Elemental Stoichiometry (C, N, P) of Soil in the Wetland Critical Zone of Dongting Lake, China: Understanding Soil C, N and P Status at Greater Depth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Soil Sampling and Measurements
2.2.1. Sample Collection
2.2.2. Soil Sampling and Measurements
2.3. Data Analyses
3. Results and Discussion
3.1. Physico-Chemical Properties of Soil
3.2. Spatial Changes of C, N, P Contents in Soils
3.3. Ecological Stoichiometry Characteristics of Soil
3.4. Influencing Factors of Soil C, N and P Content and Ecological Stoichiometric Ratio
3.5. Is There a Stable Redfield Ratio in the Critical Zone of the Lake Wetlands?
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burkett, V.; Kusler, J. Climate change: Potential impacts and interactions in wetlands of the untted states 1. Jawra J. Am. Water Resour. Assoc. 2000, 36, 313–320. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Bernal, B.; Hernandez, M.E. Ecosystem services of wetlands. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Goshtasbi, H.; Atazadeh, E.; Fathi, M.; Movafeghi, A. Using physicochemical and biological parameters for the evaluation of water quality and environmental conditions in international wetlands on the Southern part of Lake Urmia, Iran. Environ. Sci. Pollut. Res. 2022, 29, 18805–18819. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Xia, G.; Yang, W.; Zhu, Y.; Wang, G.; Shen, W. Response of soil C:N:P stoichiometry, organic carbon stock, and release to wetland grasslandification in Mu Us Desert. J. Soil. Sediment. 2019, 19, 3954–3968. [Google Scholar] [CrossRef]
- Achat, D.L.; Augusto, L.; Gallet-Budynek, A.; Loustau, D. Future challenges in coupled C–N–P cycle models for terrestrial ecosystems under global change: A review. Biogeochemistry 2016, 131, 173–202. [Google Scholar] [CrossRef]
- Wang, Y.P.; Houlton, B.Z.; Field, C.B. A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Glob. Biogeochem Cycles 2007, 21. [Google Scholar] [CrossRef]
- Hes, E.M.; van Dam, A.A. Modelling nitrogen and phosphorus cycling and retention in Cyperus papyrus dominated natural wetlands. Environ. Model. Softw 2019, 122, 104531. [Google Scholar] [CrossRef]
- Stagg, C.L.; Schoolmaster, D.R.; Krauss, K.W.; Cormier, N.; Conner, W.H. Causal mechanisms of soil organic matter decomposition: Deconstructing salinity and flooding impacts in coastal wetlands. Ecology 2017, 98, 2003–2018. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef]
- Wang, H. Regional assessment of ecological risk caused by human activities on wetlands in the Muleng-Xingkai Plain of China using a pressure–capital–vulnerability–response model. Wetl. Ecol. Manag. 2022, 30, 111–126. [Google Scholar] [CrossRef]
- Redfield, A.C. The biological control of chemical factors in the environment. Am. Sci. 1958, 46, 221A–230A. [Google Scholar]
- Sardans, J.; Rivas-Ubach, A.; Peñuelas, J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives. Biogeochemistry 2012, 111, 1–39. [Google Scholar] [CrossRef]
- Sardans, J.; Janssens, I.A.; Ciais, P.; Obersteiner, M.; Peñuelas, J. Recent advances and future research in ecological stoichiometry. Perspect. Plant Ecol. Evol. Syst. 2021, 50, 125611. [Google Scholar] [CrossRef]
- Hopke, P.K. Chemometrics applied to environmental systems. Chemom. Intell. Lab. 2015, 149, 205–214. [Google Scholar] [CrossRef]
- Isles, P.D.F. The misuse of ratios in ecological stoichiometry. Ecology 2020, 101, e3153. [Google Scholar] [CrossRef]
- Zechmeister-Boltenstern, S.; Keiblinger, K.M.; Mooshammer, M.; Peñuelas, J.; Richter, A.; Sardans, J.; Wanek, W. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol. Monogr. 2015, 85, 133–155. [Google Scholar] [CrossRef] [Green Version]
- Heuck, C.; Smolka, G.; Whalen, E.D.; Frey, S.; Gundersen, P.; Moldan, F.; Fernandez, I.J.; Spohn, M. Effects of long-term nitrogen addition on phosphorus cycling in organic soil horizons of temperate forests. Biogeochemistry 2018, 141, 167–181. [Google Scholar] [CrossRef]
- Wang, M.; Gong, Y.; Lafleur, P.; Wu, Y. Patterns and drivers of carbon, nitrogen and phosphorus stoichiometry in Southern China’s grasslands. Sci. Total Environ. 2021, 785, 147201. [Google Scholar] [CrossRef]
- Fan, H.; Wu, J.; Liu, W.; Yuan, Y.; Hu, L.; Cai, Q. Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant Soil 2015, 392, 127–138. [Google Scholar] [CrossRef]
- Zeng, Q.; Li, X.; Dong, Y.; An, S.; Darboux, F. Soil and plant components ecological stoichiometry in four steppe communities in the Loess Plateau of China. Catena 2016, 147, 481–488. [Google Scholar] [CrossRef]
- Chorover, J.; Kretzschmar, R.; Garcia-Pichel, F.; Sparks, D.L. Soil biogeochemical processes within the critical zone. Elements 2007, 3, 321–326. [Google Scholar] [CrossRef]
- Pujari, P.R.; Jain, V.; Singh, V.; Sr Ee Lash, K.; Sekhar, M. Critical zone: An emerging research area for sustainability. Curr. Sci. 2020, 118, 1487–1488. [Google Scholar]
- Dawson, T.E.; Hahm, W.J.; Crutchfield-Peters, K. Digging deeper: What the critical zone perspective adds to the study of plant ecophysiology. New Phytol. 2020, 226, 666–671. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Hou, L.; Yang, Y.; Zhou, L.; Meadows, M.E. The case for a critical zone science approach to research on estuarine and coastal wetlands in the Anthropocene. Estuar. Coast. 2021, 44, 911–920. [Google Scholar] [CrossRef]
- Parsekian, A.D.; Singha, K.; Minsley, B.J.; Holbrook, W.S.; Slater, L. Multiscale geophysical imaging of the critical zone. Rev. Geophys. 2015, 53, 1–26. [Google Scholar] [CrossRef]
- Singha, K.; Navarre-Sitchler, A. The importance of groundwater in critical zone science. Groundwater 2022, 60, 27–34. [Google Scholar] [CrossRef]
- Ma, L.; Sun, R.; Kazemi, E.; Pang, D.; Zhang, Y.; Sun, Q.; Zhou, J.; Zhang, K. Evaluation of ecosystem services in the Dongting Lake wetland. Water 2019, 11, 2564. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Bo, J.; Yan, T.; Robert, C.; Yang, G. Lake-wetland ecosystem services modeling and valuation: Progress, gaps and future directions. Ecosyst. Serv. 2018, 33, 19–28. [Google Scholar] [CrossRef]
- Yuan, Y.; Zeng, G.; Liang, J.; Huang, L.; Hua, S.; Li, F.; Zhu, Y.; Wu, H.; Liu, J.; He, X.; et al. Variation of water level in Dongting Lake over a 50-year period: Implications for the impacts of anthropogenic and climatic factors. J. Hydrol. 2015, 525, 450–456. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Yu, D.; Yao, R.; Li, C.; He, Q.; Wang, S.; Wang, L. Four decades of wetland changes in Dongting Lake using landsat observations during 1978–2018. J. Hydrol. 2020, 587, 124954. [Google Scholar] [CrossRef]
- Sheng, S.X.; Dou, Y.; Tao, X.Z.; Zhu, S.Z.; Xu, B.M.; Li, Q.Y.; Guo, X.L.; He, X.M. National Standard of the People’s Republic of China: Geotechnical Test Code (SL237-1999); China Water Resources and Hydropower Press: Beijing, China, 1999. [Google Scholar]
- Bao, S. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Sáez-Plaza, P.; Navas, M.J.; Wybraniec, S.; Michałowski, T.; Asuero, A.G. An Overview of the Kjeldahl Method of Nitrogen Determination. Crit. Rev. Anal. Chem. 2013, 43, 224–272. [Google Scholar] [CrossRef]
- Revil, A.; Cathles, L.M., III. Permeability of shaly sands. Water Resour. Res. 1999, 35, 651–662. [Google Scholar] [CrossRef]
- Tang, A.M.; Cui, Y.; Richard, G.; Défossez, P. A study on the air permeability as affected by compression of three French soils. Geoderma 2011, 162, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Montanarella, L.; Pennock, D.J.; McKenzie, N.; Badraoui, M.; Chude, V.; Baptista, I.; Mamo, T.; Yemefack, M.; Singh Aulakh, M.; Yagi, K.; et al. World’s soils are under threat. Soil 2016, 2, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Bei, S.; Li, B.; Zhang, J.; Christie, P.; Li, X. Organic fertilizer, but not heavy liming, enhances banana biomass, increases soil organic carbon and modifies soil microbiota. Appl. Soil Ecol. 2019, 136, 67–79. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, M.; Lu, X.; Lou, Y.; Liu, B. Carbon, nitrogen and phosphorus contents of wetland soils in relation to environment factors in Northeast China. Wetlands 2017, 37, 153–161. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Liptzin, D. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Zhang, C.; Melillo, J.M.; Hall, C.A.S. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Zhang, Z.; Lyu, X.; Xue, Z.; Liu, X. Is there a Redfield-type C:N:P ratio in Chinese wetland soils? Acta Pedol. Sin. 2016, 53, 1160–1169. (In Chinese) [Google Scholar]
- Jiao, F.; Wen, Z.; An, S.; Yuan, Z. Successional changes in soil stoichiometry after land abandonment in Loess Plateau, China. Ecol. Eng. 2013, 58, 249–254. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, M.; Liu, Q.; Xie, Z.; Tang, Z. Climate and vegetation together control the vertical distribution of soil carbon, nitrogen and phosphorus in shrublands in China. Plant Soil 2020, 456, 15–26. [Google Scholar] [CrossRef]
- Liu, H.; Yang, S.Y.; Zhang, Q.G.; Ding, J.L.; Wang, F.W. Research on carbon sequestration and exchange with atmosphere of representative reed ecosystem in wetland. Adv. Mater. Res. 2013, 864–867, 1021–1024. [Google Scholar] [CrossRef]
- Nalewajko, C.; Murphy, T.P. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of anabaena and microcystis in Lake Biwa, Japan: An experimental approach. Limnology 2001, 2, 45–48. [Google Scholar] [CrossRef]
- Nair, V.D.; Graetz, D.A.; Reddy, K.R.; Olila, O.G. Soil development in phosphate-mined created wetlands of Florida, USA. Wetlands 2001, 21, 232–239. [Google Scholar] [CrossRef]
- Craine, J.M.; Jackson, R.D. Plant nitrogen and phosphorus limitation in 98 North American grassland soils. Plant Soil 2010, 334, 73–84. [Google Scholar] [CrossRef]
- Elbasiouny, H.; El-Ramady, H.; Elbehiry, F.; Rajput, V.D.; Minkina, T.; Mandzhieva, S. Plant nutrition under climate change and soil carbon sequestration. Sustainability 2022, 14, 914. [Google Scholar] [CrossRef]
- Liu, X.; Ma, J.; Ma, Z.; Li, L. Soil nutrient contents and stoichiometry as affected by land-use in an agro-pastoral region of Northwest China. Catena 2017, 150, 146–153. [Google Scholar] [CrossRef]
- Djodjic, F.; Börling, K.; Bergström, L. Phosphorus leaching in relation to soil type and soil phosphorus content. J. Environ. Qual. 2004, 33, 678–684. [Google Scholar] [CrossRef]
- Don, A.; Schumacher, J.; Scherer-Lorenzen, M.; Scholten, T.; Schulze, E. Spatial and vertical variation of soil carbon at two grassland sites—Implications for measuring soil carbon stocks. Geoderma 2007, 141, 272–282. [Google Scholar] [CrossRef]
- Bengtsson, G.; Bengtson, P.; Månsson, K.F. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biol. Biochem. 2003, 35, 143–154. [Google Scholar] [CrossRef]
- McLauchlan, K.K.; Hobbie, S.E.; Post, W.M. Conversion from agriculture to grassland builds soil organic matter on decadal timescales. Ecol. Appl. 2006, 16, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Luo, G.; Xue, C.; Jiang, Q.; Xiao, Y.; Zhang, F.; Guo, S.; Shen, Q.; Ling, N. Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C:N:P stoichiometry. Msystems 2020, 5, e00162-20. [Google Scholar] [CrossRef]
- Jones, S.F.; Schutte, C.A.; Roberts, B.J.; Thorne, K.M. Seasonal impoundment management reduces nitrogen cycling but not resilience to surface fire in a tidal wetland. J. Environ. Manag. 2022, 303, 114153. [Google Scholar] [CrossRef]
- Tao, B.; Wang, Y.; Yu, Y.; Li, Q.; Luo, C.; Zhang, B. Interactive effects of nitrogen forms and temperature on soil organic carbon decomposition in the coastal wetland of the Yellow River Delta, China. Catena 2018, 165, 408–413. [Google Scholar] [CrossRef]
- Wang, W.; Wang, C.; Sardans, J.; Tong, C.; Jia, R.; Zeng, C.; Peñuelas, J. Flood regime affects soil stoichiometry and the distribution of the invasive plants in subtropical estuarine wetlands in China. Catena 2015, 128, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Upreti, K.; Rivera-Monroy, V.H.; Maiti, K.; Giblin, A.E.; Castañeda-Moya, E. Dissimilatory nitrate reduction to ammonium (DNRA) is marginal relative to denitrification in emerging-eroding wetlands in a subtropical oligohaline and eutrophic coastal delta. Sci. Total Environ. 2022, 819, 152942. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.S.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, J.; Hu, X.; Li, X.; Wang, Y.; Li, H. Changes of soil organic carbon, nitrogen and phosphorus concentrations under different land uses in marshes of Sanjiang Plain. Acta Ecol. Sin. 2013, 33, 332–337. [Google Scholar] [CrossRef]
- Takriti, M.; Wild, B.; Schnecker, J.; Mooshammer, M.; Knoltsch, A.; Lashchinskiy, N.; Eloy Alves, R.J.; Gentsch, N.; Gittel, A.; Mikutta, R.; et al. Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect. Soil Biol. Biochem. 2018, 121, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wei, T.; Sha, G.; Zhu, Q.; Liu, Z.; Ren, K.; Yang, C. Soil enzyme activities of typical plant communities after vegetation restoration on the Loess Plateau, China. Appl. Soil Ecol. 2022, 170, 104292. [Google Scholar] [CrossRef]
- Avazpoor, Z.; Moradi, M.; Basiri, R.; Mirzaei, J.; Taghizadeh-Mehrjardi, R.; Kerry, R. Soil enzyme activity variations in riparian forests in relation to plant species and soil depth. Arab. J. Geosci. 2019, 12, 708. [Google Scholar] [CrossRef]
- Tian, L.; Shi, W. Short-term effects of plant litter on the dynamics, amount, and stoichiometry of soil enzyme activity in agroecosystems. Eur. J. Soil Biol. 2014, 65, 23–29. [Google Scholar] [CrossRef]
- Algora Gallardo, C.; Baldrian, P.; López-Mondéjar, R. Litter-inhabiting fungi show high level of specialization towards biopolymers composing plant and fungal biomass. Biol. Fertil. Soils 2021, 57, 77–88. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, Y.; Han, I.; Wang, P.; Mei, Q.; Huang, Y. Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil. Sci. Rep. 2020, 10, 8837. [Google Scholar] [CrossRef]
- Li, N.; Shao, T.; Zhu, T.; Long, X.; Gao, X.; Liu, Z.; Shao, H.; Rengel, Z. Vegetation succession influences soil carbon sequestration in coastal alkali-saline soils in southeast China. Sci. Rep. 2018, 8, 9728. [Google Scholar] [CrossRef] [PubMed]
- Wieder, W.R.; Cleveland, C.C.; Smith, W.K.; Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 2015, 8, 441–444. [Google Scholar] [CrossRef]
- Mętrak, M.; Chibowski, P.; Sulwiński, M.; Pawlikowski, P.; Suska-Malawska, M. CNP stoichiometry and productivity limitations in high-altitude wetland ecosystems of the Eastern Pamir. Mires Peat 2018, 21, 1–17. [Google Scholar]
- Zhao, J.; Dong, Y.; Xie, X.; Li, X.; Zhang, X.; Shen, X. Effect of annual variation in soil pH on available soil nutrients in pear orchards. Acta Ecol. Sin. 2011, 31, 212–216. [Google Scholar] [CrossRef]
- White, J.R.; Reddy, K.R. Nitrification and denitrification rates of everglades wetland soils along a phosphorus-Impacted gradient. J. Environ. Qual. 2003, 32, 2436–2443. [Google Scholar] [CrossRef]
- Schwendenmann, L.; Riecke, R.; Lara, R.J. Solute dynamics in a North Brazilian mangrove: The influence of sediment permeability and freshwater input. Wetl. Ecol. Manag. 2006, 14, 463–475. [Google Scholar] [CrossRef]
- Guan, Q.; Yang, L.; Guan, W.; Wang, F.; Liu, Z.; Xu, C. Assessing vegetation response to climatic variations and human activities: Spatiotemporal ndvi variations in the Hexi Corridor and surrounding areas from 2000 to 2010. Theor. Appl. Climatol. 2019, 135, 1179–1193. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.Y.H. Global effects of plant litter alterations on soil CO2 to the atmosphere. Glob. Chang. Biol. 2018, 24, 3462–3471. [Google Scholar] [CrossRef]
- Chambers, L.G.; Davis, S.E.; Troxler, T.; Boyer, J.N.; Downey-Wall, A.; Scinto, L.J. Biogeochemical effects of simulated sea level rise on carbon loss in an Everglades mangrove peat soil. Hydrobiologia 2014, 726, 195–211. [Google Scholar] [CrossRef]
- Herbert, E.R.; Schubauer-Berigan, J.P.; Craft, C.B. Effects of 10 yr of nitrogen and phosphorus fertilization on carbon and nutrient cycling in a tidal freshwater marsh. Limnol. Oceanogr. 2020, 65, 1669–1687. [Google Scholar] [CrossRef]
- Waal, D.B.V.D.; Elser, J.J.; Martiny, A.C.; Sterner, R.W.; Cotner, J.B. Editorial: Progress in ecological stoichiometry. Front. Microbiol. 2018, 9, 1957. [Google Scholar] [CrossRef]
- Qi, Q.; Zhang, M.; Tong, S.; Liu, Y.; Zhang, D.; Zhu, G.; Lyu, X. Evolution of potential spatial distribution patterns of carex tussock Wetlands under climate change scenarios, Northeast China. Chin. Geogr. Sci. 2022, 32, 142–154. [Google Scholar] [CrossRef]
- Zhang, Z.; Xue, Z.; Lyu, X.; Tong, S.; Jiang, M. Scaling of soil carbon, nitrogen, phosphorus and C:N:P ratio patterns in peatlands of China. Chin. Geogr. Sci. 2017, 27, 507–515. [Google Scholar] [CrossRef]
- Mahdavi, S.; Salehi, B.; Granger, J.; Amani, M.; Brisco, B.; Huang, W. Remote sensing for wetland classification: A comprehensive review. Gisci. Remote Sens. 2018, 55, 623–658. [Google Scholar] [CrossRef]
Section Number | Wetland Type | Latitude and Longitude | Plants Types | Soil Texture | Note |
---|---|---|---|---|---|
P1 | Lake wetland | 112°48′22″ E 28°45′29″ N | Phragmites australis, Suaeda glauca, Typha orientails Presl | Silty clay, Clay | Natural wetlands, less affected by human activities |
P2 | Lake wetland | 112°48′36″ E 28°45′15″ N | Phragmites australis, Typha orientails Presl | Silty clay, Clay, Silt | Experienced wetland reclamation with minor anthropogenic impacts |
C | N | P | RCN | RNP | RCP | |
---|---|---|---|---|---|---|
Minimum | 3.23 g/kg | 0.08 g/kg | 0.15 g/kg | 11.4 | 0.6 | 9.6 |
Maximum | 37.20 g/kg | 1.89 g/kg | 1.03 g/kg | 49.1 | 2.5 | 86.2 |
Mean | 18.05 g/kg | 0.86 g/kg | 0.52 g/kg | 21.1 | 1.7 | 35.4 |
CV | 44.81% | 36.24% | 32.63% | 38.5% | 21.2% | 42.8% |
Type | C (g/kg) | N (g/kg) | P (g/kg) | RCN | RNP | RCP | RCNP | Reference |
---|---|---|---|---|---|---|---|---|
Global soil | 14.3 | 186.0 | 13.1 | Cleveland and Liptzin 2007 [39] | ||||
Chinese soil | 24.6 | 1.9 | 0.8 | 11.9 | 5.2 | 61 | 60:5:1 | Tian et al., 2010 [40] |
Chinese wetland | 18.2 | 13.6 | 245.2 | 245:13.6:1 | Zhang et al., 2016 [41] | |||
Grassland | 3.9 | 0.4 | 0.5 | 9.3 | 0.8 | 7.2 | Jiao et al., 2013 [42] | |
Shrub | 5.6 | 0.7 | 0.3 | 8.5 | 2.1 | 18.1 | Guo et al., 2020 [43] | |
Lake wetland critical zone | 18.1 | 0.9 | 0.5 | 21.1 | 1.7 | 35.4 | 1:1.6:21 | This study |
Paddy soil | 37.9 | 2.4 | 1.4 | 15.8 | 1.7 | 27.1 | This study |
C | N | P | RCN | RNP | RCP | ||
---|---|---|---|---|---|---|---|
P1 | Range | 5.81–37.2 | 0.21–1.89 | 0.19–1.03 | 14.9–49.1 | 1.1–2.3 | 24.4–86.2 |
SE | 1212 | 50.9 | 30.7 | 1.5 | 0.04 | 2.3 | |
Mean | 20.3 a | 0.9 a | 0.52 a | 24.1 a | 1.7 a | 40.8 a | |
P2 | Range | 3.23–32.0 | 0.08–1.56 | 0.15–0.74 | 11.4–26.7 | 0.6–2.5 | 9.6–67.2 |
SE | 1361 | 52.2 | 23.9 | 0.7 | 0.07 | 2.2 | |
Mean | 15.8 b | 0.82 a | 0.52 a | 18.2 b | 1.6 a | 30 b |
Nutrients | Profile | Regression Equation | Correlation Coefficient | p-Value |
---|---|---|---|---|
C | P1 | y = e−0.079x+3.337 | 0.903 *** | 0.0001 |
P2 | y = 20.945 − 1.470x + 0.274x2 − 0.025x3 | 0.813 * | 0.0287 | |
N | P1 | y = 1.351 − 0.229x + 0.025x2 − 0.001x3 | 0.846 ** | 0.0057 |
P2 | y = 1.347 − 0.291x + 0.059x2 − 0.004x3 | 0.917 ** | 0.0040 | |
P | P1 | y = 0.770 − 0.064x − 0.003x2 + 0.001x3 | 0.917 ** | 0.0012 |
P2 | y = 0.759 − 0.135x + 0.028x2 − 0.002x3 | 0.847 * | 0.0176 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Wu, Z.; Jiang, S.; Lu, S.; Zhou, N. Elemental Stoichiometry (C, N, P) of Soil in the Wetland Critical Zone of Dongting Lake, China: Understanding Soil C, N and P Status at Greater Depth. Sustainability 2022, 14, 8337. https://doi.org/10.3390/su14148337
Wu Y, Wu Z, Jiang S, Lu S, Zhou N. Elemental Stoichiometry (C, N, P) of Soil in the Wetland Critical Zone of Dongting Lake, China: Understanding Soil C, N and P Status at Greater Depth. Sustainability. 2022; 14(14):8337. https://doi.org/10.3390/su14148337
Chicago/Turabian StyleWu, Yanhao, Zijun Wu, Simin Jiang, Shuaishuai Lu, and Nianqing Zhou. 2022. "Elemental Stoichiometry (C, N, P) of Soil in the Wetland Critical Zone of Dongting Lake, China: Understanding Soil C, N and P Status at Greater Depth" Sustainability 14, no. 14: 8337. https://doi.org/10.3390/su14148337
APA StyleWu, Y., Wu, Z., Jiang, S., Lu, S., & Zhou, N. (2022). Elemental Stoichiometry (C, N, P) of Soil in the Wetland Critical Zone of Dongting Lake, China: Understanding Soil C, N and P Status at Greater Depth. Sustainability, 14(14), 8337. https://doi.org/10.3390/su14148337