Vulnerability of Maize Farming Systems to Climate Change: Farmers’ Opinions Differ about the Relevance of Adaptation Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Framework
2.2. Overview of the Survey Design
2.3. Case Study
2.4. Data Collection
- Farmers responded to a questionnaire by telephone to identify the farm characteristics that were potential explanatory variables. The questionnaire was divided into eight categories defined according to expert knowledge, including general information, material resources, water resources, soil resources, financial resources, crops and rotation, human resources and individual resources.
- Farmers were asked to assess the adaptation strategy criteria in a semi-structured interview using the 41 playing cards that represented the adaptation strategy criteria. The interviewer asked the farmer to select the four most relevant cards and the four least relevant cards for reducing vulnerability (Figure 4b).
- The farmer’s cognitive and psychological characteristics were identified using a face-to-face questionnaire (Table 2). This questionnaire supplemented the telephone questionnaire by adding new potential explanatory factors.
2.5. Data Processing and Analysis
3. Results
3.1. Participants
3.2. Distribution of the Criteria Elicited from Farmer Interviews
3.3. Differing Opinions about Adaptation Strategy Criteria among Farmers
3.4. Explaining Differences in Opinions about the Adaptation Strategy Criteria
4. Discussion
4.1. Psychological Factors That Influence Opinions about the Adaptation Strategy Criteria
4.2. An Original Method Based on Combined Approaches
4.3. The Need to Reconsider Advising and Support Strategies for Farmers
4.4. From Theoretical Results to More Operational Aspects
4.5. Toward an Assessment Method That Includes the Adaptive Capacity of Farmers
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Category | Variable | Values |
---|---|---|
General information | Utilized agricultural area | Small_farm (<100 ha); medium_farm (100–200 ha); large_farm (200–300 ha); very_large_farm (>300 ha) |
Production system | All conventional; Organic | |
Human resources | Labor units (LU) | 1_LU; 2_LU; 3_and_more |
Individual resources | Education | CAP_BEP; Bachelor; Engineer_Masters; Education_Other |
Age | <35; 35–50; >50 | |
Water resources | Type of water source | Watercourse; Lake; Well; Watercourse_lake; Watercourse_lake_well |
Volume for maize irrigation in 2020 | <2000 m3; 2000–3000 m3; >3000 m3 | |
Irrigable area | All_irrigable; Fields_non_Irrigable | |
Equipment resources | Number of pivots on the farm | 0_pivot; 1_3 Pivots; >3Pivots |
Volume of grain storage | None; <1000 T; 1000–2000 T; >2000 T | |
Soil resources | Soil type | AC (Clay-limestone); AL (Clay-loam); SL (Sandy loam); B (Boulbènes); Others |
Financial resources | Number of paid activities | 1; 2; 3 |
Percentage of revenue from maize in 2020 | <15%; 15–30%; 30–50%; >50% | |
Crops and rotation | Distance between fields | <1 km; 1–5 km; 6–14 km; >14 km |
Number of crops in 2020 | 1–3; 4–6; >6 | |
Soil tillage for maize | Deep tillage with inversion; Deep tillage without inversion; Reduced tillage (including no tillage) | |
Precocity index for maize | IP_Early (<400); IP_Late (>400); IP_Unknown |
Appendix C
Criterion | Number of Mentions |
---|---|
Increase water storage | 13 |
Diversify water sources | 13 |
Irrigate winter crops | 13 |
Plant cover crops | 12 |
Stop plowing | 11 |
Use sensors | 10 |
Use a weather station | 7 |
Extend the rotation | 6 |
Advance the sowing date for maize | 6 |
Diversify paid activities | 6 |
Self-sufficiency in water | 5 |
Reduce the precocity for maize | 5 |
Diversify crops | 4 |
Partner with a livestock farmer to obtain manure | 4 |
Buy new land | 3 |
Buy more irrigation quota | 3 |
Diversify production | 3 |
Balance winter and summer crops | 3 |
Reduce soil tillage | 3 |
Buy new seeding equipment | 2 |
Convert to organic agriculture | 2 |
Practice mechanical weeding | 2 |
Increase irrigation efficiency | 2 |
Hire an employee | 2 |
Use modulation | 2 |
Shorten water turns | 2 |
Return harvest residues to the soil | 2 |
Modify the irrigation strategy | 2 |
Improve grain storage | 1 |
Reduce the frequency of field operations | 1 |
Stop growing maize | 1 |
Plant mixed crops | 1 |
Increase grain storage | 1 |
Advance the date of the first irrigation | 1 |
Lime the soil | 1 |
Bury reels for irrigation | 1 |
Scaring practices for wells | 1 |
Practice green tillage | 1 |
Join a group of employers | 1 |
Plant legume crops | 1 |
Use decision-support tools | 1 |
Use a decision-support tool for irrigation | 1 |
Partner with a beekeeper | 1 |
Introduce a livestock production unit | 1 |
Practice sylviculture | 1 |
Use a specific modulation for fertilizer | 1 |
Use a tall maize variety | 1 |
Use a maize variety resistant to hydric stress | 1 |
Practice direct selling | 1 |
Sell stored maize before summer | 1 |
Appendix D
Crop pattern and rotation | Extend the rotation | A1 |
Plant mixed crops | A2 | |
Plant cover crops | A3 | |
Diversify crops | A4 | |
Balance winter and summer crops | A5 | |
Plant legumes | A6 | |
Maize cultivation | Stop maize cultivation | A7 |
Advance the sowing date for maize | A8 | |
Reduce the precocity for maize | A9 | |
Use a tall maize variety | A10 | |
Use a maize variety resistant to hydric stress | A11 | |
Farm scale strategy | Improve grain storage and commercialization | A12 |
Diversify commercialization modes | A13 | |
Introduce a livestock production unit | A14 | |
Make a partnership with a neighboring farmer | A15 | |
Diversify production units and/or paid activities | A16 | |
Buy new lands | A17 | |
Hire an employee | A18 | |
Convert to organic farming | A19 | |
Buy new equipment | A20 | |
Cultural practices | Reduce the frequency of field operations | A21 |
Stop plowing | A22 | |
Lime the soil | A23 | |
Perform mechanical weeding | A24 | |
Practice direct seeding | A25 | |
Practice strip-tillage | A26 | |
Return harvest residues to the soil | A27 | |
Use modulation for inputs | A28 | |
Water resource | Buy more quota for irrigation | A29 |
Improve/renew equipment for irrigation | A30 | |
Build or enlarge a reservoir | A31 | |
Advance the date of the first irrigation for maize | A32 | |
Diversify water sources | A33 | |
Increase irrigation efficiency | A34 | |
Irrigate winter crops | A35 | |
Modify the frequency and/or number of water turns | A36 | |
Sources of information | Use decision-support tools | A37 |
Use sensors | A38 | |
Use a weather station | A39 | |
Attend training courses | A40 | |
Confront sources of information | A41 |
Appendix E
Cluster | Criteria | Cla/Mod | Mod/Cla | Global | p Value | V Test |
---|---|---|---|---|---|---|
1 | A36 relevant A5 relevant | 50 50 | 100 100 | 12.90323 12.90323 | 0.01290323 0.01290323 | 2.486429 2.486429 |
2 | A32 relevant A31 relevant A24 irrelevant A19 irrelevant | 83.33333 100.00000 100.00000 58.33333 | 45.45455 27.27273 36.36364 63.63636 | 19.354839 9.677419 12.903226 38.709677 | 0.0138045121 0.0367074527 0.0104878436 0.0485031501 | 2.462310 2.089003 2.559316 1.972933 |
3 | A32 irrelevant A16 relevant A17 irrelevant | 100.00000 100.00000 76.92308 | 57.14286 28.57143 71.42857 | 25.80645 12.90323 41.93548 | 0.0003806699 0.0318131257 0.0037953858 | 3.553134 2.146751 2.894685 |
4 | A41 relevant A4 relevant A23 irrelevant | 75.000000 60.000000 100.000000 | 75 75 50 | 12.903226 16.129032 6.451613 | 0.003495948 0.008580963 0.012903226 | 2.920389 2.628313 2.486429 |
References
- IPCC Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, MA, USA, 2021.
- Chaouche, K.; Neppel, L.; Dieulin, C.; Pujol, N.; Ladouche, B.; Martin, E.; Salas, D.; Caballero, Y. Analyses of precipitation, temperature and evapotranspiration in a French Mediterranean region in the context of climate change. Comptes Rendus Geosci. 2010, 342, 234–243. [Google Scholar] [CrossRef]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Peters, K.; Breitsameter, L.; Gerowitt, B. Impact of climate change on weeds in agriculture: A review. Agron. Sustain. Dev. 2014, 34, 707–721. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.T.; Yang, J.; An, P.L.; Ren, W.; Pan, Z.H.; Dong, Z.Q.; Han, G.L.; Pan, Y.Y.; Pan, S.F.; Tian, H.Q. Enhancing soil drought induced by climate change and agricultural practices: Observational and experimental evidence from the semiarid area of northern China. Agric. For. Meteorol. 2017, 243, 74–83. [Google Scholar] [CrossRef]
- Praveen, B.; Sharma, P. A review of literature on climate change and its impacts on agriculture productivity. J. Public Aff. 2019, 21, e2483. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Bergez, J.E.; Leenhardt, D. Can farmers use maize earliness choice and sowing dates to cope with future water scarcity? A modelling approach applied to south-western France. Agric. Water Manag. 2015, 152, 125–134. [Google Scholar] [CrossRef]
- Caubel, J.; Garcia de Cortazar-Atauri, I.; Vivant, A.C.; Launay, M.; de Noblet-Ducoudré, N. Assessing future meteorological stresses for grain maize in France. Agric. Syst. 2018, 159, 237–247. [Google Scholar] [CrossRef]
- Howden, S.M.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef] [Green Version]
- Juhola, S.; Glaas, E.; Linnér, B.-O.; Neset, T.-S.S. Redefining maladaptation. Environ. Sci. Policy 2016, 55, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Bindi, M.; Olesen, J.E. The responses of agriculture in Europe to climate change. Reg. Environ. Chang. 2011, 11, 151–158. [Google Scholar] [CrossRef]
- Cammarano, D.; Payero, J.; Basso, B.; Stefanova, L.; Grace, P. Adapting wheat sowing dates to projected climate change in the Australian subtropics: Analysis of crop water use and yield. Crop Pasture Sci. 2012, 63, 974–986. [Google Scholar] [CrossRef] [Green Version]
- Moradi, R.; Koocheki, A.; Nassiri Mahallati, M.; Mansoori, H. Adaptation strategies for maize cultivation under climate change in Iran: Irrigation and planting date management. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 265–284. [Google Scholar] [CrossRef]
- Brunel-Saldias, N.; Martinez, I.; Seguel, O.; Ovalle, C.; Acevedo, E. Structural characterization of a compacted alfisol under different tillage systems. J. Soil Sci. Plant Nutr. 2016, 16, 689–701. [Google Scholar] [CrossRef] [Green Version]
- Holzkämper, A. Varietal adaptations matter for agricultural water use—A simulation study on grain maize in Western Switzerland. Agric. Water Manag. 2020, 237, 106202. [Google Scholar] [CrossRef]
- Barnett, J.; O’Neill, S. Maladaptation. Glob. Environ. Chang. 2010, 20, 211–213. [Google Scholar] [CrossRef]
- IPCC Climate Change 2007: Impacts, Adaptations and Vulnerability; Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; ISBN 9780521880107.
- Füssel, H.M.; Klein, R.J.T. Climate change vulnerability assessments: An evolution of conceptual thinking. Clim. Chang. 2006, 75, 301–329. [Google Scholar] [CrossRef]
- Darnhofer, I.; Bellon, S.; Dedieu, B.; Milestad, R. Adaptiveness to enhance the sustainability of farming systems. A review. Agron. Sustain. Dev. 2010, 30, 545–555. [Google Scholar] [CrossRef] [Green Version]
- Martin, G.; Magne, M.-A.; Cristobal, M.S. An Integrated Method to Analyze Farm Vulnerability to Climatic and Economic Variability According to Farm Configurations and Farmers’ Adaptations. Front. Plant Sci. 2017, 8, 1483. [Google Scholar] [CrossRef] [Green Version]
- Sneessens, I.; Randrianasolo, H.; Sauvee, L.; Ingrand, S. A quantitative approach to assess farming systems vulnerability: An application to mixed crop-livestock systems. In Proceedings of the 11th Research Seminar on Social Science, Lyon, France, 14–15 December 2017; pp. 1–20. [Google Scholar]
- Dardonville, M.; Bockstaller, C.; Therond, O. Review of quantitative evaluations of the resilience, vulnerability, robustness and adaptive capacity of temperate agricultural systems. J. Clean. Prod. 2021, 286, 125456. [Google Scholar] [CrossRef]
- Andrés Ferreyra, R.; Podestá, G.P.; Messina, C.D.; Letson, D.; Dardanelli, J.; Guevara, E.; Meira, S. A linked-modeling framework to estimate maize production risk associated with ENSO-related climate variability in Argentina. Agric. For. Meteorol. 2001, 107, 177–192. [Google Scholar] [CrossRef]
- Barkaoui, K.; Roumet, C.; Volaire, F. Mean root trait more than root trait diversity determines drought resilience in native and cultivated Mediterranean grass mixtures. Agric. Ecosyst. Environ. 2016, 231, 122–132. [Google Scholar] [CrossRef]
- Biggs, R.; Schlüter, M.; Biggs, D.; Bohensky, E.L.; Burnsilver, S.; Cundill, G.; Dakos, V.; Daw, T.M.; Evans, L.S.; Kotschy, K.; et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 2012, 37, 421–448. [Google Scholar] [CrossRef] [Green Version]
- Cabell, J.F.; Oelofse, M. An Indicator Framework for Assessing Agroecosystem Resilience. Ecol. Soc. 2012, 17, 18. [Google Scholar] [CrossRef]
- Wiréhn, L.; Danielsson, Å.; Neset, T.S.S. Assessment of composite index methods for agricultural vulnerability to climate change. J. Environ. Manag. 2015, 156, 70–80. [Google Scholar] [CrossRef]
- Urruty, N.; Tailliez-Lefebvre, D.; Huyghe, C. Stability, robustness, vulnerability and resilience of agricultural systems. A review. Agron. Sustain. Dev. 2016, 36, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Dardonville, M.; Urruty, N.; Bockstaller, C.; Therond, O. Influence of diversity and intensification level on vulnerability, resilience and robustness of agricultural systems. Agric. Syst. 2020, 184, 102913. [Google Scholar] [CrossRef]
- Reidsma, P.; Ewert, F.; Lansink, A.O.; Leemans, R. Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses. Eur. J. Agron. 2010, 32, 91–102. [Google Scholar] [CrossRef]
- Dong, Z.; Pan, Z.; An, P.; Wang, L.; Zhang, J.; He, D.; Han, H.; Pan, X. A novel method for quantitatively evaluating agricultural vulnerability to climate change. Ecol. Indic. 2015, 48, 49–54. [Google Scholar] [CrossRef]
- Nicholas, K.A.; Durham, W.H. Farm-scale adaptation and vulnerability to environmental stresses: Insights from winegrowing in Northern California. Global Environ. Chang. 2012, 22, 483–494. [Google Scholar] [CrossRef]
- Gil, J.; Cohn, A.S.; Duncan, J.; Newton, P.; Vermeulen, S. The resilience of integrated agricultural systems to climate change. WIREs Clim. Chang. 2017, 8, e461. [Google Scholar] [CrossRef]
- Bouttes, M.; San Cristobal, M.; Martin, G. Vulnerability to climatic and economic variability is mainly driven by farmers’ practices on French organic dairy farms. Eur. J. Agron. 2018, 94, 89–97. [Google Scholar] [CrossRef]
- Marshall, N.A.; Stokes, C.J.; Webb, N.P.; Marshall, P.A.; Lankester, A.J. Social vulnerability to climate change in primary producers: A typology approach. Agric. Ecosyst. Environ. 2014, 186, 86–93. [Google Scholar] [CrossRef]
- Acosta-Michlik, L.; Rounsevell, M.D.A. From Generic Indices to Adaptive Agents: Shifting Foci in Assessing Vulnerability to the Combined Impacts of Climate Change and Globalization. IHDP Update 2005, 14–16. [Google Scholar]
- Acosta-Michlik, L.; Espaldon, V. Assessing vulnerability of selected farming communities in the Philippines based on a behavioural model of agent’s adaptation to global environmental change. Glob. Environ. Chang. 2008, 18, 554–563. [Google Scholar] [CrossRef]
- Callo-Concha, D.; Ewert, F. Using the Concepts of Resilience, Vulnerability and Adaptability for the Assessment and Analysis of Agricultural Systems. Chang. Adapt. Socio-Ecol. Syst. 2014, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gbetibouo, G. Understanding Farmers’ Perceptions and Adaptations to Climate Change and Variability; International Food Policy Research Institute Internship: Washington, DC, USA, 2009. [Google Scholar]
- Marshall, N.A.; Park, S.E.; Adger, W.N.; Brown, K.; Howden, S.M. Transformational capacity and the influence of place and identity. Environ. Res. Lett. 2012, 7, 034022. [Google Scholar] [CrossRef] [Green Version]
- Baca, M.; Läderach, P.; Haggar, J.; Schroth, G.; Ovalle, O. An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in mesoamerica. PLoS ONE 2014, 9, e88463. [Google Scholar] [CrossRef] [Green Version]
- Comoé, H.; Finger, R.; Barjolle, D. Farm management decision and response to climate variability and change in Côte d’Ivoire. Mitig. Adapt. Strateg. Glob. Chang. 2014, 19, 123–142. [Google Scholar] [CrossRef]
- Saha, M.K.; Abdul, A.; Biswas, A.; Meandad, J.; Ahmed, R.; Prokash, J.; Sakib, F.M. Factors Affecting to Adoption of Climate-smart Agriculture Practices by Coastal Farmers’ in Bangladesh. Am. J. Environ. Sustain. Dev. 2019, 4, 113–121. [Google Scholar]
- Jones, L. Resilience isn’t the same for all: Comparing subjective and objective approaches to resilience measurement. Wiley Interdiscip. Rev. Clim. Chang. 2019, 10, e552. [Google Scholar] [CrossRef] [Green Version]
- Perrin, A.; Cristobal, M.S.; Milestad, R.; Martin, G. Identification of resilience factors of organic dairy cattle farms. Agric. Syst. 2020, 183, 102875. [Google Scholar] [CrossRef]
- Binder, C.R.; Feola, G.; Steinberger, J.K. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environ. Impact Assess. Rev. 2010, 30, 71–81. [Google Scholar] [CrossRef]
- Smeets, E.; Weterings, R.; Centre, T.N.O.; Bosch, P.; Büchele, M.; Gee, D. Environmental Indicators: Typology and Overview. Technical Report N°25; European Environment Agency: Copenhagen, Denmark, 1999. [Google Scholar]
- Lairez, J.; Feschet, P.; Aubin, J.; Bockstaller, C.; Bouvarel, I. Agriculture et Développement Durable: Guide Pour L’évaluation Multicritère. Available online: https://books.google.fr/books?hl=fr&lr=&id=RpxmCwAAQBAJ&oi=fnd&pg=PA7&dq=guide+d%27évaluation+multicritère+définition+critère&ots=-0hN6CaMtX&sig=-askjH7E1gpT3Ra3xwOkhm0say4#v=onepage&q=critère&f=false (accessed on 10 May 2021).
- DRAAF. Analyse Économique des Exploitations Agricoles Irriguant du Maïs Grain; DRAAF: Marseille, France, 2017; Volume 2014. [Google Scholar]
- DRAAF. Occitanie Bilan 2020 Grandes Cultures; DRAAF: Marseille, France, 2020. [Google Scholar]
- Lopez, O.; Milhaud, X.; Thérond, P. Arbres de régression et de classification (CART). L’actuariel 2015, 15, 42–44. [Google Scholar]
- R Core Team. R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 10 August 2020).
- Husson, A.F.; Josse, J.; Le, S.; Mazet, J.; Husson, M.F. Package ‘FactoMineR’. Available online: http://factominer.free.fr (accessed on 10 August 2020).
- Therneau, T.M.; Atkinson, E.J. An Introduction to Recursive Partitioning Using the RPART Routines; Mayo Foundation: Rochester, MI, USA, 2022. [Google Scholar]
- Milborrow, A.S. Package ‘rpart.plot’. Available online: http://www.milbo.org/rpart-plot/index.html (accessed on 10 August 2021).
- Croissant, Y. Mlogit: Random utility models in r. J. Stat. Softw. 2020, 95, 1–41. [Google Scholar] [CrossRef]
- DRAAF. Occitanie L’irrigation Contribue à 18% de la Valeur de la Production Agricole; DRAAF: Marseille, France, 2018. [Google Scholar]
- He, R.; Jin, J.; Kuang, F.; Zhang, C.; Guan, T. Farmers’ risk cognition, risk preferences and climate change adaptive behavior: A structural equation modeling approach. Int. J. Environ. Res. Public Health 2020, 17, 85. [Google Scholar] [CrossRef] [Green Version]
- Willaume, M.; Rollin, A.; Casagrande, M. Farmers in southwestern France think that their arable cropping systems are already adapted to face climate change. Reg. Environ. Chang. 2014, 14, 333–345. [Google Scholar] [CrossRef]
- Martin-Clouaire, R. Modelling Operational Decision-Making in Agriculture. Agric. Sci. 2017, 8, 527–544. [Google Scholar] [CrossRef] [Green Version]
- Dessart, F.J.; Barreiro-Hurlé, J.; Van Bavel, R. Behavioural factors affecting the adoption of sustainable farming practices: A policy-oriented review. Eur. Rev. Agric. Econ. 2019, 46, 417–471. [Google Scholar] [CrossRef] [Green Version]
- Roussy, C.; Ridier, A.; Chaib, K. Adoption d’innovations par les agriculteurs: Rôle des perceptions et des préférences. Work. Pap. SMART—LERECO 2015, 15–03, 1–22. [Google Scholar]
- Albert, M.; Couture, S.; Willaume, M.; Bergez, J.É.; Faivre, R. Decision-Making Process Factors Explain Some of the Heterogeneity of Irrigation Practices among Maize Farmers in Southwestern France. Water 2021, 13, 3504. [Google Scholar] [CrossRef]
- Reynaud, A.; Couture, S. Stability of risk preference measures: Results from a field experiment on French farmers. Theory Decis. 2012, 73, 203–221. [Google Scholar] [CrossRef] [Green Version]
- Nuthall, P.L.; Old, K.M. Intuition, the farmers’ primary decision process. A review and analysis. J. Rural. Stud. 2018, 58, 28–38. [Google Scholar] [CrossRef]
- Wienroth, M. Value beyond scientific validity: Let’s RULE (Reliability, Utility, LEgitimacy). J. Responsible Innov. 2020, 7, 92–103. [Google Scholar] [CrossRef]
- Schlüter, M.; Baeza, A.; Dressler, G.; Frank, K.; Groeneveld, J.; Jager, W.; Janssen, M.A.; McAllister, R.R.J.; Müller, B.; Orach, K.; et al. A framework for mapping and comparing behavioural theories in models of social-ecological systems. Ecol. Econ. 2017, 131, 21–35. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Olshen, R.; Group, C.S.-I. Classification and Regression Trees; Wadsworth: Belmont, CA, USA, 1984. [Google Scholar]
- Larmarange, J. Régression Logistique Binaire, Multinomiale et Ordinale. Available online: https://larmarange.github.io/analyse-R/analyse-R.pdf (accessed on 10 May 2021).
- Neset, T.-S.; Juhola, S.; Wiréhn, L.; Käyhkö, J.; Navarra, C.; Asplund, T.; Glaas, E.; Wibeck, V.; Linnér, B.-O. Supporting Dialogue and Analysis on Trade-Offs in Climate Adaptation Research With the Maladaptation Game. Simul. Gaming 2020, 51, 378–399. [Google Scholar] [CrossRef] [Green Version]
- Rickards, L.; Howden, S.M. Transformational adaptation: Agriculture and climate change. Crop Pasture Sci. 2012, 63, 240–250. [Google Scholar] [CrossRef]
- Magnan, A.K.; Schipper, E.L.F.; Burkett, M.; Bharwani, S.; Burton, I.; Eriksen, S.; Gemenne, F.; Schaar, J.; Ziervogel, G. Addressing the risk of maladaptation to climate change. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 646–665. [Google Scholar] [CrossRef]
- Holzkämper, A. Adapting agricultural production systems to climate change—What’s the use of models? Agriculture 2017, 7, 86. [Google Scholar] [CrossRef] [Green Version]
- Wiréhn, L. Nordic agriculture under climate change: A systematic review of challenges, opportunities and adaptation strategies for crop production. Land Use Policy 2018, 77, 63–74. [Google Scholar] [CrossRef]
Qualitative Stage | Quantitative Stage | |
---|---|---|
Objective | Elicit criteria for assessing vulnerability | Test the genericity of the adaptation strategy criteria and explain farmers’ opinions |
Participants | Expert farmers (13) | Farmers representative of the Occitanie region (32) |
Survey method | Semi-structured interviews on the farm | Semi-structured interviews on the farm |
Materials | Poster/board representing farm resources; climate graphs | Cards for adaptation strategy criteria |
Conceptual framework dimensions | All dimensions (i.e., exposure, sensitivity and adaptive capacity) | Adaptive capacity |
Analysis method | Monography; expert classification | Data cleaning; statistical analysis (regressions, clustering) |
Cognitive and Psychological Factors | Variables | Elicitation Technique in the Questionnaire | Responses Analyzed |
---|---|---|---|
Perceptions of climate change | Threat of climate change | Dichotomous question | Yes or no |
Level of climate change pressure | Multiple-choice question | Low, medium or high | |
Agroecological practices | Degree of interest in agroecological practices | Self-assessment: score from 1–10 (high interest) | Low (1–3), medium (4–6) or high (7–10) |
Resistance to change | Degree of attachment to the production system | Self-assessment: score from 1–10 (high interest) | Low (1–3), medium (4–6) or high (7–10) |
Innovations | Degree of interest in technology | Self-assessment: score from 1–10 (high interest) | Low (1–3), medium (4–6) or high (7–10) |
Reactivity | Degree of planning | Self-assessment: score from 1–10 (high planning) | Low (1–3), medium (4–6) or high (7–10) |
Assistance | Favorite information source | Multiple-choice question | Advisors, farmers, technology or laboratory |
Risk aversion | Degree of risk aversion | Lottery game | High (1–3), medium (4–6) or low (7–10) |
Criterion | Assessed Relevance | First Explanatory Variable in the Regression Tree | Logistic Regression Results | |
---|---|---|---|---|
Direction | Significance | |||
A11: variety resistant to hydric stress | Relevant | Perceptions of climate change risks: low | + | 0.0368 ** |
A27: return harvest residues to the soil | Relevant | Silty clay soil | + | 0.0292 ** |
A29: buy more irrigation quota | Irrelevant | 1–3 crops 4–6 crops (in the rotation) | - - | 0.03279 ** 0.00324 *** |
A31: build or develop a reservoir | Irrelevant | “Boulbènes” soil (clayey sand) | + | 0.0184 ** |
A34: increase irrigation efficiency | Relevant | Age > 50 Age 35–50 | - - | 0.0207 ** 0.0601 * |
A35: irrigate winter crops | Relevant | Interest in agroecology: high | - | 0.0334 ** |
Cluster 1: Slight Adjustments | Cluster 2: Intensification Strategies | Cluster 3: Diversification of Activities | Cluster 4: Agroecological Innovations | |
---|---|---|---|---|
Number of farmers | 2 | 11 | 14 | 4 |
Relevant adaptations to reduce vulnerability to climate change | A5: Balance summer and winter crops; A36: Irrigate winter crops | A30: Renew irrigation equipment; A31: Build or develop a reservoir | A16: Diversify paid activities | A4: Diversify crops; A40: Attend training courses |
Irrelevant adaptations to reduce vulnerability to climate change | A19: Convert to organic agriculture; A24: Perform mechanical weeding | A17: Buy new land; A32: Build or develop a reservoir | A23: Lime the soil | |
Utilized agricultural area (ha) | 100–200 (medium size) | |||
Production system | Conventional | |||
Labor units (full-time equivalent) | 1 | <2 | ||
Education | Bachelor’s degree | |||
Volume of water (m3 ha−1) | >2000 | <3000 | ||
Irrigable area | Non-irrigable fields | Non-irrigable fields | ||
Soil structure | Clay-limestone | |||
Number of pivots | None | |||
Volume of grain storage (t) | <1000 | |||
Number of paid activities | 2 | |||
Percentage of revenue from maize | 30–50% | |||
Distance between plots (km) | >14 | |||
Number of crops | 4–6 | ≥4 | ||
Soil tillage | Reduced tillage | No plowing | ||
Climate change threat | Yes | Yes | ||
Perception of risks from climate change | Medium to high | Medium to high | ||
Interest in agroecology | Low | High | ||
Attachment to production system | Medium to high | Medium | ||
Interest in technology | Low | High | ||
Risk aversion | Very high |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albert, M.; Bergez, J.-E.; Willaume, M.; Couture, S. Vulnerability of Maize Farming Systems to Climate Change: Farmers’ Opinions Differ about the Relevance of Adaptation Strategies. Sustainability 2022, 14, 8275. https://doi.org/10.3390/su14148275
Albert M, Bergez J-E, Willaume M, Couture S. Vulnerability of Maize Farming Systems to Climate Change: Farmers’ Opinions Differ about the Relevance of Adaptation Strategies. Sustainability. 2022; 14(14):8275. https://doi.org/10.3390/su14148275
Chicago/Turabian StyleAlbert, Marine, Jacques-Eric Bergez, Magali Willaume, and Stéphane Couture. 2022. "Vulnerability of Maize Farming Systems to Climate Change: Farmers’ Opinions Differ about the Relevance of Adaptation Strategies" Sustainability 14, no. 14: 8275. https://doi.org/10.3390/su14148275