Influencing Factors in MOOCs Adoption in Higher Education: A Meta-Analytic Path Analysis
Abstract
:1. Introduction
2. Theoretical Background
2.1. Massive Online Open Courses (MOOCs) Adoption
2.2. Theory of Planned Behavior (TPB)
2.3. The Unified Theory of Acceptance and Use of Technology (UTAUT)
2.4. Task-Technology Fit (TTF)
2.5. Research Model and Hypotheses
2.5.1. Behavioral Intention and Actual Use of MOOCs
2.5.2. The Effects of UTAUT Constructs on Behavioral Intention
2.5.3. Attitude towards MOOCs and Behavioral Intention
2.5.4. The Effects of TTF Constructs on Behavioral Intention
2.6. Potential Moderators
3. Materials and Methods
3.1. Study Selection
3.2. Eligible Studies for Inclusion
3.3. Search Strategy
3.4. Study Selection and Data Collection Process
4. Data Analysis
5. Results
5.1. Selection and Inclusion of Studies
5.2. Publication Bias Assessment
5.3. Study Characteristics
5.4. Weight Analysis
5.5. Moderator Analysis
5.6. Meta-Analytic Findings
6. Discussion and Implications
7. Conclusions and Directions for Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santandreu Calonge, D.; Aman Shah, M. MOOCs, Graduate Skills Gaps, and Employability: A Qualitative Systematic Review of the Literature. Int. Rev. Res. Open Distrib. Learn. IRRODL 2016, 17, 67–90. [Google Scholar] [CrossRef]
- Tirthali, D. Are MOOCs Sustainable? In From Books to MOOCs; Portland Press Limited: London, UK, 2016; pp. 115–123. [Google Scholar]
- Koukis, N.; Jimoyiannis, A. MOOCS for Teacher Professional Development: Exploring Teachers’ Perceptions and Achievements. Interact. Technol. Smart Educ. 2019, 16, 74–91. [Google Scholar] [CrossRef]
- Tao, D.; Fu, P.; Wang, Y.; Zhang, T.; Qu, X. Key Characteristics in Designing Massive Open Online Courses (MOOCs) for User Acceptance: An Application of the Extended Technology Acceptance Model. Interact. Learn. Environ. 2022, 30, 882–895. [Google Scholar] [CrossRef]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Goodhue, D.L. Understanding User Evaluations of Information Systems. Manag. Sci. 1995, 41, 1827–1844. [Google Scholar] [CrossRef]
- Junglas, I.; Abraham, C.; Watson, R.T. Task-Technology Fit for Mobile Locatable Information Systems. Decis. Support Syst. 2008, 45, 1046–1057. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M. A Study on the Influencing Factors of Continued Intention to Use MOOCs: UTAUT Model and CCC Moderating Effect. Front. Psychol. 2021, 12, 528259. [Google Scholar] [CrossRef] [PubMed]
- Alyoussef, I.Y. Massive Open Online Course (MOOCs) Acceptance: The Role of Task-Technology Fit (TTF) for Higher Education Sustainability. Sustainability 2021, 13, 7374. [Google Scholar] [CrossRef]
- Lambert, S.R. Do MOOCs Contribute to Student Equity and Social Inclusion? A Systematic Review 2014–2018. Comput. Educ. 2020, 145, 103693. [Google Scholar] [CrossRef]
- Wong, J.; Baars, M.; Davis, D.; Van Der Zee, T.; Houben, G.-J.; Paas, F. Supporting Self-Regulated Learning in Online Learning Environments and MOOCs: A Systematic Review. Int. J. Hum.-Comput. Interact. 2019, 35, 356–373. [Google Scholar] [CrossRef]
- Zhu, M.; Sari, A.; Lee, M.M. A Systematic Review of Research Methods and Topics of the Empirical MOOC Literature (2014–2016). Internet High. Educ. 2018, 37, 31–39. [Google Scholar] [CrossRef]
- Fianu, E.; Blewett, C.; Ampong, G.O. Toward the Development of a Model of Student Usage of MOOCs. Educ. Train. 2020, 62, 521–541. [Google Scholar] [CrossRef]
- Robinson, A.C.; Kerski, J.; Long, E.C.; Luo, H.; DiBiase, D.; Lee, A. Maps and the Geospatial Revolution: Teaching a Massive Open Online Course (MOOC) in Geography. J. Geogr. High. Educ. 2015, 39, 65–82. [Google Scholar] [CrossRef]
- Gamage, D.; Staubitz, T.; Whiting, M. Peer Assessment in MOOCs: Systematic Literature Review. Distance Educ. 2021, 42, 268–289. [Google Scholar] [CrossRef]
- McLoughlin, C.E. The Pedagogy of Personalised Learning: Exemplars, MOOCS and Related Learning Theories. In Proceedings of the EdMedia 2013–World Conference on Educational Media and Technology, Victoria, BC, Canada, 24–28 June 2013; Association for the Advancement of Computing in Education (AACE): Waynesville, NC, USA, 2013; pp. 266–270. [Google Scholar]
- Gao, S.; Yang, Y. Exploring Users’ Adoption of MOOCs from the Perspective of the Institutional Theory. In Proceedings of the WHICEB 2015 Proceedings, Wuhan, China, 25 May 2015; Volume 26, pp. 282–290. [Google Scholar]
- Ajzen, I.; Fishbein, M. Understanding Attitudes and Predicting Social Behavior; Prentice-Hall: Englewood-Cliffs, NJ, USA, 1980. [Google Scholar]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Dong, C.; Zhang, X. Improving MOOC Learning Performance in China: An Analysis of Factors from the TAM and TPB. Comput. Appl. Eng. Educ. 2020, 28, 1421–1433. [Google Scholar] [CrossRef]
- Haron, H.; Hussin, S.; Yusof, A.R.M.; Samad, H.; Yusof, H. Implementation of the UTAUT Model to Understand the Technology Adoption of MOOC at Public Universities. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Selangor, Malaysia, 25–26 June 2020; IOP Publishing: Bristol, UK, 2021; Volume 1062, pp. 1–8. [Google Scholar]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Aljukhadar, M.; Senecal, S.; Nantel, J. Is More Always Better? Investigating the Task-Technology Fit Theory in an Online User Context. Inf. Manag. 2014, 51, 391–397. [Google Scholar] [CrossRef]
- Goodhue, D.L.; Thompson, R.L. Task-Technology Fit and Individual Performance. MIS Q. 1995, 19, 213–236. [Google Scholar] [CrossRef]
- Wu, B.; Chen, X. Continuance Intention to Use MOOCs: Integrating the Technology Acceptance Model (TAM) and Task Technology Fit (TTF) Model. Comput. Hum. Behav. 2017, 67, 221–232. [Google Scholar] [CrossRef]
- Dishaw, M.T.; Strong, D.M. Extending the Technology Acceptance Model with Task-Technology Fit Constructs. Inf. Manag. 1999, 36, 9–21. [Google Scholar] [CrossRef]
- Oliveira, T.; Faria, M.; Thomas, M.A.; Popovič, A. Extending the Understanding of Mobile Banking Adoption: When UTAUT Meets TTF and ITM. Int. J. Inf. Manag. 2014, 34, 689–703. [Google Scholar] [CrossRef]
- Gebauer, J.; Ginsburg, M. Exploring the Black Box of Task-Technology Fit. Commun. ACM 2009, 52, 130–135. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Al Mulhem, A. Analysis of the Essential Factors Affecting of Intention to Use of Mobile Learning Applications: A Comparison between Universities Adopters and Non-Adopters. Educ. Inf. Technol. 2019, 24, 1433–1468. [Google Scholar] [CrossRef]
- Chao, C.-M. Factors Determining the Behavioral Intention to Use Mobile Learning: An Application and Extension of the UTAUT Model. Front. Psychol. 2019, 10, 1652. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Aklikokou, A.K. Determinants of E-Government Adoption: Testing the Mediating Effects of Perceived Usefulness and Perceived Ease of Use. Int. J. Public Adm. 2020, 43, 850–865. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I. The Theory of Planned Behaviour: Reactions and Reflections. Psychol. Health 2011, 26, 1113–1127. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead. J. Assoc. Inf. Syst. 2016, 17, 328–376. [Google Scholar] [CrossRef]
- Alalwan, A.A.; Dwivedi, Y.K.; Rana, N.P.; Williams, M.D. Consumer Adoption of Mobile Banking in Jordan: Examining the Role of Usefulness, Ease of Use, Perceived Risk and Self-Efficacy. J. Enterp. Inf. Manag. 2016, 29, 118–139. [Google Scholar] [CrossRef]
- Chu, J.; Dai, Y.-Y. Extending the UTAUT Model to Study the Acceptance Behavior of MOOCs by University Students and the Moderating Roles of Free Time Management and Leisure-Study Conflict. Int. J. Technol. Hum. Interact. (IJTHI) 2021, 17, 35–57. [Google Scholar] [CrossRef]
- Im, I.; Hong, S.; Kang, M.S. An International Comparison of Technology Adoption: Testing the UTAUT Model. Inf. Manag. 2011, 48, 1–8. [Google Scholar] [CrossRef]
- Karels, M. An Empirical Study of Users’ Acceptance of MOOCs. Master’s Thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands, 2018. [Google Scholar]
- Farrow, R.; de los Arcos, B.; Pitt, R.; Weller, M. Who Are the Open Learners? A Comparative Study Profiling Non-Formal Users of Open Educational Resources. EURODL (Eur. J. Open Distance E-Learn.) 2015, 18, 50–74. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I. Attitudes, Personality, and Behavior; Dorsey Press: Chicago, IL, USA, 1988. [Google Scholar]
- Mulik, S.; Srivastava, M.; Yajnik, N. Extending UTAUT Model to Examine MOOC Adoption. NMIMS Manag. Rev. 2018, 36, 26–44. [Google Scholar]
- Tseng, T.H.; Lin, S.; Wang, Y.-S.; Liu, H.-X. Investigating Teachers’ Adoption of MOOCs: The Perspective of UTAUT2. Interact. Learn. Environ. 2019, 30, 635–650. [Google Scholar] [CrossRef] [Green Version]
- Pavlou, P.A.; Fygenson, M. Understanding and Predicting Electronic Commerce Adoption: An Extension of the Theory of Planned Behavior. MIS Q. 2006, 30, 115–143. [Google Scholar] [CrossRef]
- Amid, A.; Din, R. Acceptance and Use of Massive Open Online Courses: Extending UTAUT2 with Personal Innovativeness. J. Pers. Learn. 2021, 4, 57–66. [Google Scholar]
- Huedo-Martínez, S.; Molina-Carmona, R.; Llorens-Largo, F. Study on the Attitude of Young People towards Technology. In International Conference on Learning and Collaboration Technologies; Zaphiris, P., Ioannou, A., Eds.; Springer: Cham, Switzerland, 2018; pp. 26–43. [Google Scholar]
- Ab Jalil, H.; Ma’rof, A.; Omar, R. Attitude and Behavioral Intention to Develop and Use MOOCs among Academics. Int. J. Emerg. Technol. Learn. (IJET) 2019, 14, 31–41. [Google Scholar] [CrossRef]
- Al-Rahmi, W.M.; Yahaya, N.; Alamri, M.M.; Alyoussef, I.Y.; Al-Rahmi, A.M.; Kamin, Y.B. Integrating Innovation Diffusion Theory with Technology Acceptance Model: Supporting Students’ Attitude towards Using a Massive Open Online Courses (MOOCs) Systems. Interact. Learn. Environ. 2021, 29, 1380–1392. [Google Scholar] [CrossRef]
- Lin, T.-C.; Huang, C.-C. Understanding Knowledge Management System Usage Antecedents: An Integration of Social Cognitive Theory and Task-Technology Fit. Inf. Manag. 2008, 45, 410–417. [Google Scholar] [CrossRef]
- Lee, C.-C.; Cheng, H.K.; Cheng, H.-H. An Empirical Study of Mobile Commerce in Insurance Industry: Task-Technology Fit and Individual Differences. Decis. Support Syst. 2007, 43, 95–110. [Google Scholar] [CrossRef]
- Khan, I.U.; Hameed, Z.; Yu, Y.; Islam, T.; Sheikh, Z.; Khan, S.U. Predicting the Acceptance of MOOCs in a Developing Country: Application of Task-Technology Fit Model, Social Motivation, and Self-Determination Theory. Telemat. Inform. 2018, 35, 964–978. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lee, C.-H.; Hsiao, K.-L. Comparing the Determinants of Non-MOOC and MOOC Continuance Intention in Taiwan: Effects of Interactivity and Openness. Libr. Hi Tech 2018, 36, 705–719. [Google Scholar] [CrossRef]
- Azami, H.H.R.; Ibrahim, R. Investigating the Factors That Influence the Acceptance of MOOC as a Supplementary Learning Tool in Higher Education. J. Adv. Res. Dyn. Control. Syst. 2020, 12, 522–530. [Google Scholar] [CrossRef]
- Khalid, B.; Lis, M.; Chaiyasoonthorn, W.; Chaveesuk, S. Factors Influencing Behavioural Intention to Use MOOCs. Eng. Manag. Prod. Serv. 2021, 13, 83–95. [Google Scholar] [CrossRef]
- Yawson, D.E.; Yamoah, F.A. Gender Variability in E-Learning Utility Essentials: Evidence from a Multi-Generational Higher Education Cohort. Comput. Hum. Behav. 2021, 114, 106558. [Google Scholar] [CrossRef]
- Vanitha, P.S.; Alathur, S. E-Learning Adoption Based on Gender Differences: Insight from India. Int. J. Innov. Learn. 2020, 28, 510–538. [Google Scholar] [CrossRef]
- Van Dijk, J.A. A Theory of the Digital Divide. In The Digital Divide: The Internet and Social Inequality in International Perspective; Ragnedda, M., Muschert, G.W., Eds.; Routledge: Oxford, UK, 2013; pp. 29–43. [Google Scholar]
- Ho, A.D.; Reich, J.; Nesterko, S.; Seaton, D.T.; Mullaney, T.; Waldo, J.; Chuang, I. Harvard X and MITx: The First Year of Open Online Courses; Harvard University/MIT: Cambridge, MA, USA, 2014. [Google Scholar]
- Morris, N.P.; Swinnerton, B.J.; Hotchkiss, S. Can Demographic Information Predict MOOC Learner Outcomes? In Proceedings of the Experience Track: Proceedings of the European MOOC Stakeholder, Mons, Belgium, 18–20 May 2015; University of Leeds: Leeds, UK, 2015. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Cosci, F.; Fava, G.A. Staging of Mental Disorders: Systematic Review. Psychother. Psychosom. 2013, 82, 20–34. [Google Scholar] [CrossRef]
- Borenstein, M. Common Mistakes in Meta-Analysis and How to Avoid Them; Biostat Inc.: Englewood, NJ, USA, 2019. [Google Scholar]
- Mukaka, M.M. A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Sabherwal, R.; Jeyaraj, A.; Chowa, C. Information System Success: Individual and Organizational Determinants. Manag. Sci. 2006, 52, 1849–1864. [Google Scholar] [CrossRef] [Green Version]
- Rothstein, H.R.; Sutton, A.J.; Borenstein, M. Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Haron, H.; Hussin, S.; Yusof, A.R.M.; Samad, H.; Yusof, H. MOOC: A Technology Adoption Using UTAUT Model at Public Universities. TEST Eng. Manag. 2020, 83, 3146–3151. [Google Scholar]
- Khan, E. Factors Influencing Intention to Use Massive Open Online-Course on German Market. Master’s Thesis, St. Petersburg University, St. Petersburg, Russia, 2016. [Google Scholar]
- Mohan, M.M.; Upadhyaya, P.; Pillai, K.R. Intention and Barriers to Use MOOCs: An Investigation among the Post Graduate Students in India. Educ. Inf. Technol. 2020, 25, 5017–5031. [Google Scholar] [CrossRef]
- Zhou, M. Chinese University Students’ Acceptance of MOOCs: A Self-Determination Perspective. Comput. Educ. 2016, 92, 194–203. [Google Scholar] [CrossRef]
- Lim, C.L.; Tang, S.F.; Ravichandran, P. A Study on the Mediation Effects of Intention to Enroll in MOOCs on Its Actual Usage. In Proceedings of the 8th International Conference on E-Education, E-Business, E-Management and E-Learning, Kuala Lumpur, Malaysia, 5–7 January 2017; pp. 30–33. [Google Scholar]
- Tamjidyamcholo, A.; Gholipour, R.; Kazemi, M.A. Examining the Perceived Consequences and Usage of MOOCs on Learning Effectiveness. Iran. J. Manag. Stud. 2020, 13, 495–525. [Google Scholar]
- Othman, M.S.; Tashimaimaiti, G.; Yusuf, L.M.; Al-Rahmi, W.M. End-User Perspectives on Effectiveness of Learning Performance through Massive Open Online Course (MOOCs). In International Conference of Reliable Information and Communication Technology; Springer: Cham, Switzerland, 2017; pp. 699–707. [Google Scholar]
- Virani, S.R.; Saini, J.R.; Sharma, S. Adoption of Massive Open Online Courses (MOOCs) for Blended Learning: The Indian Educators’ Perspective. Interact. Learn. Environ. 2020, 1–17. [Google Scholar] [CrossRef]
- Ouyang, Y.; Tang, C.; Rong, W.; Zhang, L.; Yin, C.; Xiong, Z. Task-Technology Fit Aware Expectation-Confirmation Model towards Understanding of MOOCs Continued Usage Intention. In Proceedings of the Hawaii International Conference on System Sciences (HICSS), Hilton Waikoloa Village, HI, USA, 4–7 January 2017. [Google Scholar]
- Wan, L.; Xie, S.; Shu, A. Toward an Understanding of University Students’ Continued Intention to Use MOOCs: When UTAUT Model Meets TTF Model. SAGE Open 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Altalhi, M. Toward a Model for Acceptance of MOOCs in Higher Education: The Modified UTAUT Model for Saudi Arabia. Educ. Inf. Technol. 2021, 26, 1589–1605. [Google Scholar] [CrossRef]
- Yang, H.-H.; Su, C.-H. Learner Behaviour in a MOOC Practice-Oriented Course: In Empirical Study Integrating TAM and TPB. Int. Rev. Res. Open Distrib. Learn. IRRODL 2017, 18, 35–63. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J. Exploring the Factors Affecting Learners’ Continuance Intention of MOOCs for Online Collaborative Learning: An Extended ECM Perspective. Australas. J. Educ. Technol. 2017, 33, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Zahrani, A.A. Exploring Behaviour Control and Actual Use of Massive Open Online Courses System Management for Education Sustainability. Entrep. Sustain. Issues 2021, 9, 386. [Google Scholar] [CrossRef]
- Abu-Shanab, E.A.; Musleh, S. The Adoption of Massive Open Online Courses: Challenges and Benefits. Int. J. Web-Based Learn. Teach. Technol. (IJWLTT) 2018, 13, 62–76. [Google Scholar] [CrossRef]
- Navarro, M.M.; Prasetyo, Y.T.; Young, M.N.; Nadlifatin, R.; Redi, A.A.N.P. The Perceived Satisfaction in Utilizing Learning Management System among Engineering Students during the COVID-19 Pandemic: Integrating Task-Technology Fit and Extended Technology Acceptance Model. Sustainability 2021, 13, 10669. [Google Scholar] [CrossRef]
- Chen, M.; Wang, X.; Wang, J.; Zuo, C.; Tian, J.; Cui, Y. Factors Affecting College Students’ Continuous Intention to Use Online Course Platform. SN Comput. Sci. 2021, 2, 114. [Google Scholar] [CrossRef]
- Jo, D. Exploring the Determinants of MOOCs Continuance Intention. KSII Trans. Internet Inf. Syst. (TIIS) 2018, 12, 3992–4005. [Google Scholar] [CrossRef]
- Morales Chan, M.; Barchino Plata, R.; Medina, J.A.; Alario-Hoyos, C.; Hernandez Rizzardini, R.; Roca, M.D.L. Analysis of Behavioral Intention to Use Cloud-Based Tools in a MOOC: A Technology Acceptance Model Approach. J. Univers. Comput. Sci. 2018, 24, 1072–1089. [Google Scholar] [CrossRef]
- Kim, R.; Song, H.-D. Examining the Influence of Teaching Presence and Task-Technology Fit on Continuance Intention to Use MOOCs. Asia-Pac. Educ. Res. 2022, 31, 395–408. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A. Acceptance of MOOCs as an Alternative for Internship for Management Students during COVID-19 Pandemic: An Indian Perspective. Int. J. Educ. Manag. 2021, 35, 1231–1244. [Google Scholar] [CrossRef]
- Van de Kamp, C. Acceptance of MOOCs by Dutch University Students. Extending the Unified Theory of Acceptance and Use of Technology (UTAUT) Model with the Technology Acceptance Model (TAM). Master’s Thesis, Radboud University, Nijmegen, The Netherlands, 2019. [Google Scholar]
- Wang, Q.; Khan, M.S.; Khan, M.K. Predicting User Perceived Satisfaction and Reuse Intentions toward Massive Open Online Courses (MOOCs) in the COVID-19 Pandemic: An Application of the UTAUT Model and Quality Factors. Res. Bus. Soc. Sci. 2021, 10, 1–11. [Google Scholar] [CrossRef]
- Lung-Guang, N. Decision-Making Determinants of Students Participating in MOOCs: Merging the Theory of Planned Behavior and Self-Regulated Learning Model. Comput. Educ. 2019, 134, 50–62. [Google Scholar] [CrossRef]
- Chaveesuk, S.; Khalid, B.; Bsoul-Kopowska, M.; Rostańska, E.; Chaiyasoonthorn, W. Comparative Analysis of Variables That Influence Behavioral Intention to Use MOOCs. PLoS ONE 2022, 17, e0262037. [Google Scholar] [CrossRef] [PubMed]
- Teo, T.; Dai, H.M. The Role of Time in the Acceptance of MOOCs among Chinese University Students. Interact. Learn. Environ. 2019, 30, 651–664. [Google Scholar] [CrossRef]
- Dai, H.M.; Teo, T.; Rappa, N.A. Understanding Continuance Intention among MOOC Participants: The Role of Habit and MOOC Performance. Comput. Hum. Behav. 2020, 112, 106455. [Google Scholar] [CrossRef]
- Meet, R.K.; Kala, D.; Al-Adwan, A.S. Exploring Factors Affecting the Adoption of MOOC in Generation Z Using Extended UTAUT2 Model. Educ. Inf. Technol. 2022, 1–23. [Google Scholar] [CrossRef]
- Lv, J.; Maeda, Y. Evaluation of the Efficacy of Meta-Analytic Structural Equation Modeling with Missing Correlations. Struct. Equ. Model. Multidiscip. J. 2020, 27, 414–437. [Google Scholar] [CrossRef]
- Geyskens, I.; Steenkamp, J.-B.E.; Kumar, N. Make, Buy, or Ally: A Transaction Cost Theory Meta-Analysis. Acad. Manag. J. 2006, 49, 519–543. [Google Scholar] [CrossRef]
- Santini, F.D.O.; Ladeira, W.J.; Mette, F.M.B.; Ponchio, M.C. The Antecedents and Consequences of Financial Literacy: A Meta-Analysis. Int. J. Bank Mark. 2019, 37, 1462–1479. [Google Scholar] [CrossRef]
- Chaveesuk, S.; Wutthirong, P.; Chaiyasoonthorn, W. Cloud Computing Classroom Acceptance Model in Thailand Higher Education’s Institutes: A Conceptual Framework. In Proceedings of the 2018 10th International Conference on Information Management and Engineering, Salford, UK, 22–24 September 2018; pp. 141–145. [Google Scholar]
- Hooper, D.; Coughlan, J.; Mullen, M.R. Structural Equation Modelling: Guidelines for Determining Model Fit. Electron. J. Bus. Res. Methods 2008, 6, 53–60. [Google Scholar]
- Kenny, D.A.; Kaniskan, B.; McCoach, D.B. The Performance of RMSEA in Models with Small Degrees of Freedom. Sociol. Methods Res. 2015, 44, 486–507. [Google Scholar] [CrossRef]
- Wang, H.; Tao, D.; Yu, N.; Qu, X. Understanding Consumer Acceptance of Healthcare Wearable Devices: An Integrated Model of UTAUT and TTF. Int. J. Med. Inform. 2020, 139, 104156. [Google Scholar] [CrossRef]
- Khalid, B.; Chaveesuk, S.; Chaiyasoonthorn, W. MOOCs Adoption in Higher Education: A Management Perspective. Pol. J. Manag. Stud. 2021, 23, 239–256. [Google Scholar] [CrossRef]
- Rahi, S.; Khan, M.M.; Alghizzawi, M. Extension of Technology Continuance Theory (TCT) with Task-Technology Fit (TTF) in the Context of Internet Banking User Continuance Intention. Int. J. Qual. Reliab. 2021, 38, 986–1004. [Google Scholar] [CrossRef]
- Fu, J.; Shang, R.-A.; Jeyaraj, A.; Sun, Y.; Hu, F. Interaction between Task Characteristics and Technology Affordances: Task-Technology Fit and Enterprise Social Media Usage. J. Enterp. Inf. Manag. 2020, 33, 1–22. [Google Scholar] [CrossRef]
- D’Ambra, J.; Wilson, C.S.; Akter, S. Application of the Task-Technology Fit Model to Structure and Evaluate the Adoption of E-books by Academics. J. Am. Soc. Inf. Sci. Technol. 2013, 64, 48–64. [Google Scholar] [CrossRef] [Green Version]
- Koo, C.; Wati, Y.; Jung, J.J. Examination of How Social Aspects Moderate the Relationship between Task Characteristics and Usage of Social Communication Technologies (SCTs) in Organizations. Int. J. Inf. Manag. 2011, 31, 445–459. [Google Scholar] [CrossRef]
- DeLone, W.H.; McLean, E.R. Information Systems Success: The Quest for the Dependent Variable. Inf. Syst. Res 1992, 3, 60–95. [Google Scholar] [CrossRef] [Green Version]
- Hollingsworth, C.L. An Examination of Fit and the Use of Mobile Devices for Performing Tasks. Ph.D. Thesis, Kennesaw State University, Kennesaw, GA, USA, 2015. [Google Scholar]
- Dutot, V.; Bhatiasevi, V.; Bellallahom, N. Applying the Technology Acceptance Model in a Three-Countries Study of Smartwatch Adoption. J. High Technol. Manag. Res. 2019, 30, 1–14. [Google Scholar] [CrossRef]
- Hauk, N.; Hüffmeier, J.; Krumm, S. Ready to Be a Silver Surfer? A Meta-Analysis on the Relationship between Chronological Age and Technology Acceptance. Comput. Hum. Behav. 2018, 84, 304–319. [Google Scholar] [CrossRef]
No. | Author(s) | Year | Type | Country | Sample Size | Variable(s) | Mean Age | Gender (Male %) | No. | Author(s) | Year | Type | Country | Sample Size | Variable(s) | Mean Age | Gender (Male %) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Mulik [41] | 2018 | J | India | 310 | PE, EE, SI, FC, BI | 35.72 a | 72.90 | 24 | Haron [66] | 2020 | J | Malaysia | 350 | EE, PE, SI, FC, BI, AU | – | – |
2 | Khan [67] | 2016 | T | Germany | 491 | PE, EE, SI | 44.5 a | 49 | 25 | Mohan [68] | 2020 | J | India | 412 | EE, PE, SI, FC, BI | 23.5 a | 47 |
3 | Zhou [69] | 2016 | J | China | 475 | ATT, BI | 21.40 | 50.5 | 26 | Azami & Ibrahim [52] | 2020 | J | Malaysia | 111 | ATT, SI, BI | – | 72.1 |
4 | Lim [70] | 2017 | C | Malaysia | 780 | PE, EE, SI, FC, BI, AU | – | – | 27 | Tamjidyamcholo [71] | 2020 | J | Iran | 234 | SI, FC, AU,BI | 29.62 a | 68 |
5 | Othman [72] | 2017 | C | Malaysia | 513 | ATT-BI | 23.03 a | 43.9 | 28 | Virani [73] | 2020 | J | India | 286 | SI, ATT, BI | – | 67.1 |
6 | Ouyang [74] | 2017 | J | China | 234 | TTF-BI | – | – | 29 | Wan [75] | 2020 | J | China | 464 | PE, EE, SI, FC, TAC, TEC, TTF, BI | – | 36.4 |
7 | Wu & Chen [25] | 2017 | J | China | 252 | ATT, BI, TTF, TAC, TEC, SI | 35.7 a | 59.1 | 30 | Altalhi [76] | 2021 | J | Saudi Arabia | 169 | ATT, EE, FC, SI, PE | 21.36 a | 82 |
8 | Yang & Su [77] | 2017 | J | Taiwan | 272 | AU, BI, ATT | 23.71 | 30.2 | 31 | Alyoussef [9] | 2021 | J | Saudi Arabia | 277 | SI, TTF | 23.23 a | 60.6 |
9 | Zhou [78] | 2017 | J | China | 435 | SI, BI | 24.5 a | 56.6 | 32 | Zahrani [79] | 2021 | J | Saudi Arabia | 235 | ATT-AU | – | – |
10 | Abu-Shanab & Musleh [80] | 2018 | J | Jordan | 184 | SI, BI | 20 a | 25 | 33 | Amid & Din [44] | 2021 | J | Malaysia | 218 | PE, EE, SI, FC, BI, UB | 22.215 a | 24.3 |
11 | Karels [38] | 2018 | T | The Netherlands | 141 | PE, EE, SI, FC, BI | – | 58.9 | 34 | Navarro [81] | 2021 | J | Philippines | 1011 | BI, TTF, TEC, TAC | 21.01 a | 76.06 |
12 | Chen [51] | 2018 | J | Taiwan | 854 | PE, BI | – | 65 | 35 | Chen [82] | 2021 | J | China | 337 | EE,SI, PE, BI | – | 25.8 |
13 | Jo [83] | 2018 | J | South Korea | 237 | TTF, BI | 28.05 | 51.9 | 36 | Chu & Dai [36] | 2021 | J | China | 771 | EE, PE, SI, FC, BI, AU | 45.8 | |
14 | Khan [50] | 2018 | J | Pakistan | 414 | TEC, TAC, TTF, SI, BI, AU | – | 56 | 37 | Haron [21] | 2021 | C | Malaysia | 400 | EE, PE, SI, FC, BI, AU | – | – |
15 | Morales Chan [84] | 2018 | J | Guatemala | 131 | BI, ATT, FC | – | 83.33 | 38 | Kim & Song [85] | 2021 | J | South Korea | 252 | TTF, BI | – | 45.2 |
16 | Ab Jalil [46] | 2019 | J | Malaysia | 238 | ATT-BI | – | – | 39 | Li & Zhao [8] | 2021 | J | China | 312 | PE, EE, SI,FC,BI | 23.11 a | 44.90 |
17 | Al-Rahmi [47] | 2021 | J | Malaysia | 1148 | ATT-BI | 21.9 a | 46.3 | 40 | Singh & Sharma [86] | 2021 | J | India | 326 | SI, FC | – | – |
18 | Kamp [87] | 2019 | T | The Netherlands | 305 | ATT, BI, PE, EE, SI, FC | 21.75 | 24.3 | 41 | Wang [88] | 2021 | J | China | 298 | FC, SI, EE, PE, BI | 26.92 | 77.7 |
19 | Lung-Guang [89] | 2019 | J | Taiwan | 222 | ATT, BI | 33.7 | 51.4 | 42 | Chaveesuk [90] (study A) | 2022 | J | Poland | 455 | PE, EE, SI, FC, BI | – | 71.5 |
20 | Teo & Dai [91] | 2019 | J | China | 209 | ATT, BI | – | 32.54 | 43 | Chaveesuk [90] (study b) | 2022 | J | Thailand | 490 | PE, EE, SI, FC, BI | – | 41 |
21 | Tseng [42] | 2019 | J | Taiwan | 161 | EE, PE, SI, FC, BI, AU | 46.95 a | 63.5 | 44 | Chaveesuk [90] (study c) | 2022 | J | Pakistan | 513 | PE, EE, SI, FC, BI | – | 28.5 |
22 | Dai [92] | 2020 | J | China | 160 | ATT-BI | 30.62 | 19.07 | 45 | Meet [93] | 2022 | J | India | 483 | PE, SI, EE, FC, BI | 22.03 a | 49.7 |
23 | Fianu [13] | 2018 | J | Ghana | 204 | EE, PE, SI, FC, BI, AU | – | – | – |
Paths | K | N | r+ | rz | CI 95% LI | Q-Test | I2 | Fail Safe N | Egger’s Test |
---|---|---|---|---|---|---|---|---|---|
BI-AU | 9 | 3794 | 0.516 | 0.570 | 0266–0.701 | 658.820 *** | 98.786 | 3188 | 0.346 |
FC-BI | 18 | 5762 | 0.343 | 0.358 | 0.221–0.455 | 438.045 *** | 96.119 | 3181 | 0.622 |
PE-BI | 21 | 8456 | 0.454 | 0.489 | 0.338–0.556 | 1604.944 *** | 98.754 | 7319 | 0.005 |
EE-BI | 18 | 6962 | 0.381 | 0.402 | 0.244–0.503 | 697.219 *** | 97.551 | 4694 | 0.482 |
SI-BI | 25 | 8870 | 0.391 | 0.413 | 0.280–0.491 | 841.468 *** | 97.148 | 8762 | 0.649 |
ATT-BI | 13 | 3343 | 0.452 | 0.487 | 0.318–0.568 | 249.157 *** | 95.184 | 2185 | 0.079 |
TTF-BI | 8 | 4009 | 0.427 | 0.457 | 0.246–0.580 | 283.021 *** | 95.527 | 1225 | 0.108 |
TAC-TTF | 4 | 2141 | 0.492 | 0.539 | 0.216–0.696 | 152.983 *** | 98.039 | 525 | 0.345 |
TEC-TTF | 3 | 1889 | 0.493 | 0.540 | 0.331–0.627 | 34.079 *** | 94.131 | 211 | 0.377 |
Construct | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
1. PE | |||||||||
2. EE | 0.572 | ||||||||
3. SI | 0.545 | 0.479 | |||||||
4. FC | 0.575 | 0.562 | 0.496 | ||||||
5. ATT | 0.770 | 0.443 | 0.542 | 0.304 | |||||
6. TTF | 0.546 | 0.506 | 0.502 | 0.546 | 0.105 | ||||
7. TAC | 0.659 | 0.485 | 0.309 | 0.467 | 0.438 | 0.492 | |||
8. TEC | 0.529 | 0.317 | 0.193 | 0.297 | 0.246 | 0.444 | 0.590 | ||
9. BI | 0.454 | 0.381 | 0.391 | 0.343 | 0.343 | 0.427 | 0.493 | 0.493 | |
10. AU | 0.473 | 0.443 | 0.457 | 0.414 | 0.477 | 0.620 | – | – | 0.516 |
Subgroups | FC → BI | PE → BI | EE → BI | SI → BI | ATT → BI |
---|---|---|---|---|---|
Large sample size | |||||
Meta β | 0.288 | 0.620 | 0.266 | 0.464 | 0.312 |
p-value (β) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Z-value | 16.77 | 496.82 | 16.86 | 32.484 | 10.123 |
Small sample size | |||||
Meta β | 0.389 | 0.557 | 0.971 | 0.336 | 0.435 |
p-value (β) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Z-value | 20.53 | 33.98 | 28.302 | 21.238 | 22.453 |
Heterogeneity | |||||
Q-statistic | 0.322 | 3.062 | 1.364 | 22.114 | 0.793 |
p (heterogeneity) | 0.571 | 0.080 | 0.243 | 0.000 | 0.373 |
Subgroups | FC → BI | PE → BI | EE → BI | SI → BI | ATT → BI |
---|---|---|---|---|---|
Female | |||||
Meta β | 0.428 | 0.622 | 0.337 | 0.299 | 0.387 |
p-value (β) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Z-value | 18.88 | 497.69 | 21.564 | 18.927 | 16.363 |
Male | |||||
Meta β | 0.310 | 0.395 | 0.440 | 0.445 | 0.353 |
p-value (β) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Z-value | 9.972 | 22.023 | 17.524 | 27.570 | 14.070 |
Heterogeneity | |||||
Q-statistic | 1.457 | 0.105 | 0.542 | 0.646 | 24.907 |
p (heterogeneity) | 0.483 | 0.949 | 0.762 | 0.724 | 0.000 |
Subgroups | FC → BI | PE → BI | EE → BI | SI → BI | ATT → BI |
---|---|---|---|---|---|
Age > 24 years | |||||
Meta β | 0.403 | 0.965 | 0.240 | 0.153 | 0.308 |
p-value (β) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Z-value | 13.223 | 5.05 | 9.158 | 6.088 | 12.132 |
Age < 24 years | |||||
Meta β | 0.302 | 0.543 | 0.647 | 0.413 | 0.372 |
p-value (β) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Z-value | 15.73 | 20.258 | 21.208 | 17.884 | 9.759 |
Heterogeneity | |||||
Q-statistic | 1.109 | 0.938 | 5.098 | 19.847 | 10.756 |
p (heterogeneity) | 0.557 | 0.626 | 0.078 | 0.000 | 0.013 |
Subgroups | FC → BI | PE → BI | EE → BI | SI → BI | ATT → BI |
---|---|---|---|---|---|
Asian | |||||
Meta β | 0.336 | 0.382 | 0.372 | 0.386 | 0.405 |
p-value (β) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Z-value | 22.357 | 33.241 | 30.067 | 5.66 | 23.013 |
Non-Asian | |||||
Meta β | 0.327 | 0.623 | 0.298 | 0.322 | 0.367 |
p-value (β) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Z-value | 13.598 | 497.518 | 9.504 | 3.610 | 7.979 |
Heterogeneity | |||||
Q-statistic | 0.358 | 1.545 | 0.018 | 0.186 | 0.253 |
p (heterogeneity) | 0.55 | 0.214 | 0.893 | 0.66 | 0.615 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaremohzzabieh, Z.; Roslan, S.; Mohamad, Z.; Ismail, I.A.; Ab Jalil, H.; Ahrari, S. Influencing Factors in MOOCs Adoption in Higher Education: A Meta-Analytic Path Analysis. Sustainability 2022, 14, 8268. https://doi.org/10.3390/su14148268
Zaremohzzabieh Z, Roslan S, Mohamad Z, Ismail IA, Ab Jalil H, Ahrari S. Influencing Factors in MOOCs Adoption in Higher Education: A Meta-Analytic Path Analysis. Sustainability. 2022; 14(14):8268. https://doi.org/10.3390/su14148268
Chicago/Turabian StyleZaremohzzabieh, Zeinab, Samsilah Roslan, Zulkifli Mohamad, Ismi Arif Ismail, Habibah Ab Jalil, and Seyedali Ahrari. 2022. "Influencing Factors in MOOCs Adoption in Higher Education: A Meta-Analytic Path Analysis" Sustainability 14, no. 14: 8268. https://doi.org/10.3390/su14148268
APA StyleZaremohzzabieh, Z., Roslan, S., Mohamad, Z., Ismail, I. A., Ab Jalil, H., & Ahrari, S. (2022). Influencing Factors in MOOCs Adoption in Higher Education: A Meta-Analytic Path Analysis. Sustainability, 14(14), 8268. https://doi.org/10.3390/su14148268