Adaptive Individual Differences in Math Courses
Abstract
:1. Introduction
2. The Selected Dispositions
3. The Present Study
4. Method
4.1. Participants
4.2. Materials and Procedure
5. Results
5.1. Do Major and Gender Differentiate Students’ Dispositions and Math Performance?
5.2. Do Dispositions in Each Student Group Predict Math Performance?
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salas-Zapata, W.A.; Ortiz-Muñoz, S.M. Analysis of meanings of the concept of sustainability. Sustain. Dev. 2019, 27, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Brundiers, K.; Barth, M.; Cebrián, G.; Cohen, M.; Diaz, L.; Doucette-Remington, S.; Dripps, W.; Habron, G.; Harré, N.; Jarchow, M.; et al. Key competencies in sustainability in higher education—Toward an agreed-upon reference framework. Sustain. Sci. 2021, 16, 13–29. [Google Scholar] [CrossRef]
- Tsai, M.J.; Liang, J.C.; Hsu, C.Y. The computational thinking scale for computer literacy education. J. Educ. Comput. Res. 2021, 59, 579–602. [Google Scholar] [CrossRef]
- Gonzalez, T.; De La Rubia, M.A.; Hincz, K.P.; Comas-Lopez, M.; Subirats, L.; Fort, S.; Sacha, G.M. Influence of COVID-19 confinement on students’ performance in higher education. PLoS ONE 2020, 15, e0239490. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, B.; Johnson, M.; Meder, M.E. Learning in the time of COVID-19: Some preliminary findings. Int. Rev. Econ. Educ. 2021, 37, 100215. [Google Scholar] [CrossRef]
- El Said, G.R. How Did the COVID-19 Pandemic affect higher education learning experience? An empirical investigation of learners’ academic performance at a university in a developing country. Adv. Hum. Comput. Interact. 2021, 2021, 6649524. [Google Scholar] [CrossRef]
- Elzainy, A.; El Sadik, A.; Al Abdulmonem, W. Experience of e-learning and online assessment during the COVID-19 pandemic at the College of Medicine, Qassim University. J. Taibah Univ. Med. Sci. 2020, 15, 456–462. [Google Scholar] [CrossRef]
- Iglesias-Pradas, S.; Hernández-García, Á.; Chaparro-Peláez, J.; Prieto, J.L. Emergency remote teaching and students’ academic performance in higher education during the COVID-19 pandemic: A case study. Comput. Hum. Behav. 2021, 119, 106713. [Google Scholar] [CrossRef]
- AbdelSalam, H.M.; Pilotti, M.A.E.; El-Moussa, O.J. Sustainable math education of female students during a pandemic: Online versus face-to-face instruction. Sustainability 2021, 13, 12248. [Google Scholar] [CrossRef]
- Pilotti, M.A.E.; Abdelsalam, H.M.; Anjum, F.; Daqqa, I.; Muhi, I.; Latif, R.M.; Nasir, S.; Al-Ameen, T.A. Predicting math performance of Middle Eastern students: The role of dispositions. Educ. Sci. 2022, 12, 314. [Google Scholar] [CrossRef]
- Biwer, F.; Wiradhany, W.; Oude Egbrink, M.; Hospers, H.; Wasenitz, S.; Jansen, W.; De Bruin, A. Changes and adaptations: How university students self-regulate their online learning during the COVID-19 pandemic. Front. Psycholol. 2021, 12, 642593. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, J.; Fuller-Tyszkiewicz, M. Profiles in self-regulated learning and their correlates for online and blended learning students. Educ. Technol. Res. Dev. 2018, 66, 1435–1455. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy conception of anxiety. Anxiety Res. Int. J. 1988, 1, 77–98. [Google Scholar] [CrossRef]
- Dew, K.H.; Galassi, J.P.; Galassi, M.D. Math anxiety: Relation with situational test anxiety, performance, physiological arousal, and math avoidance behavior. J. Couns. Psychol. 1984, 31, 580–583. [Google Scholar] [CrossRef]
- Ashcraft, M.H.; Kirk, E.P. The relationships among working memory, math anxiety, and performance. J. Exp. Psychol. Gen. 2001, 130, 224–237. [Google Scholar] [CrossRef]
- Ashcraft, M.H.; Faust, M.W. Mathematics anxiety and mental arithmetic performance: An exploratory investigation. Cogn. Emot. 1994, 8, 97–125. [Google Scholar] [CrossRef]
- Chipman, S.F.; Krantz, D.H.; Silver, R. Mathematics anxiety and science careers among able college women. Psychol. Sci. 1992, 3, 292–296. [Google Scholar] [CrossRef]
- Luttenberger, S.; Wimmer, S.; Paechter, M. Spotlight on math anxiety. Psychol. Res. Behav. Manag. 2018, 11, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Hopko, D.R.; Mahadevan, R.; Bare, R.L.; Hunt, M.K. The Abbreviated Math Anxiety Scale (AMAS) construction, validity, and reliability. Assessment 2003, 10, 178–182. [Google Scholar] [CrossRef]
- Schillinger, F.L.; Vogel, S.E.; Diedrich, J.; Grabner, R.H. Math anxiety, intelligence, and performance in mathematics: Insights from the German adaptation of the Abbreviated Math Anxiety Scale (AMAS-G). Learn. Individ. Differ. 2018, 61, 109–119. [Google Scholar] [CrossRef]
- Barroso, C.; Ganley, C.M.; McGraw, A.L.; Geer, E.A.; Hart, S.A.; Daucourt, M.C. A meta-analysis of the relation between math anxiety and math achievement. Psychol. Bull. 2021, 147, 134–168. [Google Scholar] [CrossRef]
- Hembree, R. The nature, effects, and relief of mathematics anxiety. J. Res. Math. Educ. 1990, 21, 33–46. [Google Scholar] [CrossRef]
- Llabre, M.M.; Suarez, E. Predicting math anxiety and course performance in college women and men. J. Couns. Psychol. 1985, 32, 283–287. [Google Scholar] [CrossRef]
- Reali, F.; Jiménez-Leal, W.; Maldonado-Carreno, C.; Devine, A.; Szücs, D. Examining the link between math anxiety and math performance in Colombian students. Rev. Colomb. Psicol. 2016, 25, 369–379. [Google Scholar] [CrossRef]
- Kyttälä, M.; Björn, P.M. The role of literacy skills in adolescents’ mathematics word problem performance: Controlling for visuospatial ability and mathematics anxiety. Learn. Individ. Differ. 2014, 29, 59–66. [Google Scholar] [CrossRef]
- Meece, J.L.; Wigfield, A.; Eccles, J.S. Predictors of math anxiety and its influence on young adolescents’ course enrollment intentions and performance in mathematics. J. Educ. Psychol. 1990, 82, 60–70. [Google Scholar] [CrossRef]
- Wigfield, A.; Meece, J. Math anxiety in elementary and secondary school students. J. Educ. Psychol. 1988, 80, 210–216. [Google Scholar] [CrossRef]
- Ma, X. A meta-analysis of the relationship between anxiety toward mathematics and achievement in mathematics. J. Res. Math. Educ. 1999, 30, 520–541. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, N.; Kong, Q.P. The relationship between math anxiety and math performance: A meta-analytic investigation. Front. Psychol. 2019, 10, 1613. [Google Scholar] [CrossRef]
- Devine, A.; Fawcett, K.; Szűcs, D.; Dowker, A. Gender differences in mathematics anxiety and the relation to mathematics performance while controlling for test anxiety. Behav. Brain Funct. 2012, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Miller, H.; Bichsel, J. Anxiety, working memory, gender, and math performance. Personal. Individ. Differ. 2004, 37, 591–606. [Google Scholar] [CrossRef]
- Baya’a, N.F. Mathematics anxiety, mathematics achievement, gender, and socio-economic status among Arab secondary students in Israel. Int. J. Math. Educ. Sci. Technol. 1990, 21, 319–324. [Google Scholar] [CrossRef]
- Betz, N.E. Prevalence, distribution, and correlates of math anxiety in college students. J. Couns. Psychol. 1978, 25, 441–448. [Google Scholar] [CrossRef]
- Abed, A.S.; Alkhateeb, H.M. Mathematics anxiety among eighth-grade students of the United Arab Emirates. Psychol. Rep. 2001, 89, 65–66. [Google Scholar] [CrossRef]
- Cooper, S.E.; Robinson, D.A. The relationship of mathematics self-efficacy beliefs to mathematics anxiety and performance. Meas. Eval. Couns. Dev. 1991, 24, 4–11. [Google Scholar]
- Yáñez-Marquina, L.; Villardón-Gallego, L. Math anxiety, a hierarchical construct: Development and validation of the Scale for Assessing Math Anxiety in secondary education. Ansiedad Estrés 2017, 23, 59–65. [Google Scholar] [CrossRef]
- Jamieson, J.P.; Peters, B.J.; Greenwood, E.J.; Altose, A.J. Reappraising stress arousal improves performance and reduces evaluation anxiety in classroom exam situations. Soc. Psychol. Personal. Sci. 2016, 7, 579–587. [Google Scholar] [CrossRef]
- Vahedi, S.; Farrokhi, F. A confirmatory factor analysis of the structure of the abbreviated math anxiety scale. Iran. J. Psychiatry 2011, 6, 47–53. [Google Scholar]
- Chen, G.; Gully, S.M.; Eden, D. Validation of a new general self-efficacy scale. Organ. Res. Methods 2001, 4, 62–83. [Google Scholar] [CrossRef] [Green Version]
- Sobieraj, S.; Krämer, N.C. The impacts of gender and subject on experience of competence and autonomy in STEM. Front. Psychol. 2019, 10, 1432. [Google Scholar] [CrossRef]
- Klug, J.; Lüftenegger, M.; Bergsmann, E.; Spiel, C.; Schober, B. Secondary school students’ LLL competencies and their relation with classroom structure and achievement. Front. Psychol. 2016, 7, 680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roick, J.; Ringeisen, T. Students’ math performance in higher education: Examining the role of self-regulated learning and self-efficacy. Learn. Individ. Differ. 2018, 65, 148–158. [Google Scholar] [CrossRef]
- Stephanou, G.; Tsoni, F. Effects of metacognition on performance in mathematics and language-multiple mediation of hope and general self-efficacy. Int. J. Psychol. Stud. 2019, 11, 30–52. [Google Scholar] [CrossRef]
- Preckel, F.; Fischbach, A.; Scherrer, V.; Brunner, M.; Ugen, S.; Lipnevich, A.A.; Roberts, R.D. Circadian preference as a typology: Latent-class analysis of adolescents’ morningness/eveningness, relation with sleep behavior, and with academic outcomes. Learn. Individ. Differ. 2020, 78, 101725. [Google Scholar] [CrossRef]
- Gomes, A.A.; Tavares, J.; de Azevedo, M.H.P. Sleep and academic performance in undergraduates: A multi-measure, multi-predictor approach. Chronobiol. Int. 2011, 28, 786–801. [Google Scholar] [CrossRef]
- Mirghani, H.O. The effect of chronotype (morningness/eveningness) on medical students’ academic achievement in Sudan. J. Taibah Univ. Med. Sci. 2017, 12, 512–516. [Google Scholar] [CrossRef]
- Adan, A.; Natale, V. Gender differences in morningness-eveningness preference. Chronobiol. Int. 2002, 19, 709–720. [Google Scholar] [CrossRef]
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between clocks: Daily temporal patterns of human chronotypes. J. Biol. Rhythm. 2003, 18, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Mirghani, H.O.; Albalawi, K.S.; Alali, O.Y.; Albalawi, W.M.; Albalawi, K.M.; Aljohani, T.R.; Albalawi, W.S. Breakfast skipping, late dinner intake, and chronotype (eveningness-morningness) among medical students in Tabuk City, Saudi Arabia. Pan Afr. Med. J. 2019, 34, 178–183. [Google Scholar] [CrossRef]
- BaHammam, A.S.; Almestehi, W.; Albatli, A.; AlShaya, S. Distribution of chronotypes in a large sample of young adult Saudis. Ann. Saudi Med. 2011, 31, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Adan, A.; Archer, S.N.; Hidalgo, M.P.; Di Milia, L.; Natale, V.; Randler, C. Circadian typology: A comprehensive review. Chronobiol. Int. 2012, 29, 1153–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Núñez, P.; Perillan, C.; Arguelles, J.; Diaz, E. Comparison of sleep and chronotype between senior and undergraduate university students. Chronobiol. Int. 2019, 36, 1626–1637. [Google Scholar] [CrossRef]
- Preckel, F.; Lipnevich, A.A.; Boehme, K.; Brandner, L.; Georgi, K.; Könen, T.; Mursin, K.; Roberts, R.D. Morningness-eveningness and educational outcomes: The lark has an advantage over the owl at high school. Br. J. Educ. Psychol. 2013, 83, 114–134. [Google Scholar] [CrossRef]
- Montaruli, A.; Castelli, L.; Galasso, L.; Mulè, A.; Bruno, E.; Esposito, F.; Caumo, A.; Roveda, E. Effect of chronotype on academic achievement in a sample of Italian University students. Chronobiol. Int. 2019, 36, 1482–1495. [Google Scholar] [CrossRef] [PubMed]
- Mirghani, H.O.; Alnomsi, S.J.; Albalawi, K.S.; Alali, O.Y.; Albalawi, W.M.; Albalawi, K.M.; Albalawi, W.S. The chronotype (eveningness-morningness) effects on academic achievement among medical students in Tabuk City, Saudi Arabia. Egypt. J. Hosp. Med. 2018, 71, 3504–3507. [Google Scholar] [CrossRef]
- Vollmer, C.; Pötsch, F.; Randler, C. Morningness is associated with better gradings and higher attention in class. Learn. Individ. Differ. 2013, 27, 167–173. [Google Scholar] [CrossRef]
- Martín-Páez, T.; Aguilera, D.; Perales-Palacios, F.J.; Vílchez-González, J.M. What are we talking about when we talk about STEM education? A review of literature. Sci. Educ. 2019, 103, 799–822. [Google Scholar] [CrossRef]
- Brown, R.; Brown, J.; Reardon, K.; Merrill, C. Understanding STEM: Current perceptions. Technol. Eng. Teach. 2011, 70, 5–9. [Google Scholar]
- Dufresne, R.J.; Gerace, W.J.; Leonard, W.J. Solving physics problems with multiple representations. Phys. Teach. 1997, 35, 270–275. [Google Scholar] [CrossRef]
- Pilotti, M.A.E. What Lies beneath Sustainable Education? Predicting and Tackling Gender Differences in STEM Academic Success. Sustainability 2021, 13, 1671. [Google Scholar] [CrossRef]
- Nurunnabi, M. Transformation from an oil-based economy to a knowledge-based economy in Saudi Arabia: The direction of Saudi vision 2030. J. Knowl. Econ. 2017, 8, 536–564. [Google Scholar] [CrossRef]
- Pilotti, M.A.E.; Abdulhadi, E.J.; Algouhi, T.A.; Salameh, M.H. The new and the old: Responses to change in the Kingdom of Saudi Arabia. J. Int. Women’s Stud. 2021, 22, 341–358. [Google Scholar]
- Saleh, W.; Malibari, A. Saudi women and Vision 2030: Bridging the gap? Behav. Sci. 2021, 11, 132. [Google Scholar] [CrossRef] [PubMed]
- Alwazzan, L.; Rees, C.E. Women in medical education: Views and experiences from the Kingdom of Saudi Arabia. Med. Educ. 2016, 50, 852–865. [Google Scholar] [CrossRef] [PubMed]
- Al-Asfour, A.; Tlaiss, H.A.; Khan, S.A.; Rajasekar, J. Saudi women’s work challenges and barriers to career advancement. Career Dev. Int. 2017, 22, 184–199. [Google Scholar] [CrossRef]
- Hart, S.A.; Ganley, C.M. The nature of math anxiety in adults: Prevalence and correlates. J. Numer. Cogn. 2019, 5, 122. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.S.; Reilly, C.; Midkiff, K. Evaluation of three circadian rhythm questionnaires with suggestions for an improved measure of morningness. J. Appl. Psychol. 1989, 74, 728. [Google Scholar] [CrossRef]
- Leppma, M.; Darrah, M. Self-efficacy, mindfulness, and self-compassion as predictors of math anxiety in undergraduate students. Int. J. Math. Educ. Sci. Technol. 2022, 1–16. [Google Scholar] [CrossRef]
- Blascovich, J.; Mendes, W.B.; Tomaka, J.; Salomon, K.; Seery, M. The robust nature of the biopsychosocial model challenge and threat: A reply to Wright and Kirby. Personal. Soc. Psychol. Rev. 2003, 7, 234–243. [Google Scholar] [CrossRef]
- Seery, M.D. Challenge or threat? Cardiovascular indexes of resilience and vulnerability to potential stress in humans. Neurosci. Biobehav. Rev. 2011, 35, 1603–1610. [Google Scholar] [CrossRef]
- Jamieson, J.P.; Nock, M.K.; Mendes, W.B. Changing the conceptualization of stress in Social Anxiety Disorder: Affective and physiological consequences. Clin. Psychol. Sci. 2013, 1, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Crum, A.J.; Salovey, P.; Achor, S. Rethinking stress: The role of mindsets in determining the stress response. J. Personal. Soc. Psychol. 2013, 104, 716–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamieson, J.P.; Nock, M.K.; Mendes, W.B. Mind over matter: Reappraising arousal improves cardiovascular and cognitive responses to stress. J. Exp. Psychol. Gen. 2012, 141, 417–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, G.; Shaw, S.T.; Maloney, E.A. Math anxiety: Past research, promising interventions, and a new interpretation framework. Educ. Psychol. 2018, 53, 145–164. [Google Scholar] [CrossRef]
- Ferguson, A.M.; Fairburn, J. Language experience for problem-solving in Mathematics. Read. Teach. 1985, 38, 504–507. Available online: https://www.jstor.org/stable/20198837 (accessed on 30 November 2021).
- Beal, C.R.; Adams, N.M.; Cohen, P.R. Reading proficiency and mathematics problem solving by high school English language learners. Urban Educ. 2010, 45, 58–74. [Google Scholar] [CrossRef] [Green Version]
- Davis, E.K.; Bishop, A.J.; Seah, W.T. We don’t understand English that is why we prefer English: Primary school students’ preference for the language of instruction in Mathematics. Int. J. Sci. Math. Educ. 2015, 13, 583–604. [Google Scholar] [CrossRef]
- DeDonno, M.A.; Rivera-Torres, K.; Monis, A.; Fagan, J.F. The influence of a time limit and bilingualism on Scholastic Assessment Test performance. N. Am. J. Psychol. 2014, 16, 211–224. [Google Scholar]
Variables | Female Non-STEM | Female STEM | Male Non-STEM | Male STEM |
---|---|---|---|---|
LMA (−2–+2) | +0.17 (0.065) | +0.25 (0.048) | +0.18 (0.095) | +0.37 (0.080) |
MEA (−2–+2) | +.037 (0.079) | +0.33 (0.058) | +0.30 (0.115) | −0.08 (0.097) |
Self-efficacy (−2–+2) | 0.82 (0.067) | 0.86 (0.049) | 0.91 (0.098) | 0.68 (0.082) |
Chronotype | 0.54 (0.010) | 0.59 (0.007) | 0.56 (0.014) | 0.57 (0.012) |
Performance | 0.81 (0.010) | 0.77 (0.007) | 0.78 (0.015) | 0.78 (0.012) |
Outcome Variables | B | SE | Beta | t | Sign. |
---|---|---|---|---|---|
Non-STEM Female | |||||
Constant | 0.849 | 0.041 | |||
LMA | −0.017 | 0.011 | −0.122 | −1.545 | ns |
MEA | 0.006 | 0.008 | 0.057 | 0.726 | ns |
Self-Efficacy | 0.005 | 0.010 | 0.036 | 0.468 | ns |
Chronotype | −0.082 | 0.072 | −0.088 | −1.138 | ns |
STEM Female | |||||
Constant | 0.715 | 0.038 | |||
LMA * | −0.029 | 0.009 | −0.179 | −3.153 | 0.002 |
MEA | −0.001 | 0.008 | −0.005 | −0.082 | ns |
Self-Efficacy | 0.006 | 0.009 | 0.040 | 0.700 | ns |
Chronotype | 0.095 | 0.063 | 0.086 | 1.514 | ns |
Non-STEM Male | |||||
Constant | 0.791 | 0.076 | |||
LMA | −0.025 | 0.019 | −0.150 | −1.312 | ns |
MEA | 0.022 | 0.016 | 0.153 | 1.349 | ns |
Self-Efficacy * | 0.055 | 0.021 | 0.287 | 2.550 | 0.013 |
Chronotype | −0.113 | 0.134 | −0.096 | -0.846 | ns |
STEM Male | |||||
Constant | 0.733 | 0.054 | |||
LMA * | −0.035 | 0.013 | −0.259 | −2.753 | 0.007 |
MEA | 0.012 | 0.013 | 0.085 | 0.917 | ns |
Self-Efficacy | 0.010 | 0.013 | 0.067 | 0.720 | ns |
Chronotype | 0.093 | 0.089 | 0.098 | 1.046 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilotti, M.A.E.; Abdelsalam, H.; Anjum, F.; Muhi, I.; Nasir, S.; Daqqa, I.; Gunderson, G.D.; Latif, R.M. Adaptive Individual Differences in Math Courses. Sustainability 2022, 14, 8197. https://doi.org/10.3390/su14138197
Pilotti MAE, Abdelsalam H, Anjum F, Muhi I, Nasir S, Daqqa I, Gunderson GD, Latif RM. Adaptive Individual Differences in Math Courses. Sustainability. 2022; 14(13):8197. https://doi.org/10.3390/su14138197
Chicago/Turabian StylePilotti, Maura A. E., Hanadi Abdelsalam, Farheen Anjum, Imad Muhi, Sumiya Nasir, Ibtisam Daqqa, Gunner D. Gunderson, and Raja M. Latif. 2022. "Adaptive Individual Differences in Math Courses" Sustainability 14, no. 13: 8197. https://doi.org/10.3390/su14138197