Artificial Intelligence Adoption and Digital Innovation: How Does Digital Resilience Act as a Mediator and Training Protocols as a Moderator?
Abstract
:1. Introduction
2. Literature Review
2.1. Hypothesis Development: AI Adoption and Digital Innovation
2.2. Digital Resilience as Mediator
2.3. Training Protocol as Moderator
2.4. Theoretical Framework
3. Methodology
3.1. Research Design
3.2. Data Collection
3.3. Measurement of the Variables
3.3.1. AI Adoption
3.3.2. Digital Resilience
3.3.3. Digital Innovation
3.3.4. Training Protocol
3.4. Discriminant and Convergent Validity
3.5. Confirmatory Factor Analysis
3.6. Correlation Result
4. Analysis
4.1. Hypothesis Testing: Direct Effect of AI Adoption on Digital Innovation
4.2. Mediating Effect of Digital Risilience
4.3. Moderation Effect of Training Protocols
5. Discussion
5.1. Theoretical Implications
5.2. Practical Implications
5.3. Directions for Future Research and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Items | Constructs |
---|---|---|
AI adoption | AIA1 | AI adoption is more cost effective than other technologies |
AIA2 | AI adoption saves cost and time related to other terminologies | |
AIA3 | AI adoption saves time, effort, and cost required for relative advantages | |
AIA4 | AI adoption assists human resource managers in their selection of the right candidate | |
AIA5 | AI adoption facilitates enhanced quality decisions for recruitment and selection | |
AIA6 | AI adoption increases the effectiveness of technology related actions | |
AIA7 | AI adoption provides control and better speed for decisions related to security and confidentiality | |
Digital resilience | DR1 | Digital technology use disturbs the regular activities (reversed) |
DR2 | Digital technology takes time that I want to use for the studying (reversed) | |
DR3 | I waste more time in non-academic activities and postpone learning/studying when I use technology tools (reversed) | |
DR4 | Digital tools can help me in presentations through text/images, for instance, in powerpoint | |
DR5 | I have used different collaborative tools such as Google Docs and Wikispaces for online writing | |
DR6 | Digital tools motivate me and help me in my studies | |
DR7 | Technology applications help me in solving study problems | |
Digital innovation | DI1 | We use superior quality digital solutions as compare to competitors |
DI2 | We use digital solutions that have more features as compared to competitors | |
DI3 | We use totally different applications of the digital solutions from competitors | |
DI4 | We use different product platform as compare to competitors | |
DI5 | We improve our existing products through new digital solutions | |
DI6 | We launch some new digital solutions in the market | |
Training protocol | TP1 | In our firms, training is regularly scheduled |
TP2 | We have acccess to all trainers when we need it | |
TP3 | We follow all procedural activities in training, as it is an important part of our firm |
References
- AlSheibani, S.; Cheung, Y.; Messom, C. Artificial Intelligence Adoption: AI-readiness at Firm-Level. In Proceedings of the PACIS 2018, Yokohama, Japan, 26–30 June 2018; p. 37. [Google Scholar]
- Cubric, M. Drivers, barriers and social considerations for AI adoption in business and management: A tertiary study. Technol. Soc. 2020, 62, 101257. [Google Scholar] [CrossRef]
- Bedué, P.; Fritzsche, A. Can we trust AI? An empirical investigation of trust requirements and guide to successful AI adoption. J. Enterp. Inf. Manag. 2021, 35, 530–549. [Google Scholar] [CrossRef]
- Chatterjee, S. AI strategy of India: Policy framework, adoption challenges and actions for government. Transform. Gov. People Process Policy 2020, 14, 757–775. [Google Scholar] [CrossRef]
- Braganza, A.; Chen, W.; Canhoto, A.; Sap, S. Productive employment and decent work: The impact of AI adoption on psychological contracts, job engagement and employee trust. J. Bus. Res. 2021, 131, 485–494. [Google Scholar] [CrossRef]
- Kohli, R.; Melville, N.P. Digital innovation: A review and synthesis. Inf. Syst. J. 2019, 29, 200–223. [Google Scholar] [CrossRef] [Green Version]
- Nylén, D.; Holmström, J. Digital innovation strategy: A framework for diagnosing and improving digital product and service innovation. Bus. Horiz. 2015, 58, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Schemmer, M.; Heinz, D.; Baier, L.; Vössing, M.; Kühl, N. Conceptualizing digital resilience for ai-based information systems. In Proceedings of the 29th European Conference on Information Systems (ECIS), Online, 14–16 June 2021. [Google Scholar]
- Bai, C.; Quayson, M.; Sarkis, J. COVID-19 pandemic digitization lessons for sustainable development of micro-and small- enterprises. Sustain. Prod. Consum. 2021, 27, 1989–2001. [Google Scholar] [CrossRef]
- Wuest, T.; Kusiak, A.; Dai, T.; Tayur, S.R. Impact of COVID-19 on manufacturing and supply networks—The case for AI-inspired digital transformation. SSRN 2020. [Google Scholar] [CrossRef]
- De Nigris, S.; Gomez-Gonzalez, E.; Gomez, E.; Martens, B.; Portela, M.I.; Vespe, M.; Schade, S.; Micheli, M.; Kotsev, A.; Mitton, I.; et al. Artificial Intelligence and Digital Transformation: Early Lessons from the COVID-19 Crisis; Craglia, M., Ed.; Publications Office of the European Union: Ispra, Italy, 2020. [Google Scholar]
- Bhagat, S.; Kim, D.J. Higher Education Amidst COVID-19: Challenges and Silver Lining. Inf. Syst. Manag. 2020, 37, 366–371. [Google Scholar] [CrossRef]
- Khotamov, I.; Avazov, N. I Digital Innovation Activities Today and Their Types. Sci. Res. Arch. 2020. Available online: https://tsue.scienceweb.uz/index.php/archive/article/view/1752 (accessed on 15 May 2022).
- Di Vaio, A.; Palladino, R.; Pezzi, A.; Kalisz, D.E. The role of digital innovation in knowledge management systems: A systematic literature review. J. Bus. Res. 2021, 123, 220–231. [Google Scholar] [CrossRef]
- Lee, J.; Berente, N. Digital Innovation and the Division of Innovative Labor: Digital Controls in the Automotive Industry. Organ. Sci. 2012, 23, 1428–1447. [Google Scholar] [CrossRef]
- Im, S.; Workman, J.P., Jr. Market orientation, creativity, and new product performance in high-technology firms. J. Mark. 2004, 68, 114–132. [Google Scholar] [CrossRef] [Green Version]
- Soriano, D.R. Management factors affecting the performance of technology firms. J. Bus. Res. 2010, 63, 463–470. [Google Scholar] [CrossRef]
- Romijn, H.; Albu, M. Innovation, Networking and Proximity: Lessons from Small High Technology Firms in the UK. Reg. Stud. 2002, 36, 81–86. [Google Scholar] [CrossRef]
- Hillips, W.T.P.; Ziuraitis, J.R. Energy Cost of the ACSM Single-set Resistance Training Protocol. J. Strength Cond. Res. 2003, 17, 350–355. [Google Scholar] [CrossRef]
- May, A.; Sagodi, A.; Dremel, C.; van Giffen, B. Realizing Digital Innovation from Artificial Intelligence. Available online: https://www.researchgate.net/profile/Christian-Dremel/publication/344366500_Realizing_Digital_Innovation_from_Artificial_Intelligence/links/5f6cda14a6fdcc00863a5467/Realizing-Digital-Innovation-from-Artificial-Intelligence.pdf (accessed on 15 May 2022).
- Golinelli, D.; Boetto, E.; Carullo, G.; Nuzzolese, A.G.; Landini, M.P.; Fantini, M.P. Adoption of Digital Technologies in Health Care During the COVID-19 Pandemic: Systematic Review of Early Scientific Literature. J. Med Internet Res. 2020, 22, e22280. [Google Scholar] [CrossRef]
- Yablonsky, S. Multidimensional Data-Driven Artificial Intelligence Innovation. Technol. Innov. Manag. Rev. 2019, 9, 16–28. [Google Scholar] [CrossRef]
- Ochmann, J.; Laumer, S. Fairness as a Determinant of AI Adoption in Recruiting: An Interview-based Study. In Proceedings of the DIGIT 2019, Munich, Germany, 15–18 December 2019. [Google Scholar]
- Arias-Pérez, J.; Vélez-Jaramillo, J. Ignoring the three-way interaction of digital orientation, Not-invented-here syndrome and employee’s artificial intelligence awareness in digital innovation performance: A recipe for failure. Technol. Forecast. Soc. Chang. 2022, 174, 121305. [Google Scholar] [CrossRef]
- Mondal, S.R. A systematic study for digital innovation in management education: An integrated approach towards problem-based learning in Vietnam. In Digital Innovations for Customer Engagement, Management, and Organizational Improvement; IGI Global: Hershey, PA, USA, 2020; pp. 104–120. [Google Scholar]
- Ceci, F.; Prencipe, A.; Spagnoletti, P. Exploring Innovation in a Digital World: An Introduction. In Exploring Innovation in a Digital World; Springer: Cham, Switzerland, 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Raut, N.; Sitaula, B.K.; Vatn, A.; Paudel, G.S. Determinants of Adoption and Extent of Agricultural Intensification in the Central Mid-hills of Nepal. J. Sustain. Dev. 2011, 4, 47. [Google Scholar] [CrossRef]
- Bahn, R.; Yehya, A.; Zurayk, R. Digitalization for Sustainable Agri-Food Systems: Potential, Status, and Risks for the MENA Region. Sustainability 2021, 13, 3223. [Google Scholar] [CrossRef]
- Gopher, D.; Kramer, A.; Wiegmann, D.; Kirlik, A. Emphasis change as a training protocol for high-demand tasks. Atten. Theory Pract. 2007, 101, 209–224. [Google Scholar]
- Belanche, D.; Casaló, L.V.; Flavián, C. Artificial Intelligence in FinTech: Understanding robo-advisors adoption among customers. Ind. Manag. Data Syst. 2019, 119, 1411–1430. [Google Scholar] [CrossRef]
- Ibeneme, S.; Okeibunor, J.; Muneene, D.; Husain, I.; Bento, P.; Gaju, C.; Housseynou, B.; Chibi, M.; Karamagi, H.; Makubalo, L. Data revolution, health status transformation and the role of artificial intelligence for health and pandemic preparedness in the African context. BMC Proc. 2021, 15, 22. [Google Scholar] [CrossRef]
- Sharma, M.K.; Anand, N.; Roopesh, B.N.; Sunil, S. Digital resilience mediates healthy use of technology. Med.-Legal J. 2021. [Google Scholar] [CrossRef]
- Holmström, J. From AI to digital transformation: The AI readiness framework. Bus. Horiz. 2022, 65, 329–339. [Google Scholar] [CrossRef]
- Belhadi, A.; Mani, V.; Kamble, S.S.; Khan, S.A.R.; Verma, S. Artificial intelligence-driven innovation for enhancing supply chain resilience and performance under the effect of supply chain dynamism: An empirical investigation. Ann. Oper. Res. 2021, 1–26. [Google Scholar] [CrossRef]
- Udwan, G.; Leurs, K.; Alencar, A. Digital Resilience Tactics of Syrian Refugees in the Netherlands: Social Media for Social Support, Health, and Identity. Soc. Media Soc. 2020, 6, 1–11. [Google Scholar] [CrossRef]
- Nayal, K.; Raut, R.; Priyadarshinee, P.; Narkhede, B.E.; Kazancoglu, Y.; Narwane, V. Exploring the role of artificial intelligence in managing agricultural supply chain risk to counter the impacts of the COVID-19 pandemic. Int. J. Logist. Manag. 2021. [Google Scholar] [CrossRef]
- Yu, X.; Xu, S.; Ashton, M. Antecedents and outcomes of artificial intelligence adoption and application in the workplace: The socio-technical system theory perspective. Inf. Technol. People 2022. [Google Scholar] [CrossRef]
- Puklavec, B.; Oliveira, T.; Popovic, A. Understanding the determinants of business intelligence system adoption stages an empirical study of SMEs. Ind. Manag. Data Syst. 2018, 118, 236–261. [Google Scholar] [CrossRef]
- Makkonen, H.; Komulainen, H. Explicating the market dimension in the study of digital innovation: A management framework for digital innovation. Technol. Anal. Strat. Manag. 2018, 30, 1015–1028. [Google Scholar] [CrossRef]
- Soetekouw, L.; Angelopoulos, S. Digital Resilience Through Training Protocols: Learning to Identify Fake News on Social Media. Inf. Syst. Front. 2022, 1–17. [Google Scholar] [CrossRef]
- Klugman, M.F.; Brent, J.L.; Myer, G.D.; Ford, K.R.; Hewett, T.E. Does an In-Season Only Neuromuscular Training Protocol Reduce Deficits Quantified by the Tuck Jump Assessment? Clin. Sports Med. 2011, 30, 825–840. [Google Scholar] [CrossRef] [Green Version]
- Park, K.R.; Sahay, S.; Braa, J.; Amarakoon, P. Digital resilience for what? Case study of South Korea. arXiv 2021, arXiv:2108.09950. [Google Scholar]
- Browning, L.; Colling, R.; Rakha, E.; Rajpoot, N.; Rittscher, J.; James, J.A.; Salto-Tellez, M.; Snead, D.R.J.; Verrill, C. Digital pathology and artificial intelligence will be key to supporting clinical and academic cellular pathology through COVID-19 and future crises: The PathLAKE consortium perspective. J. Clin. Pathol. 2021, 74, 443–447. [Google Scholar] [CrossRef]
- Simelton, E.; McCampbell, M. Do Digital Climate Services for Farmers Encourage Resilient Farming Practices? Pinpointing Gaps through the Responsible Research and Innovation Framework. Agriculture 2021, 11, 953. [Google Scholar] [CrossRef]
- Hatlevik, O.E.; Bjarnø, V. Examining the relationship between resilience to digital distractions, ICT self-efficacy, motivation, approaches to studying, and time spent on individual studies. Teach. Teach. Educ. 2021, 102, 103326. [Google Scholar] [CrossRef]
- Paladino, A. Investigating the Drivers of Innovation and New Product Success: A Comparison of Strategic Orientations. J. Prod. Innov. Manag. 2007, 24, 534–553. [Google Scholar] [CrossRef]
- Damen, J.A.A.G.; Hooft, L.; Schuit, E.; Debray, T.; Collins, G.; Tzoulaki, I.; Lassale, C.; Siontis, G.C.M.; Chiocchia, V.; Roberts, C.; et al. Prediction models for cardiovascular disease risk in the general population: Systematic review. BMJ 2016, 353, i2416. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.H.; Graham, C.P.; Anderson, R.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Gagneur, A.; Gosselin, V.; Bergeron, J.; Farrands, A.; Baron, G. Development of motivational interviewing skills in immunization (MISI): A questionnaire to assess MI learning, knowledge and skills for vaccination promotion. Hum. Vaccines Immunother. 2019, 15, 2446–2452. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
Variable Description | FL | T-Value | Alpha | CR | AVE |
---|---|---|---|---|---|
AI Adoption | 0.83 | 0.92 | 0.64 | ||
AIS-1 | 0.84 | 15.47 | |||
AIS-2 | 0.77 | 14.23 | |||
AIS-3 | 0.81 | 14.57 | |||
AIS-4 | 0.82 | 15.45 | |||
AIS-5 | 0.81 | 14.55 | |||
AIS-6 | 0.80 | 14.21 | |||
AIS-7 | 0.76 | 13.55 | |||
Digital Resilience | 0.82 | 0.92 | 0.63 | ||
DR-1 | 0.83 | 15.63 | |||
DR-2 | 0.77 | 14.12 | |||
DR-3 | 0.84 | 15.52 | |||
DR-4 | 0.82 | 14.47 | |||
DR-5 | 0.72 | 13.44 | |||
DR-6 | 0.78 | 14.54 | |||
DR-7 | 0.82 | 15.52 | |||
Training Protocol | 0.86 | 0.82 | 0.60 | ||
TP-1 | 0.82 | 15.21 | |||
TP-2 | 0.77 | 14.51 | |||
TP-3 | 0.72 | 13.52 | |||
Digital Innovation | 0.84 | 0.89 | 0.58 | ||
DI-1 | 0.86 | 15.47 | |||
DI-2 | 0.76 | 15.12 | |||
DI-3 | 0.75 | 14.63 | |||
DI-4 | 0.73 | 14.41 | |||
DI-5 | 0.74 | 14.55 | |||
DI-6 | 0.72 | 13.52 |
Model Detail | χ2 | Df | χ2/df | RMESA | GFI | CFI |
---|---|---|---|---|---|---|
Hypothesized four-factor model | 1020.56 | 490 | 2.083 | 0.05 | 0.93 | 0.92 |
Three-factor model | 1165.42 | 380 | 3.067 | 0.13 | 0.84 | 0.87 |
Two-factor model | 1270.32 | 395 | 3.216 | 0.18 | 0.75 | 0.76 |
Single-factor model | 1347.21 | 356 | 3.784 | 0.22 | 0.65 | 0.67 |
Variable Description | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
1 | Business Age | 1.00 | |||||||
2 | Business Size | 0.121 ** | 1.00 | ||||||
3 | Respondent Experience | 0.203 ** | 0.85 * | 1.00 | |||||
4 | Respondent Education | −0.04 | 0.06 | 0.06 | 1.00 | ||||
5 | AI Adoption | −0.01 | −0.19 | 0.02 | −0.20 | 1.00 | |||
6 | Digital Resilience | 0.05 | −0.06 | 0.096 * | −0.03 | 0.171 ** | 1.00 | ||
7 | Training Protocol | −0.08 | −0.14 | −0.06 | 0.086 * | 0.263 ** | 0.367 ** | 1.00 | |
8 | Digital Innovation | 0.03 | −0.13 | −0.04 | −0.12 | 0.238 * | 0.289 ** | 0.385 ** | 1.00 |
Path Details | Beta | T-Value | SE | Sig |
---|---|---|---|---|
AI Adoption to Digital Resilience→(Path a) | 0.4237 | 7.3458 | 0.0542 | 0.000 |
Digital Resilience to Digital Innovation→(Path b) | 0.3476 | 7.0605 | 0.0417 | 0.000 |
Total effect of AI on DI→(Path c) | 0.2687 | 3.8725 | 0.0687 | 0.000 |
Direct Effect of AI to DI→(Path c’) | 0.1476 | 1.6325 | 0.0767 | 0.1374 |
Digital Innovation | ||||||
---|---|---|---|---|---|---|
Detail | Beta | T Value | Beta | T Value | Beta | T Value |
Model1 | ||||||
Business age | 0.04 | 0.18 | 0.02 | 0.16 | 0.01 | 0.13 |
Business size | 0.05 | 0.13 | 0.13 | 0.84 | 0.13 | 0.76 |
Respondent education | 0.14 | 0.26 | 0.15 | 0.32 | 1.04 | 1.23 |
Respondent experience | 0.16 | 0.29 | 0.19 | 0.94 | 0.05 | 0.22 |
Model 2 | ||||||
AI Adoption | 0.34 *** | 7.56 | 0.38 *** | 5.43 | ||
Digital Innovation | 0.24 *** | 5.35 | 0.34 *** | 4.46 | ||
Model 3 | ||||||
AI Adoption × Training Protocol | 0.16 ** | 2.256 | ||||
F | 6.23 *** | 16.58 *** | 17.42 *** | |||
R2 | 0.03 | 0.24 | 0.25 | |||
ΔR2 | 0.21 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Li, S.; Yousaf, Z. Artificial Intelligence Adoption and Digital Innovation: How Does Digital Resilience Act as a Mediator and Training Protocols as a Moderator? Sustainability 2022, 14, 8286. https://doi.org/10.3390/su14148286
Zeng X, Li S, Yousaf Z. Artificial Intelligence Adoption and Digital Innovation: How Does Digital Resilience Act as a Mediator and Training Protocols as a Moderator? Sustainability. 2022; 14(14):8286. https://doi.org/10.3390/su14148286
Chicago/Turabian StyleZeng, Xiaochun, Suicheng Li, and Zahid Yousaf. 2022. "Artificial Intelligence Adoption and Digital Innovation: How Does Digital Resilience Act as a Mediator and Training Protocols as a Moderator?" Sustainability 14, no. 14: 8286. https://doi.org/10.3390/su14148286