Rice Growth Performance, Nutrient Use Efficiency and Changes in Soil Properties Influenced by Biochar under Alternate Wetting and Drying Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location and Pot Setup
2.2. Chemical Characterization of Soil and Biochar
2.3. Data Collection
2.3.1. Physiological Parameters of Rice
2.3.2. Yield-Contributing Parameters and Yield of Rice
2.3.3. Quantity of Irrigation Water Volume and Water Productivity
2.3.4. Determination of Enzymatic Activities of Soil
2.3.5. Determination of Nutrient Concentration and Uptake by Rice
2.3.6. Estimation of Nutrient Use Efficiency
2.3.7. Percent Relative Data
2.4. Statistical Analysis
3. Results
3.1. Physiological Response of Rice Influenced by Integrated Application of Biochar and Fertilizer under Two Irrigation Regimes
3.2. Effect of Integrated Biochar and Fertilizer Application under Two Irrigation Regimes on Yield-Contributing Characters and Yield of Rice
3.3. Irrigation Water Volume and Water Use Efficiency of Rice Influenced by Various Biochar Treatments under AWD and CF Irrigation
3.4. Nutrient Uptake of Rice Influenced by Integrated Application of Biocharand Fertilizer under Two Irrigation Regimes
3.5. Nutrient Use Efficiency of Rice Influenced by Integrated Application of Biochar and Fertilizer under Two Irrigation Regimes
3.6. Effect of Integrated Biochar and Fertilizer Application under Two Irrigation Regimes on Soil Dehydrogenase and Urease Enzyme Activities
3.7. Acid Phosphatase Activity of Soil Impacted by Main Effect of Biochar Treatment
3.8. Effect of Integrated Biochar and Fertilizer Application underTwo Irrigation Regimes on Total C and N of Post-Harvest Soil
3.9. Main Effect of Irrigation Regime and Integrated Application of Biochar on Chemical Properties of Post-Harvest Soil
3.10. Relation between Grain Yield, Water Productivity, Physiological Parameters and Biochemical Properties of Soil
4. Discussion
4.1. Enzymatic Activities and Chemical Properties of Post-Harvest Soil
4.2. Nutrient Use Efficiency
4.3. Physiological Parameters
4.4. Yield and Water Use Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Month | Temperature (°C) | Relative Humidity (%) | |
---|---|---|---|
Maximum | Minimum | ||
September | 32 | 23 | 81 |
October | 32 | 24 | 79 |
November | 31 | 24 | 80 |
December | 30 | 22 | 82 |
Parameter | Value |
---|---|
pH (Soil:water = 1:2.5) | 5.14 |
Cation exchange capacity (cmolc(+) kg−1) | 16.46 |
Total Carbon (g kg−1) | 53.60 |
Total Nitrogen (g kg−1) | 4.00 |
Available P (mg kg−1) | 12.34 |
Exchangeable K (cmolc(+) kg−1) | 1.38 |
Exchangeable Ca (cmolc(+) kg−1) | 12.01 |
Exchangeable Mg (cmolc(+) kg−1) | 7.71 |
Total S (mg kg−1) | 1400 |
Parameters | Biochar Type | |
---|---|---|
Rice Husk Biochar (RHB) | Oil Palm Empty Fruit Bunch Biochar (EFBB) | |
pH (Soil:water = 1:10) | 7.12 | 8.50 |
Cation exchange capacity (cmolc(+) kg−1) | 50.42 | 58.32 |
Total C (g kg−1) | 248.60 | 521.10 |
Total N (g kg−1) | 3.80 | 11.30 |
Total P (g kg−1) | 3.10 | 1.90 |
Total K (g kg−1) | 16.67 | 50.82 |
Total Ca (g kg−1) | 1.65 | 7.09 |
Total Mg (g kg−1) | 1.69 | 3.90 |
Total S (g kg−1) | 1.50 | 1.50 |
References
- Bouman, B.; Barker, R.; Humphreys, E.; Tuong, T.P.; Atlin, G.N.; Bennett, J.; Dawe, D.; Dittert, K.; Dobermann, A.; Facon, T.; et al. Rice: Feeding the billion. In Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Molden, D., Ed.; Earthscan: London, UK, 2007; pp. 515–549. [Google Scholar]
- FAO. Rice market monitor. In Proceedings of the Food and Agriculture Organization Proceedings; Food and Agriculture Organization: Rome, Italy, 2018; pp. 1–35. [Google Scholar]
- Bouman, B.A.; Tuong, T. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Kukal, S.S. Water-saving irrigation scheduling to rice (Oryza sativa) in indo-gangetic plains of India. In Land and Water Management: Decision Tools and Practices; Huang, G., Pereira, L.S., Eds.; China Agricultural University: Beijing, China, 2004; pp. 83–87. [Google Scholar]
- Norton, G.J.; Shafaei, M.; Travis, A.J.; Deacon, C.M.; Danku, J.; Pond, D.; Cochrane, N.; Lockhart, K.; Salt, D.; Zhang, H.; et al. Impact of alternate wetting and drying on rice physiology, grain production, and grain quality. Field Crop. Res. 2017, 205, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Vaghefi, N.; Shamsudin, M.N.; Makmom, A.; Bagheri, M. The economic impacts of climate change on the rice production in Malaysia. Int. J. Agric. Res. 2010, 6, 67–74. [Google Scholar] [CrossRef]
- Toriman, M.; Mokhtar, M. Irrigation: Types, sources and problems in Malaysia. In Irrigation Systems and Practices in Challenging Environments; Lee, T.S., Ed.; InTech: London, UK, 2012; pp. 361–370. ISBN 978-953-51-0420-9. [Google Scholar]
- Chan, C.S.; Zainudin, H.; Saad, A.R.; Azmi, M.A. Productive water use in aerobic rice cultivation. J. Trop. Agric. Food Sci. 2012, 40, 117–126. [Google Scholar]
- Lampayan, R.M.; Rejesus, R.M.; Singleton, G.R.; Bouman, B.A.M. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crop. Res. 2015, 170, 95–108. [Google Scholar] [CrossRef]
- Yao, F.; Huang, J.; Cui, K.; Nie, L.; Xiang, J.; Liu, X.; Wu, W.; Chen, M.; Peng, S. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crop. Res. 2012, 126, 16–22. [Google Scholar] [CrossRef]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crop. Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Alhaj Hamoud, Y.; Guo, X.; Wang, Z.; Chen, S.; Rasool, G. Effects of irrigation water regime, soil clay content and their combination on growth, yield, and water use efficiency of rice grown in South China. Int. J. Agric. Biol. Eng. 2018, 11, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Oliver, V.; Cochrane, N.; Magnusson, J.; Brachi, E.; Monaco, S.; Volante, A.; Courtois, B.; Vale, G.; Price, A.; Teh, Y.A. Effects of water management and cultivar on carbon dynamics, plant productivity and biomass allocation in European rice systems. Sci. Total Environ. 2019, 685, 1139–1151. [Google Scholar] [CrossRef]
- Moyano, F.E.; Manzoni, S.; Chenu, C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biol. Biochem. 2013, 59, 72–85. [Google Scholar] [CrossRef]
- Hoang, T.T.H.; Do, D.T.; Tran, T.T.G.; Ho, T.D.; Rehman, H. Incorporation of rice straw mitigates CH4 and N2O emissions in water saving paddy fields of Central Vietnam. Arch. Agron. Soil Sci. 2019, 65, 113–124. [Google Scholar] [CrossRef]
- Gordon, H.; Haygarth, P.M.; Bardgett, R.D. Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biol. Biochem. 2008, 40, 302–311. [Google Scholar] [CrossRef]
- Yang, C.; Yang, L.; Yang, Y.; Ouyang, Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric. Water Manag. 2004, 70, 67–81. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, G.; Wu, G.; Kibue, G.W.; Li, L.; Zhang, X.; Zheng, J.; Zheng, J.; Cheng, K.; Joseph, S.; et al. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere 2016, 142, 106–113. [Google Scholar] [CrossRef]
- García, A.C.; de Souza, L.G.A.; Pereira, M.G.; Castro, R.N.; García-Mina, J.M.; Zonta, E.; Lisboa, F.J.G.; Berbara, R.L.L. Structure-property-function relationship in humic substances to explain the biological activity in plants. Sci. Rep. 2016, 6, 20798. [Google Scholar] [CrossRef] [Green Version]
- Bayu, D.; Tadesse, M.; Amsalu, N. Effect of biochar on soil properties and lead (Pb) availability in a military camp in South West Ethiopia. Afr. J. Environ. Sci. Technol. 2016, 10, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Kameyama, K.; Miyamoto, T.; Shiono, T. Influence of biochar incorporation on TDR-based soil water content measurements. Eur. J. Soil Sci. 2014, 65, 105–112. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Choudhary, M.; Sharma, P.C.; Dixit, B.; Jat, M.L. Soil enzymes activity: Effect of climate smart agriculture on rhizosphere and bulk soil under cereal based systems of north-west India. Eur. J. Soil Biol. 2021, 103, 103292. [Google Scholar] [CrossRef]
- Bonanomi, G.; Ippolito, F.; Cesarano, G.; Nanni, B.; Lombardi, N.; Rita, A.; Saracino, A.; Scala, F. Biochar as plant growth promoter: Better off alone or mixed with organic amendments? Front. Plant Sci. 2017, 8, 1570. [Google Scholar] [CrossRef]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X.; et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crop. Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Haque, A.N.A.; Uddin, M.K.; Sulaiman, M.F.; Amin, A.M.; Hossain, M.; Aziz, A.A.; Mosharrof, M. Impact of organic amendment with alternate wetting and drying irrigation on rice yield, water use efficiency and physicochemical properties of soil. Agronomy 2021, 11, 1529. [Google Scholar] [CrossRef]
- Manickam, T.; Cornelissen, G.; Bachmann, R.; Ibrahim, I.; Mulder, J.; Hale, S. Biochar application in malaysian sandy and acid sulfate soils: Soil amelioration effects and improved crop production over two cropping seasons. Sustainability 2015, 7, 16756–16770. [Google Scholar] [CrossRef] [Green Version]
- Shariff, A.; Abdullah, N.; Aziz, S. Slow pyrolysis of oil palm empty fruit bunches for biochar production and characterisation. J. Phys. Sci. 2014, 25, 97–112. [Google Scholar]
- Sukiran, M.A.; Kheang, L.S.; Bakar, N.A.; May, C.Y. Production and characterization of bio-char from the pyrolysis of empty fruit bunches. Am. J. Appl. Sci. 2011, 8, 984–988. [Google Scholar] [CrossRef]
- Cottenie, A. Soil Testing and Plant Testing as a Basis of Fertilizer Recommendation; Food and Agriculture Organization (FAO): Rome, Italy, 1980. [Google Scholar]
- Casida, L.E.; Klein, D.A.; Santoro, T. Soil dehydrogenase activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- McGarity, J.W.; Myers, M.G. A survey of urease activity in soils of Northern New South Wales. Plant Soil 1967, 27, 217–238. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Futa, B.; Oleszczuk, P.; Andruszczak, S.; Kwiecińska-Poppe, E.; Kraska, P. Effect of natural aging of biochar on soil enzymatic activity and physicochemical properties in long-term field experiment. Agronomy 2020, 10, 449. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, L.; Tang, Q.; Yu, L.; Zhang, R. Effects of amendment of different biochars on soil enzyme activities related to carbon mineralisation. Soil Res. 2014, 52, 706. [Google Scholar] [CrossRef]
- de Denardin, L.G.O.; Alves, L.A.; Ortigara, C.; Winck, B.; Coblinski, J.A.; Schmidt, M.R.; Carlos, F.S.; de Toni, C.A.G.; de Camargo, F.A.O.; Anghinoni, I.; et al. How different soil moisture levels affect the microbial activity. Ciência Rural. 2020, 50. [Google Scholar] [CrossRef]
- Zhao, B.; Chen, J.; Zhang, J.; Qin, S. Soil microbial biomass and activity response to repeated drying–rewetting cycles along a soil fertility gradient modified by long-term fertilization management practices. Geoderma 2010, 160, 218–224. [Google Scholar] [CrossRef]
- Shetty, R.; Prakash, N.B. Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Sci. Rep. 2020, 10, 12249. [Google Scholar] [CrossRef]
- Haque, A.N.A.; Uddin, M.K.; Sulaiman, M.F.; Amin, A.M.; Hossain, M.; Solaiman, Z.M.; Mosharrof, M. Biochar with alternate wetting and drying irrigation: A Potential technique for paddy soil management. Agriculture 2021, 11, 367. [Google Scholar] [CrossRef]
- Haque, A.N.A.; Uddin, M.K.; Sulaiman, M.F.; Amin, A.M.; Hossain, M.; Zaibon, S.; Mosharrof, M. Assessing the increase in soil moisture storage capacity and nutrient enhancement of different organic amendments in paddy soil. Agriculture 2021, 11, 44. [Google Scholar] [CrossRef]
- Shi, R.; Li, J.Y.; Ni, N.; Xu, R. Understanding the biochar’s role in ameliorating soil acidity. J. Integr. Agric. 2019, 18, 1508–1517. [Google Scholar] [CrossRef]
- Takaya, C.A.; Fletcher, L.A.; Singh, S.; Anyikude, K.U.; Ross, A.B. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere 2016, 145, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, R. Improvement of acidic soil properties by biochar from fast pyrolysis. Environ. Prog. Sustain. Energy 2018, 37, 1743–1749. [Google Scholar] [CrossRef]
- Yang, S.; Chen, X.; Jiang, Z.; Ding, J.; Sun, X.; Xu, J. Effects of biochar application on soil organic carbon composition and enzyme activity in paddy soil under water-saving irrigation. Int. J. Environ. Res. Public Health 2020, 17, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawat, J.; Saxena, J.; Sanwal, P. Biochar: A sustainable approach for improving plant growth and soil properties. In Biochar-An Imperative Amendment for Soil and the Environment; IntechOpen: London, UK, 2019. [Google Scholar]
- Chen, L.; Liu, M.; Ali, A.; Zhou, Q.; Zhan, S.; Chen, Y.; Pan, X.; Zeng, Y. Effects of biochar on paddy soil fertility under different water management modes. J. Soil Sci. Plant Nutr. 2020, 20, 1810–1818. [Google Scholar] [CrossRef]
- Li, M.; Liu, M.; Li, Z.; Jiang, C.; Wu, M. Soil N transformation and microbial community structure as affected by adding biochar to a paddy soil of subtropical China. J. Integr. Agric. 2016, 15, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Oladele, S.; Adeyemo, A.; Awodun, M.; Ajayi, A.; Fasina, A. Effects of biochar and nitrogen fertilizer on soil physicochemical properties, nitrogen use efficiency and upland rice (Oryza sativa) yield grown on an Alfisol in Southwestern Nigeria. Int. J. Recycl. Org. Waste Agric. 2019, 8, 295–308. [Google Scholar] [CrossRef] [Green Version]
- Nagabovanalli Basavarajappa, P.; Shruthi; Lingappa, M.; G. G, K.; Goudra Mahadevappa, S. Nutrient requirement and use efficiency of rice (Oryza sativa L.) as influenced by graded levels of customized fertilizer. J. Plant Nutr. 2021, 44, 2897–2911. [Google Scholar] [CrossRef]
- Li, M.; Cai, L. Biochar and arbuscular mycorrhizal fungi play different roles in enabling maize to uptake phosphorus. Sustainability 2021, 13, 3244. [Google Scholar] [CrossRef]
- Kalia, V.C.; Gong, C.; Patel, S.K.S.; Lee, J.K. Regulation of plant mineral nutrition by signal molecules. Microorganisms 2021, 9, 774. [Google Scholar] [CrossRef]
- Lee, Y.L.; Ahmed, O.H.; Wahid, S.A.; AB Aziz, Z.F. Biochar tablets with and without embedded fertilizer on the soil chemical characteristics and nutrient use efficiency of Zea mays. Sustainability 2021, 13, 4878. [Google Scholar] [CrossRef]
- Arif, M.; Ilyas, M.; Riaz, M.; Ali, K.; Shah, K.; Ul Haq, I.; Fahad, S. Biochar improves phosphorus use efficiency of organic-inorganic fertilizers, maize-wheat productivity and soil quality in a low fertility alkaline soil. Field Crop. Res. 2017, 214, 25–37. [Google Scholar] [CrossRef]
- Ali, I.; Ullah, S.; He, L.; Zhao, Q.; Iqbal, A.; Wei, S.; Shah, T.; Ali, N.; Bo, Y.; Adnan, M.; et al. Combined application of biochar and nitrogen fertilizer improves rice yield, microbial activity and N-metabolism in a Pot experiment. PeerJ 2020, 8, e10311. [Google Scholar] [CrossRef]
- Huang, M.; Yin, X.; Chen, J.; Cao, F. Biochar application mitigates the effect of heat stress on rice (Oryza sativa L.) by regulating the root-zone environment. Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, J.; Wang, Y.; Yang, Q.; Chen, T.; Chen, Y.; Chi, D.; Xia, G.; Siddique, K.H.M.; Wang, T. Photosynthesis, chlorophyll fluorescence, and yield of peanut in response to biochar application. Front. Plant Sci. 2021, 12, 650432. [Google Scholar] [CrossRef]
- Laghari, M.; Mirjat, M.S.; Hu, Z.; Fazal, S.; Xiao, B.; Hu, M.; Chen, Z.; Guo, D. Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena 2015, 135, 313–320. [Google Scholar] [CrossRef]
- He, Y.; Yao, Y.; Ji, Y.; Deng, J.; Zhou, G.; Liu, R.; Shao, J.; Zhou, L.; Li, N.; Zhou, X.; et al. Biochar amendment boosts photosynthesis and biomass in C3 but not C4 plants: A global synthesis. GCB Bioenergy 2020, 12, 605–617. [Google Scholar] [CrossRef]
- Okuma, E.; Jahan, M.S.; Munemasa, S.; Hossain, M.A.; Muroyama, D.; Islam, M.M.; Ogawa, K.; Watanabe-Sugimoto, M.; Nakamura, Y.; Shimoishi, Y.; et al. Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis. J. Plant Physiol. 2011, 168, 2048–2055. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Peng, S.; Xu, J.; He, Y.; Wang, Y. Effects of water saving irrigation and controlled release nitrogen fertilizer managements on nitrogen losses from paddy fields. Paddy Water Environ. 2015, 13, 71–80. [Google Scholar] [CrossRef]
- Hidayati, N.; Triadiati; Anas, I. Photosynthesis and transpiration rates of rice cultivated under the system of rice intensification and the effects on growth and yield. Hayati. J. Biosci. 2016, 23, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xue, Y.; Wang, Z.; Yang, J.; Zhang, J. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci. 2009, 49, 2246–2260. [Google Scholar] [CrossRef]
- Pandis, C.; Spanoudaki, A.; Kyritsis, A.; Pissis, P.; Hernández, J.C.R.; Gómez Ribelles, J.L.; Monleón Pradas, M. Water sorption characteristics of poly (2-hydroxyethyl acrylate)/silica nanocomposite hydrogels. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 657–668. [Google Scholar] [CrossRef]
- Batista, E.M.C.C.; Shultz, J.; Matos, T.T.S.; Fornari, M.R.; Ferreira, T.M.; Szpoganicz, B.; Freitas, R.A.; Mangrich, A.S. Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Sci. Rep. 2018, 8, 10677. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Feng, Q.; McGrouther, K.; Yang, M.; Wang, H.; Wu, W. Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. J. Soils Sediments 2015, 15, 153–162. [Google Scholar] [CrossRef]
- Kameyama, K.; Miyamoto, T.; Iwata, Y.; Shiono, T. Effects of biochar produced from sugarcane bagasse at different pyrolysis temperatures on water retention of a calcaric dark red soil. Soil Sci. 2016, 181, 20–28. [Google Scholar] [CrossRef]
Irrigation | Photosynthesis Rate (μmol m−2s−1) | Stomatal Conductance (mmol m−2s−1) | Transpiration Rate (mmol m−2s−1) | |||
---|---|---|---|---|---|---|
Vegetative Stage | Maturing Stage | Vegetative Stage | Maturing Stage | Vegetative Stage | Maturing Stage | |
AWD | 18.08 b | 16.18 b | 0.66 b | 0.51 b | 9.14 b | 7.56 b |
CF | 19.91 a | 18.48 a | 0.85 a | 0.73 a | 11.76 a | 9.92 a |
Significance level | ** | ** | *** | *** | *** | *** |
Biochar Treatment | ||||||
T1 | 21.72 a | 20.90 a | 0.94 a | 0.76 a | 11.52 a | 9.88 a |
T2 | 21.11 a | 19.90 a | 0.87 a | 0.73 a | 11.20 a | 9.41 ab |
T3 | 18.47 b | 16.80 b | 0.70 b | 0.62 a | 10.74 a | 8.71 b |
T0 | 14.67 c | 11.73 c | 0.50 c | 0.37 b | 8.34 b | 6.96 c |
Significance level | *** | *** | *** | *** | *** | *** |
Irrigation | Number of Tillers Hill−1 | Grain Numbers Panicle−1 | Grain Yield (g Pot−1) | Straw Yield (g Pot−1) |
---|---|---|---|---|
AWD | 22.81 b | 196.08 b | 210.58 b | 270.25 b |
CF | 23.63 a | 200.52 a | 218.04 a | 278.97 a |
Significance level | * | ** | * | * |
Biochar Treatment | ||||
T1 | 27.88 a | 208.39 a | 260.27 a | 327.34 a |
T2 | 28.15 a | 208.31 a | 252.12 a | 319.36 a |
T3 | 24.97 b | 201.00 b | 231.27 b | 304.83 b |
T0 | 11.88 c | 175.49 c | 113.58 c | 146.91 c |
Significance level | *** | *** | *** | *** |
Irrigation | Nitrogen Uptake (g Pot−1) | Phosphorus Uptake (g Pot−1) | Potassium Uptake (g Pot−1) |
---|---|---|---|
AWD | 4.86 b | 1.43 b | 4.65 a |
CF | 5.26 a | 1.63 a | 4.71 a |
Significance level | ** | *** | ns |
Biochar Treatment | |||
T1 | 6.57 a | 2.10 a | 5.87 a |
T2 | 6.19 a | 1.85 b | 6.01 a |
T3 | 5.19 b | 1.59 c | 4.98 b |
T0 | 2.28 c | 0.58 d | 1.89 c |
Significance level | *** | *** | *** |
Agronomic Use Efficiency (g g−1) | |||
---|---|---|---|
Biochar Treatment | |||
T1 | 47.32 a | 209.55 a | 58.68 a |
T2 | 44.69 a | 197.94 a | 55.42 a |
T3 | 37.97 b | 168.14 b | 47.08 b |
Significance level | *** | *** | *** |
Irrigation | Biochar Treatment | Dehydrogenase (µg TPF g−1 Dry Soil 24 h−1) | Urease (μg NH4+ − N g−1 Dry Soil 3h−1) |
---|---|---|---|
AWD | T1 | 67.24 d | 277.41 b |
T2 | 73.43 c | 281.96 b | |
T3 | 44.56 f | 240.77 c | |
T0 | 24.67 h | 128.76 d | |
CF | T1 | 79.25 b | 297.82 a |
T2 | 84.97 a | 302.44 a | |
T3 | 56.17 e | 226.30 c | |
T0 | 30.21 g | 106.52 e | |
Significance level | * | *** |
Irrigation | Biochar Treatment | Total C (g kg−1) | Total N (g kg−1) |
---|---|---|---|
AWD | T1 | 61.98 b | 3.03 bc |
T2 | 68.65 a | 3.55 a | |
T3 | 45.33 d | 2.03 d | |
T0 | 47.63 d | 1.03 e | |
CF | T1 | 62.55 ab | 3.23 ab |
T2 | 69.18 a | 3.65 a | |
T3 | 54.90 c | 2.68 c | |
T0 | 56.15 c | 1.73 d | |
Significance level | ** | * |
Irrigation | pH | CEC (cmolc(+) kg−1) | Available P (mg kg−1) | Exchangeable K (cmolc(+) kg−1) |
---|---|---|---|---|
AWD | 5.78 b | 17.46 | 10.92 b | 2.08 b |
CF | 5.90 a | 17.42 | 11.90 a | 2.37 a |
Significance level | ** | ns | *** | *** |
Biochar Treatment | ||||
T1 | 6.25 b | 18.40 a | 14.61 a | 2.49 b |
T2 | 6.51 a | 18.38 a | 13.68 b | 3.60 a |
T3 | 5.33 c | 16.50 b | 10.80 c | 1.90 c |
T0 | 5.27 c | 16.50 b | 6.55 d | 0.90 d |
Significance level | *** | *** | *** | *** |
GY | Pn | DHA | URE | AcP | pH | CEC | STC | STN | AP | |
---|---|---|---|---|---|---|---|---|---|---|
GY | ||||||||||
Pn | 0.66 * | |||||||||
DHA | 0.70 *** | 0.60 ** | ||||||||
URE | 0.74 *** | 0.36 ** | 0.89 *** | |||||||
AcP | 0.75 *** | 0.43 * | 0.82 *** | 0.82 *** | ||||||
pH | 0.68 *** | 0.40 ns | 0.92 *** | 0.89 *** | 0.87 *** | |||||
CEC | 0.65 *** | 0.34 ns | 0.80 *** | 0.81 *** | 0.89 *** | 0.89 *** | ||||
STC | 0.61 ** | 0.44 * | 0.89 *** | 0.76 *** | 0.78 *** | 0.93 *** | 0.76 *** | |||
STN | 0.56 ** | 0.50 * | 0.88 *** | 0.77 *** | 0.78 *** | 0.91 *** | 0.79 *** | 0.91 *** | ||
AP | 0.71 *** | 0.52 * | 0.88 *** | 0.88 *** | 0.92 *** | 0.87 *** | 0.85 *** | 0.76 *** | 0.75 *** | |
Ex. K | 0.40 * | 0.33 ns | 0.82 *** | 0.71 *** | 0.61 ** | 0.84 *** | 0.67 *** | 0.85 *** | 0.85 *** | 0.56 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haque, A.N.A.; Uddin, M.K.; Sulaiman, M.F.; Amin, A.M.; Hossain, M.; Solaiman, Z.M.; Mosharrof, M. Rice Growth Performance, Nutrient Use Efficiency and Changes in Soil Properties Influenced by Biochar under Alternate Wetting and Drying Irrigation. Sustainability 2022, 14, 7977. https://doi.org/10.3390/su14137977
Haque ANA, Uddin MK, Sulaiman MF, Amin AM, Hossain M, Solaiman ZM, Mosharrof M. Rice Growth Performance, Nutrient Use Efficiency and Changes in Soil Properties Influenced by Biochar under Alternate Wetting and Drying Irrigation. Sustainability. 2022; 14(13):7977. https://doi.org/10.3390/su14137977
Chicago/Turabian StyleHaque, Ahmad Numery Ashfaqul, Md. Kamal Uddin, Muhammad Firdaus Sulaiman, Adibah Mohd Amin, Mahmud Hossain, Zakaria M. Solaiman, and Mehnaz Mosharrof. 2022. "Rice Growth Performance, Nutrient Use Efficiency and Changes in Soil Properties Influenced by Biochar under Alternate Wetting and Drying Irrigation" Sustainability 14, no. 13: 7977. https://doi.org/10.3390/su14137977