse, S.; Kambhampati, U. Sustainable Development and Corporate Social Responsibility; Routledge: Abingdon, UK, 2017; p. 286. [Google Scholar]
- Shepherd, D.A.; Patzelt, H. Researching Entrepreneurships’ Role in Sustainable Development; Trailblazing in Entrepreneurship; Palgrave Macmillan: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- D’Amatoa, D.; Korhonena, J.; Toppinen, A. Circular, Green, and Bio Economy: How Do Companies in Land-Use Intensive Sectors Align with Sustainability Concepts? Ecol. Econ. 2019, 158, 116–133. [Google Scholar] [CrossRef]
- Dogaru, L. Eco-Innovation and the Contribution of Companies to the Sustainable Development. Procedia Manuf. 2020, 46, 294–298. [Google Scholar] [CrossRef]
- Dogaru, L. Green Economy and Green Growth—Opportunities for Sustainable Development. Proceedings 2021, 63, 70. [Google Scholar] [CrossRef]
- Friant, M.; Vermeulen, W.; Salomone, R. A typology of circular economy discourses: Navigating the diverse visions of a contested paradigm. Resour. Conserv. Recycl. 2020, 161, 104917. [Google Scholar] [CrossRef]
- Patwa, N.; Sivarajah, U.; Seetharaman, A.; Sarkar, S.; Maiti, K.; Patwa, K. Towards a circular economy: An emerging economies context. J. Bus. Res. 2021, 122, 725–735. [Google Scholar] [CrossRef]
- Glinskiy, V.; Serga, L.; Alekseev, L. 17th Global Conference on Sustainable Manufacturing Territorial Differentiation as the Factor of Sustainable Economic Development. Procedia Manuf. 2020, 43, 263–268. [Google Scholar] [CrossRef]
- Kjellén, B. Multilateral Diplomacy and Science; the Columbia University Earth Institute: New York, NY, USA, 1999. [Google Scholar]
- Kjellén, B. A New Diplomacy for Sustainable Development: The Challenge of Global Change; Routledge: Oxford, UK, 2007. [Google Scholar]
- Adejumo, A.; Adejumo, O. Prospects for Achieving Sustainable Development through the Millennium Development Goals in Nigeria. Eur. J. Sustain. Dev. 2014, 3, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, K.; Lidskog, R. Boundary organizations and environmental governance: Performance, institutional design, and conceptual development. Clim. Risk Manag. 2018, 19, 1–11. [Google Scholar] [CrossRef]
- Paavola, J. Institutions and environmental governance: A reconceptualization. Ecol. Econ. 2007, 63, 93–103. [Google Scholar] [CrossRef]
- Smedby, N.; Quitzau, M.-B. Municipal Governance and Sustainability: The Role of Local Governments in Promoting Transitions: Municipal Governance and Sustainability. Environ. Policy Gov. 2016, 26, 323–326. [Google Scholar] [CrossRef]
- Hegger, D.; Runhaar, H.; Van Laerhoven, F.; Driessen, P. Towards explanations for stability and change in modes of environmental governance: A systematic approach with illustrations from the Netherlands. Earth Syst. Gov. 2020, 3, 100048. [Google Scholar] [CrossRef]
- Hawkins, C.; Wang, X. Sustainable Development Governance: Citizen Participation and Support Networks in Local Sustainability Initiatives. Public Work. Manag. Policy 2012, 17, 7–19. [Google Scholar] [CrossRef]
- Kardos, M. The reflection of good governance in sustainable development strategies. 8th International Strategic Management Conference. Procedia—Soc. Behav. Sci. 2012, 58, 1166–1173. [Google Scholar] [CrossRef] [Green Version]
- Ndeh, M. Good governance in Cameroon: Perceptions and practice in an emerging Cameroon by 2035. Glob. J. Political Sci. Adm. 2015, 3, 1–8. Available online: https://www.eajournals.org (accessed on 18 December 2021).
- Tunyi, A.; Ntim, C. Location Advantages, Governance Quality, Stock Market Development and Firm Characteristics as Antecedents of African M&As. J. Int. Manag. 2016, 22, 147–167. [Google Scholar] [CrossRef] [Green Version]
- Khodary, Y. Good governance: A new perspective for institutional reform—a comparative view of water, education and health institutions in Egypt. Int. J. Public Policy 2016, 12, 359–377. [Google Scholar] [CrossRef]
- Schoneveld, G. Host country governance and the African land rush: 7 reasons why large-scale farmland investments fail to contribute to sustainable development. Geoforum 2017, 83, 119–132. [Google Scholar] [CrossRef]
- Aljarallah, R. Natural resource dependency, institutional quality and human capital development in Gulf Countries. Heliyon 2020, 6, e04290. [Google Scholar] [CrossRef] [PubMed]
- Voß, J.; Bornemann, B. The politics of reflexive governance: Challenges for designing adaptive management and transition management. Ecol. Soc. 2011, 16, 9. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, M.; Wiering, M. The role of discourses in understanding institutional stability and change – an analysis of Dutch flood risk governance. J. Environ. Policy Plan. 2022, 24, 1–20. [Google Scholar] [CrossRef]
- Turner, R. Investigating how does governmentality and governance influence decision making on projects. Proj. Leadersh. Soc. 2020, 1, 100003. [Google Scholar] [CrossRef]
- MacCormick, J.S. Governing Organisational Culture; Paper prepared as part of the Director Tools Series; Australian Institute of Company Directors: Sydney, AU, Australia, 2019. [Google Scholar]
- Cameron, K.; Quinn, R. Diagnosing and Changing Organizational Culture: Based on the Competing Values Framework; Jossey-Bass: San Francisco, CA, USA, 2011. [Google Scholar]
- Johansson, J. Collaborative governance for sustainable forestry in the emerging bio-based economy in Europe. Curr. Opin. Environ. Sustain. 2018, 32, 9–16. [Google Scholar] [CrossRef]
- Mbzibain, A.; Ongolo, S. Complementarity, rivalry and substitution in the governance of forests: Learning from independent forest monitoring system in Cameroon. For. Policy Econ. 2019, 109, 101981. [Google Scholar] [CrossRef]
- González, N.; Kröger, M. The potential of Amazon indigenous agroforestry practices and ontologies for rethinking global forest governance. For. Policy Econ. 2020, 118, 102257. [Google Scholar] [CrossRef]
- Adeyeye, Y.; Hagerman, S.; Pelai, R. Seeking procedural equity in global environmental governance: Indigenous participation and knowledge politics in forest and landscape restoration debates at the 2016 World Conservation Congress. For. Policy Econ. 2019, 109, 102006. [Google Scholar] [CrossRef]
- Brown, H.C.; Nkem, J.N.; Sonwa, D.J.; Bele, Y. Institutional adaptive capacity and climate change response in the Congo Basin forests of Cameroon. Mitig. Adapt. Strateg. Glob. Change 2010, 15, 263–282. [Google Scholar] [CrossRef] [Green Version]
- Cronkleton, P.; Pulhin, J.; Saigal, S. Co-management in Community Forestry: How the Partial Devolution of Management Rights Creates Challenges for Forest Communities. Conserv. Soc. 2012, 10, 91–102. [Google Scholar] [CrossRef]
- Sharp, E.; Daley, D.; Lynch, M. Understanding Local Adoption and Implementation of Climate Change Mitigation Policy. Urban Aff. Rev. 2011, 47, 433–457. [Google Scholar] [CrossRef]
- Trudeau, D. Integrating social equity in sustainable development practice: Institutional commitments and patient capital. Sustain. Cities Soc. 2018, 41, 601–610. [Google Scholar] [CrossRef]
- Norrman, J.; Söderqvist, T.; Volchko, Y.; Back, P.; Bohgard, D.; Ringshagen, E.; Svensson, H.; Englöv, P.; Rosén, R. Enriching social and economic aspects in sustainability assessments of remediation strategies—Methods and implementation. Sci. Total Environ. 2020, 707, 136021. [Google Scholar] [CrossRef]
- Cohen, W.; Levinthal, D. Absorptive Capacity: A New Perspective on Learning and Innovation. Adm. Sci. Q. 1990, 35, 128–152. [Google Scholar] [CrossRef]
- Niosi, J.; Bas, T.G. The Competencies of Regions—Canada’s Clusters in Biotechnology. Small Bus. Econ. 2001, 17, 31–42. [Google Scholar] [CrossRef]
- Barkhordari, S.; Fattahi, M.; Ali Azimi, N. The Impact of Knowledge-Based Economy on Growth Performance: Evidence from MENA Countries. J. Knowl. Econ. 2018, 37, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Milán-García, J.; Uribe-Toril, J.; Ruiz-Real, J.; Valenciano, J. Sustainable Local Development: An Overview of the State of Knowledge. Resources 2019, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Toma, S.G. Learning from the Asian Tigers: Lessons in Economic Growth Annals—Economy Series, Constantin Brancusi University, Faculty of Economics. Ann.-Econ. Ser. 2019, 3, 63–69. [Google Scholar]
- Watson, J.K. Asian Tigers: Singapore, Hong Kong, Taiwan, and South Korea. Encycl. Postcolonial Stud. 2016, 1, 1–11. [Google Scholar]
- Amiri, H.; Samadian, F.; Yahoo, M.; Jamali, S. Natural resource abundance, institutional quality and manufacturing development: Evidence from resource-rich countries. Resources Policy 2019, 62, 550–560. [Google Scholar] [CrossRef]
- Minot, N. Food price volatility in sub-Saharan Africa: Has it really increased? Food Policy 2014, 45, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Fasanya, O.; Odudu, F. Modeling return and volatility spillovers among food prices in Nigeria. J. Agric. Food Res. 2020, 2, 100029. [Google Scholar] [CrossRef]
- Lashitew, A.; Werker, E. Do natural resources help or hinder development? Resource abundance, dependence, and the role of institutions. Resour. Energy Econ. 2020, 61, 101183. [Google Scholar] [CrossRef]
- Carpenter, S.; Walker, B.; Anderies, J.; Abel, N. From metaphor to measurement: Resilience of what to what? Ecosystems 2001, 4, 765–781. [Google Scholar] [CrossRef]
- Westerman, K.; Oleson, K.; Harri, A. Building Socio-ecological Resilience to Climate Change through Community-Based Coastal Conservation and Development: Experiences in Southern Madagascar. West. Indian Ocean. J. Mar. Sci. 2012, 11, 87–98. [Google Scholar]
- Cinner, J.; Barnes, M. Social Dimensions of Resilience in Social-Ecological Systems. One Earth Primer 2019, 1, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Li, Y. Resilience and sustainable development goals based social-ecological indicators and assessment of coastal urban areas. A case study of Dapeng New District, Shenzhen, China. Watershed Ecol. Environ. 2020, 2, 6–15. [Google Scholar] [CrossRef]
- Plant, R. Landscape as a Scaling Strategy in Territorial Development. Sustainability 2022, 14, 3089. [Google Scholar] [CrossRef]
- González-Quintero, C.; Avila-Foucat, V. Operationalization and Measurement of Social-Ecological Resilience: A Systematic Review. Sustainability 2019, 11, 6073. [Google Scholar] [CrossRef] [Green Version]
- Heslinga, J.; Groote, P.D.; Vanclay, F. Using a social-ecological systems perspective to understand tourism and landscape interactions in coastal areas. J. Tour. Futures 2017, 3, 23–38. [Google Scholar] [CrossRef]
- Kohsaka, R.; Rogel, M. Partnerships for the Goals. Traditional and Local Knowledge for Sustainable Development: Empowering the Indigenous and Local Communities of the World. In Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Yang, B.; Feldman, M.; Li, S. The status of perceived community resilience in transitional rural society: An empirical study from central China. J. Rural. Stud. 2020, 80, 427–438. [Google Scholar] [CrossRef]
- El-Sharkawy, M. Cassava biology and physiology. Plant Mol. Biol. 2004, 56, 481–501. [Google Scholar] [CrossRef] [PubMed]
- Spencer, D.; Ezedinma, C. Cassava cultivation in sub-Saharan Africa. In Achieving Sustainable Cultivation of Cassava; Hershey, C.H., Ed.; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2017; Volume 1, pp. 123–148. [Google Scholar] [CrossRef]
- Akinsanya, A.; Afolami, S.; Kulakow, P.; Parkes, E.; Coyne, D. Popular Biofortified Cassava Cultivars are Heavily Impacted by Plant Parasitic Nematodes, Especially Meloidogyne Spp. Plants 2020, 9, 802. [Google Scholar] [CrossRef] [PubMed]
- Ngome, A.F.; Amougou, M.F.; Tata, P.I.; Ndindeng, S.A.; Mfopou, M.Y.; Mapiemfu-Lamare, D.; Njeudeng, T.S. Effects of cassava cultivation on soil quality indicators in the humid forest of Cameroon. Greener J. Agric. Sci. 2013, 3, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Salvador, E.; Steenkamp, V.A.; McCrindle, C. Production, consumption and nutritional value of cassava (Manihot esculenta, Crantz) in Mozambique: An overview. J. Agric. Biotechnol. Sustain. Dev. 2014, 6, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Temegne, N.C.; Ngome, A.F.; Fotso, K.A. Influence de la composition chimique du sol sur la teneur en éléments nutritifs et le rendement du manioc (Manihot esculenta Crantz, uphorbiaceae) dans deux zones agro-écologiques du Cameroun. Int. J. Biol. Chem. Sci. 2015, 9, 2776–2788. [Google Scholar] [CrossRef] [Green Version]
- Carine, T.; Mouafor, B.I.; Ngome, A.F. Agro-morphological Characterization of Cassava (Manihot esculenta Crantz) Collected in the Humid Forest and Guinea Savannah Agro-ecological Zones of Cameroon. Greener J. Agric. Sci. 2016, 6, 209–225. [Google Scholar] [CrossRef]
- McDougall, J.; Thomas, L.; McDougall, C.; Moloney, G.; Saul, B.; Finnell, J.; Richardson, K.; Mae Petersen, K. Effects of 7 days on an ad libitum low-fat vegan diet: The McDougall Program cohort. Nutr. J. 2014, 13, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jukanti, A.; Pautong, P.; Liu, Q.; Sreenivasulu, N. Low glycemic index rice—A desired trait in starchy staples. Trends Food Sci. Technol. 2020, 106, 132–149. [Google Scholar] [CrossRef]
- FAO. Food Outlook—Biannual Report on Global Food Markets; FAO: Rome, Italy, 2018; p. 104. [Google Scholar]
- Oyewole, F.; Eforuoku, F. Value Addition on Cassava Wastes among Processors in Oyo State, Nigeria. J. Agric. Ext. 2019, 23, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Ekop, I.; Simonyan, K.; Evwierhoma, E. Utilization of Cassava Wastes for Value Added Products: An Overview. Int. J. Sci. Eng. Sci. 2019, 3, 31–39. [Google Scholar]
- Ndam, Y.; Mounjouenpou, P.; Kansci, G.; Kenfack, M.; Meguia, M.; Natacha, N.; Eyenga, N.; Akhobakoh, M.; Nyegue, A. Influence of cultivars and processing methods on the cyanide contents of cassava (Manihot esculenta Crantz) and its traditional food products. Sci. Afr. 2019, 5, e00119. [Google Scholar] [CrossRef]
- Oteh, O.; Hefferon, K.; Agwu, N. Moving Biofortified Cassava Products Closer to Market in Nigeria. Front. Sustain. Food Syst. 2020, 4, 1–11. [Google Scholar] [CrossRef]
- Tomlinson, K.; Bailey, A.; Alicai, T.; Seal, S.; Foster, G. Cassava brown streak disease: Historical timeline, current knowledge and future prospects. Mol. Plant Pathol. Br. Soc. Plant Pathol. 2017, 19, 1282–1294. [Google Scholar] [CrossRef] [Green Version]
- Sheat, S.; Fuerholzner, B.; Stein, B.; Winter, S. Resistance Against Cassava Brown Streak Viruses from Africa in Cassava Germplasm from South America. Front. Plant Sci. 2019, 10, 567. [Google Scholar] [CrossRef]
- Mohamed, E. Resource Rents, Human Development and Economic Growth in Sudan. Economies 2020, 8, 99. [Google Scholar] [CrossRef]
- Ferris, A.; Stutt, R.O.; Godding, D.; Gilligan, C. Computational models to improve surveillance for cassava brown streak disease and minimize yield loss. PLoS Comput. Biol. 2020, 16, e1007823. [Google Scholar] [CrossRef]
- IMARC Group. Cassava Starch Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2019–2024; Market Report; IMARC Group: Noida, India, 2019. [Google Scholar]
- Organización de las Naciones Unidas Para la Alimentación y la Agricultura-FAO. The Word Cassava Economy-Report; FAO: Rome, Italy, 1997. [Google Scholar]
- Organización de las Naciones Unidas Para la Alimentación y la Agricultura-FAO. Food Outlook-Global Market Analysis: Cassava; FAO: Rome, Italy, 2009. [Google Scholar]
- Bilong, E.; Abossolo-Angue, M.; Ngome Ajebesone, F.; Anaba, D.; Madong, B.; Nomoa, L.; Bilong, P. Improving soil physical properties and cassava productivity through organic manures management in the southern Cameroon. Heliyon 8 2022, 8, e09570. [Google Scholar] [CrossRef] [PubMed]
- Echebiri, R.; Edaba, M. Production and Utilization of Cassava in Nigeria: Prospect for Food Security and Infant Nutrition. Prod. Agric. Technol. 2008, 4, 38–52. [Google Scholar]
- Hauser, S.; Nolte, C.; Carsky, R.J. What role can planted fallows play in the humid and subhumid zones of West and Central Africa? Nutr. Cycl. Agroecosyst. 2006, 76, 297–318. [Google Scholar] [CrossRef]
- Tellen, V.; Yerima, B. Effects of land use change on soil physicochemical properties in selected areas in the North West region of Cameroon. Environ. Syst. Resour. 2018, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Cusack, D.; Karpman, J.; Ashdown, D.; Cao, Q.; Ciochina, M.; Halterman, S.; Lydon, S.; Neupane, A. Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale. Rev. Geophys. 2016, 54, 1–88. [Google Scholar] [CrossRef] [Green Version]
- Tieguhong, J. Report on Public-Private Partnerships (PPP) in the Forestry Sector in Cameroon; African Forest Forum: Nairobi, Kenya, 2016. [Google Scholar]
- De Wasseige, C.; Tadoum, M.; Eba’aAtyi, R.; Doumenge, C. The Forests of the Congo Basin—Forests and Climate Change; Weyrich: Neufchâteau, Belgium, 2015; ISBN 978-2-87489-355-1. [Google Scholar]
- Luttrell, C.; Sills, E.; Aryani, R.; Ekaputri, A.; Evinke, M. Beyond opportunity costs: Who bears the implementation costs of reducing emissions from deforestation and degradation? Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 291–310. [Google Scholar] [CrossRef] [Green Version]
- Versino, F.; López, O.; García, M. Exploitation of by-products from cassava and ahipa starch extraction as filler of thermoplastic corn starch. Compos. Part B Eng. 2020, 182, 107653. [Google Scholar] [CrossRef]
- Suryaningrat, I.; Amilia, W.; Choiron, M. Current Condition of Agroindustrial Supply Chain of Cassava Products: A Case Survey of East Java, Indonesia. Agric. Agric. Sci. Procedia 2015, 3, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Dudu, O.; Ma, Y.; Ajibola, A.; Oyedeji, B.; Oyeyinka, S.; Ogungbemi, J. Bread-making potential of heat-moisture treated cassava flour-additive complexes. LWT-Food Sci. Technol. 2020, 130, 109477. [Google Scholar] [CrossRef]
- Oni, D.; Mwero, J.; Kabubo, C. The Effect of Cassava Starch on the Durability Characteristics of Concrete. Open Civ. Eng. J. 2020, 14, 289–301. [Google Scholar] [CrossRef]
- Akindahunsi, A.A.; Uzoegbo, H.C. Strength and Durability Properties of Concrete with Starch Admixture. Int. J. Concr. Struct. Mater. 2015, 9, 323–335. [Google Scholar] [CrossRef] [Green Version]
- Satin, M. Functional properties of starches. In Spotlight Tropical Starch Misses Market; AGSI report, Agriculture 21; FAO-Magazine: Rome Italy, 1998; p. 11. [Google Scholar]
- Sindhu, N.; Sivakamasundari, S.; Debojyoti, P. Study on flexural behavior of r.c beam using different starches as an admixture. Int. J. Pure Appl. Math. 2018, 118, 24. [Google Scholar]
- Kariuki, S.; Muthengia, J.; Erastus, M.; Leonard, G.; Marangu, J. Characterization of composite material from the copolymerized polyphenolic matrix with treated cassava peels starch. Heliyon 2020, 6, e04574. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Scrivener, K.; Yu, C.; Ouzia, A.; Liu, J. Effect of a novel starch-based temperature rise inhibitor on cement hydration and microstructure development: The second peak study. Cem. Concr. Res. 2021, 141, 106325. [Google Scholar] [CrossRef]
- Izaguirre, A.; Lanas, J.; Alvarez, J. Behaviour of starch as a viscosity modifier for aerial lime-based mortars. Carbohydr. Polym. 2010, 80, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Akindahunsi, A.; Schmidt, W. Effect of cassava starch on shrinkage characteristics of concrete. Afr. J. Sci. Technol. Innov. Dev. 2019, 11, 441–447. [Google Scholar] [CrossRef]
- Akindahunsi, A.; Schmidt, W.; Uzoegbo, H.; Iyuke, S. The Influence of Starches on some Properties of Concrete. Johannesburg, South Africa. Adv. Cem. Concr. Technol. Afr. 2013, 637–646. [Google Scholar]
- Joseph, S.; Xavier, A. Effect of Starch Admixtures on Fresh and Hardened Properties of Concrete. Int. J. Sci. Eng. Res. 2016, 4, 27–30. [Google Scholar]
- Syamala Devi, K.; Vijaya Lakshmi, V.; Alakanandana, A. Impacts of cement industry on environment—An overview. Asia Pac. J. Res. 2017, 1, 156–161. [Google Scholar]
- Arachchige, U.; Alagiyawanna, A.; Balasuriya, B.; Chathumini, K.; Dassanayake, N.; Devasurendra, J. Environmental Pollution by Cement Industry. Int. J. Res. 2019, 6, 631–635. [Google Scholar]
- Baenla, J.; Bike Mbahb, J.B.; Djon Li Ndjock, I.; Elimbi, A. Partial replacement of low reactive volcanic ash by cassava peel ash in the synthesis of volcanic ash based geopolymer. Constr. Build. Mater. 2019, 227, 116689. [Google Scholar] [CrossRef]
- Luke, K.; Luke, G. Effect of sucrose on the retardation of Portland cement. Adv. Cem. Res. 2000, 12, 9–18. [Google Scholar] [CrossRef]
- Peschard, A.; Govin, A.; Grosseau, P.; Guilhot, B.; Guyonnet, R. Effect of polysaccharides on the hydration of cement paste at early ages. Cem. Concr. Res. 2004, 34, 2153–2158. [Google Scholar] [CrossRef] [Green Version]
- Okafor, F. The Performance of Cassava Flour as a Water-Reducing Admixture for Concrete. Niger. J. Technol. 2010, 29, 106–112. [Google Scholar]
- Akindahunsi, A.A.; Schmidt, W.; Uzoegbo, H.C.; Iyuke, E.S. Technological advances in the potential uses of cassava starch in concrete. In Proceedings of the 6th International Conference of Africa Materials Research Society, Victoria Falls, Zimbabwe, 11–16 December 2011. [Google Scholar]
- Akindahunsi, A.; Uzoegbo, H.; Iyuke, S. Use of starch modified concrete as a repair material. In Proceedings of the 3rd International Conference on Concrete Repair, Rehabilitation and Retrofitting, Cape Town, South Africa, 3–5 September 2012. [Google Scholar]
- Lasheras-Zubiate, M.; Navarro-Blasco, I.; Fernández, J.M.; Iverez, J.I. Effect of the addition of chitosan ethers on the fresh state properties of cement mortars. Cem. Concr. Compos. 2012, 34, 964–973. [Google Scholar] [CrossRef] [Green Version]
- Hawkes, J. The Fourth Pillar of Sustainability: Culture’s Essential Role in Public Planning; Common Ground P/L: Melbourne, Australia, 2001. [Google Scholar]
- Feindt, P.; Weiland, S. Reflexive governance: Exploring the concept and assessing its critical potential for sustainable development. Introduction to the special issue. J. Environ. Policy Plan. 2018, 20, 661–674. [Google Scholar] [CrossRef] [Green Version]
- Dyck, B.; Walker, K.; Caza, A. Antecedents of sustainable organizing: A look at the relationship between organizational culture and the triple bottom line. J. Clean. Prod. 2019, 231, 235–1247. [Google Scholar] [CrossRef]
- Isensee, C.; Teuteberg, F.; Griese, K.-M.; Topi, C. The relationship between organizational culture, sustainability, and digitalization in SMEs: A systematic review. J. Clean. Prod. 2020, 275, 122944. [Google Scholar] [CrossRef]
- Burford, G.; Hoover, E.; Velasco, I.; Janoušková, S.; Jimenez, A.; Piggot, G.; Podger, D.; Harder, M. Bringing the “Missing Pillar” into Sustainable Development Goals: Towards Intersubjective Values-Based Indicators. Sustainability 2013, 5, 3035–3059. [Google Scholar] [CrossRef] [Green Version]
- Taffa Ariti, A.; van Vliet, J.; Verburg, P. What restrains Ethiopian NGOs to participate in the development of policies for natural resource management? Environ. Sci. Policy 2018, 89, 292–299. [Google Scholar] [CrossRef]
- Brehony, P.; Tyrrell, P.; Kamanga, J.; Waruingi, L.; Kaelo, D. Incorporating social-ecological complexities into conservation policy. Biol. Conserv. 2020, 248, 108697. [Google Scholar] [CrossRef] [PubMed]
- Cwikła, M.; Góral, A.; Bogacz-Wojtanowska, E.; Dudkiewicz, M. Project-Based Work and Sustainable Development—A Comparative Case Study of Cultural Animation Projects. Sustainability 2020, 12, 6519. [Google Scholar] [CrossRef]
- Piabuo, S.M.; Foundjem-Tita, D.; Minang, P.A. Community forest governance in Cameroon: A review. Ecol. Soc. 2018, 23, 34. [Google Scholar] [CrossRef]
- Kimengsi, J.; Mukong, A.; Giessen, L.; Pretzsch, J. Institutional dynamics and forest use practices in the Santchou Landscape of Cameroon. Environ. Sci. Policy 2022, 128, 68–80. [Google Scholar] [CrossRef]
- Sikod, F.; Teke, J. Governance and Economic Growth in Cameroon; Cameroon AERC Research Paper 250; African Economic Research Consortium: Nairobi, Kenya, 2012. [Google Scholar]
- Altieri, M.; Nicholls, C.; Henao, A.; Lana, M. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef] [Green Version]
- Garnett, S.T.; Burgess, N.D.; Fa, J.E.; Fernandez-Llamazares, A.; Molnar, Z.; Robinson, C.J.; Watson, J.E.; Zander, K.K.; Austin, B.; Brondizio, E.S.; et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 2018, 1, 369–374. [Google Scholar] [CrossRef]
- Caballero-Serrano, V.; McLaren, B.; Carrasco, J.; Alday, J.; Fiallos, L.; Amigo, J.; Onaindia, M. Traditional ecological knowledge and medicinal plant diversity in Ecuadorian Amazon home gardens. Glob. Ecol. Conserv. 2019, 17, e00524. [Google Scholar] [CrossRef]
- Hill, S.; Arnell, A.; Maney, C.; Butchart, S.; Hilton-Taylor, C.; Ciciarelli, C.; Davis, C.; Dinerstein, E.; Purvis, A.; Burgess, N. Measuring forest biodiversity status and changes globally. Front. For. Glob. Chang. 2019, 2, 70. [Google Scholar] [CrossRef]
- Aquilas, N.A.; Forgha, N.G.; Agbor, M.S. Testing the Environmental Kuznets Curve hypothesis for the depletion of natural resources in Cameroon. J. Econ. Manag. Sci. 2019, 1, 122–142. [Google Scholar]
- Kimengsi, J.N.; Balgah, S.N. Colonial hangover and institutional bricolage processes in forest use practices in Cameroon. For. Policy Econ. 2021, 125, 102406. [Google Scholar] [CrossRef]
- Bruggeman, D.; Meyfroidt, P.; Lambin, E. Production forests as a conservation tool: Effectiveness of Cameroon’s land use zoning policy. Land Use Policy 2015, 42, 151–164. [Google Scholar] [CrossRef]
- Official Journal of the European Union (OJEU). Voluntary Partnership Agreement between the European Union and the Republic of Cameroon on Forest Law Enforcement, Governance and Trade in Timber and Derived Products to the European Union (FLEGT), L 92/4. 2011. Available online: https://eur-lex.europa.eu/legal-content/EN (accessed on 17 January 2021).
- Minang, P.; McCall, M.; Skutsch, M.; Verplanke, J. A data support infrastructure for Clean Development Mechanism forestry implementation: An inventory perspective from Cameroon. Mitig. Adapt. Strateg. Glob. Chang. 2007, 13, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Ahlborg, H.; Boräng, F.; Jagers, S.; Söderholm, P. Provision of electricity to African households: The importance of democracy and institutional quality. Energy Policy 2015, 87, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Growth and Employment Strategy Paper (GESP). Reference Framework for Government Action for the Period 2001–2020; Republic of Cameroon; Internat Monetary Fund: Washington, DC, USA, 2010; p. 172. [Google Scholar]
- Arslan, M.; Alqatan, A. Role of institutions in shaping corporate governance system: Evidence from emerging economy. Heliyon 2020, 6, e03520. [Google Scholar] [CrossRef] [PubMed]
- Acosta, L.; Maharjan, P.; Peyriere, H.; Jill Mamiit, R. Natural capital protection indicators: Measuring performance in achieving the Sustainable Development Goals for green growth transition. Environ. Sustain. Indic. 2020, 8, 100069. [Google Scholar] [CrossRef]
- Fernandez, L.; Gutierrez, M. Bienestar Social, Económico y Ambiental para las Presentes y Futuras Generaciones. Inf. Tecnológica 2013, 24, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Bas, T.G.; Oliu, C. Innovation strategy management survey of the Chilean biomedical industry. Assessment of windows of opportunities to reduce technological gaps. Int. J. Health Plan. Manag. 2018, 33, e512–e530. [Google Scholar] [CrossRef]
- Joa, B.; Winkel, J.; Primmer, E. The unknown known—A review of local ecological knowledge in relation to forest biodiversity conservation. Land Use Policy 2018, 79, 520–530. [Google Scholar] [CrossRef]
- Joa, B.; Schraml, U. Conservation practiced by private forest owners in Southwest Germany—The role of values, perceptions and local forest knowledge. For. Policy Econ. 2020, 115, 102141. [Google Scholar] [CrossRef]
Year | Total Forest Area (MH) ¥ | Forest as Percentage of Land Area (%) | Agricultural Land as Percentage of Land Area (%) | Forest Land Decreasing per Year (%) | Log Industry Production (m3) | Log Industry Permanent Employees | Agricultural Permanent Employees | Total Population Permanent Employed |
---|---|---|---|---|---|---|---|---|
1999 | 22 | 47 | 19 | 1 | 3.0 mill | UN | UN | UN |
2009 | 20 | 43 | 20 | 1 | 2.4 mill | 49,993 | 26,530 | 859,000 |
2015 | 19 | 40 | 21 | 1 | 3.2 mill | 59,067 α | 57,522 α | 1,183,752 α |
NGO | Banks Sponsors | Forestry Companies | Collective Communities | Political Stakeholders | Political Employees | Others | Direction |
---|---|---|---|---|---|---|---|
6 NGO Directors | 1 Fund manager and funder | 1 Forest operator | 1 Chief Bantou | 1 Official of the Ministry of Forestry | 1 Departmental delegate | 1 Delegate of a community forest | 1 Regional Director of company |
3 NGO Representatives | 2 Funder representative | 1 Company president | 2 Village chiefs (Baka community) | 1 Departmental delegate | 1 Sub-prefect | 1 Forestry Consultant—Former Forester | 2 Site Director, Group |
1 NGO Forest-Environment advisor | 1 Funder | 3 Company | 1 Community Forest in the central region | 1 Head of certification office | |||
1 Project coordinator and funder | 1 Managing Director of the company | 1 Community Forest in the southern region (village chiefs) | 1 Certification office coordinator | ||||
1 Internal certification director of the company | 3 Community Forest in the south-east region (Chief, president of the GIC, advisor) | 1 Model forests | |||||
1 Managing Director of the company | 1 Community Forest of the southern region (Member of the GIC) | ||||||
10 | 5 | 8 | 9 | 2 | 2 | 5 | 3 |
44 Stakeholders |
Year | World | Africa | % World | Cameroon | % World | % of Africa |
---|---|---|---|---|---|---|
2015 | 277,072,000 | 152,822,000 | 3.27 | 5,000,000 | 1.8 | 3.27 |
2016 | 276,510,000 | 155,607,000 | 3.32 | 5,170,000 | 1.87 | 3.32 |
2017 | 275,655,000 | 157,453,000 | 3.39 | 5,799,000 | 1.94 | 3.42 |
2018 (estimated) | 277,070,000 | 160,730,000 | 3.36 | 5,400,000 | 1.95 | 3.36 |
Production Management Model | Share of Total Forests | Type of Partnership |
---|---|---|
Forest concessions/forest management units | 30.64% | Government in partnership with the private timber sector |
Community forests | 8.04% | Government in partnership with local communities |
Council forests | 6.71% | Government in partnership with local councils |
Sale of standing volumes | 1.65% | Government in partnership with the private sector |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bas, T.G.; Gagnon, J.; Gagnon, P.; Contreras, A. Analysis of Agro Alternatives to Boost Cameroon’s Socio-Environmental Resilience, Sustainable Development, and Conservation of Native Forests. Sustainability 2022, 14, 8507. https://doi.org/10.3390/su14148507
Bas TG, Gagnon J, Gagnon P, Contreras A. Analysis of Agro Alternatives to Boost Cameroon’s Socio-Environmental Resilience, Sustainable Development, and Conservation of Native Forests. Sustainability. 2022; 14(14):8507. https://doi.org/10.3390/su14148507
Chicago/Turabian StyleBas, Tomas Gabriel, Jacques Gagnon, Philippe Gagnon, and Angela Contreras. 2022. "Analysis of Agro Alternatives to Boost Cameroon’s Socio-Environmental Resilience, Sustainable Development, and Conservation of Native Forests" Sustainability 14, no. 14: 8507. https://doi.org/10.3390/su14148507
APA StyleBas, T. G., Gagnon, J., Gagnon, P., & Contreras, A. (2022). Analysis of Agro Alternatives to Boost Cameroon’s Socio-Environmental Resilience, Sustainable Development, and Conservation of Native Forests. Sustainability, 14(14), 8507. https://doi.org/10.3390/su14148507