Red Junglefowl Resource Management Guide: Bioresource Reintroduction for Sustainable Food Security in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Input Data
2.2. Species Distribution Modeling
2.3. Climate Change Threats
2.4. Specimen Collection and DNA Extraction
2.5. Mitochondrial D-Loop Sequencing
2.6. Mitochondrial D-Loop Sequence Analysis
2.7. Genotyping of Microsatellite Markers
2.8. Analysis of Genetic Diversity using Microsatellite DNA Markers
3. Results
3.1. Modeling Evaluation
3.2. Habitat Suitability
3.3. Genetic Variability of Red Junglefowl Populations in Captivity Based on Mitochondrial Haplotype Analysis
3.4. Genetic Variability of Red Junglefowls in Captivity Based on Microsatellite Data
4. Discussion
4.1. Habitat for Long-Term Red Junglefowl Reintroduction
4.2. Reintroduction of Red Junglefowl with Large Gene Pool Variations
4.3. Food Bank and Food Security in Relation to SDGs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN Department of Economic and Social Affairs. World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100. 2017. Available online: https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100 (accessed on 1 June 2022).
- OECD/FAO. OECD-FAO Agricultural Outlook 2017–2026; OECD Publishing: Paris, France, 2017. [Google Scholar]
- Berners-Lee, M.; Kennelly, C.; Watson, R.; Hewitt, C.N.; Kapuscinski, A.R.; Locke, K.A.; Peters, C.J. Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elem. Sci. Anthr. 2018, 6, 52. [Google Scholar] [CrossRef]
- Saltzman, A.; Birol, E.; Wiesman, D.; Prasai, N.; Yohannes, Y.; Menon, P.; Thompson, J. 2014 Global Hunger Index: The Challenge of Hidden Hunger; International Food Policy Research Institute: Washington, WA, USA, 2014. [Google Scholar]
- Mouël, C.L.; Lattre-Gasquet, M.D.; Mora, O. Laud Use and Food Security in 2050: A Narrow Road Agrimonde-Terra; Éditions Quæ: Versailles, France, 2018; p. 400. [Google Scholar]
- Suksatan, S.; Tungkunanan, P.; Choomnoom, S. Thai Vocational College Education Monitoring and Evaluation: A Confirmatory Factor Analysis. Asia-Pac. Soc. Sci. Rev. 2018, 18, 157–167. [Google Scholar]
- Crawford, R.D. Origin and history of poultry species. In Poultry Genetic Resources: Evolution, Diversity, and Conservation; Crawford, R.D., Ed.; Poultry Breeding and Genetics; Elsevier: Amsterdam, The Netherlands, 1990; pp. 1–59. [Google Scholar]
- Ekarius, C. Storey’s Illustrated Guide to Poultry Breeds; Storey Publishing: North Adams, MA, USA, 2007. [Google Scholar]
- Hahn, E. Die Haustiere UND Ihre Beziehunbgen Zur Wirtschaft Des Menschen; Duncker & Humblot: Berlin, German, 1896. [Google Scholar]
- Issac, E. Geography of domestication. In Geography of Domestication; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1970. [Google Scholar]
- Sauer, C.O. Agricultural Origins and Dispersals; The American Geographic Society: New York, NY, USA, 1952. [Google Scholar]
- Smith, P.; Daniel, C. The Chicken Book; The University of Georgia Press: Athens, GA, USA, 2000. [Google Scholar]
- Zeuner, E.F. A History of Domesticated Animals; Harper and Row: New York, NY, USA, 1963. [Google Scholar]
- Linnaeus, C. Systema Naturæ per Regna tria Naturæ, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis; Tomus, I., Ed.; Reformata: Holmiæ, Salvius; Reformata: Holmiæ, Salvius; Vindobonae: Vienna, Austria, 1758; pp. 1–4. [Google Scholar]
- Fumihito, A.; Miyake, T.; Sumi, S.; Takada, M.; Ohno, S.; Kondo, N. One subspecies of the red jungle fowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc. Natl. Acad. Sci. USA 1994, 91, 12505–12509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.P.; Wu, G.S.; Yao, Y.G.; Miao, Y.W.; Luikart, G.; Baig, M.; Beja-Pereira, A.; Ding, Z.L.; Malliya, G.P.; Zhang, Y.P.; et al. Multiple maternal origins of chickens: Out of the Asian jungles. Mol. Phylogenet. Evol. 2006, 38, 12–19. [Google Scholar] [CrossRef]
- Miao, Y.W.; Peng, M.S.; Wu, G.S.; Ouyang, Y.N.; Yang, Z.Y.; Yu, N.; Liang, J.P.; Pianchou, G.; Beja-Pereira, A.; Mitra, B.; et al. Chicken domestication: An updated perspective based on mitochondrial genomes. Heredity 2013, 110, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Hata, A.; Nunome, M.; Suwanasopee, T.; Duengkae, P.; Chaiwatana, S.; Chamchumroon, W.; Suzuki, T.; Koonawootrittriron, S.; Matsuda, Y.; Srikulnath, K. Origin and evolutionary history of domestic chickens inferred from a large population study of Thai red junglefowl and indigenous chickens. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Lokman, I.H.; Zuki, A.B.Z.; Goh, Y.M.; Sazili, A.Q.; Noordin, M.M. Carcass compositions in three different breeds of chicken and their correlation with growth performance. Pertanika J. Trop. Agric. Sci. 2011, 34, 247–252. [Google Scholar]
- Hall, S.J.; Bradley, D.G. Conserving livestock breed biodiversity. Trends Ecol. Evol. 1995, 10, 267–270. [Google Scholar] [CrossRef]
- Crawford, R.D.; Mason, I.L. Evolution of Domesticated Animals; Longman: London, UK, 1984; pp. 298–311. [Google Scholar]
- Rubin, C.J.; Zody, M.C.; Eriksson, J.; Meadows, J.R.S.; Sherwood, E.; Webster, M.T.; Jiang, L.; Ingman, M.; Sharpe, T.; Ka, S.; et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 2010, 464, 587–591. [Google Scholar] [CrossRef] [Green Version]
- Elferink, M.G.; Megens, H.J.; Vereijken, A.; Hu, X.; Crooijmans, R.P.M.A.; Groenen, M.A.M. Signatures of selection in the genomes of commercial and non-commercial chicken breeds. PLoS ONE 2012, 7, e32720. [Google Scholar] [CrossRef] [Green Version]
- Núñez-León, D.; Aguirre-Fernández, G.; Steiner, A.; Nagashima, H.; Jensen, P.; Stoeckli, E.; Schneider, R.C.; Sánchez-Villagra, M.R. Morphological diversity of integumentary traits in fowl domestication: Insights from disparity analysis and embryonic development. Dev. Dyn. 2019, 248, 1044–1058. [Google Scholar] [CrossRef]
- Onono, J.O.; Alarcon, P.; Karani, M.; Muinde, P.; Akoko, J.M.; Maud, C.; Fevre, E.M.; Häsler, B.; Rushton, J. Identification of production challenges and benefits using value chain mapping of egg food systems in Nairobi, Kenya. Agric. Syst. 2018, 159, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kingori, A.M.; Wachira, A.M.; Tuitoek, J.K. Indigenous chicken production in Kenya: A review. Int. J. Poult. Sci. 2010, 9, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Charoensook, R.; Tartrakoon, W.; Incharoen, T.; Numthuam, S.; Pechrkong, T.; Nishibori, M. Production system characterization of local indigenous chickens in lower Northern Thailand. Khon Kaen Agr. J. 2021, 49, 1337–1350. [Google Scholar]
- Granevitze, Z.; Hillel, J.; Chen, G.H.; Cuc, N.T.K.; Feldman, M.; Eding, H.; Weigend, S. Genetic diversity within chicken populations from different continents and management histories. Anim. Genet. 2007, 38, 576–583. [Google Scholar] [CrossRef]
- Liu, J.; Slik, F.; Zheng, S.; Lindenmayer, D.B. Undescribed species have higher extinction risk than known species. Conserv. Lett. 2022, 15, e12876. [Google Scholar] [CrossRef]
- Prugh, L.R. An evaluation of patch connectivity measures. Ecol. Appl. 2009, 19, 1300–1310. [Google Scholar] [CrossRef]
- Pulliam, H.R. Sources, sinks, and population regulation. Am. Nat. 1988, 132, 652–661. [Google Scholar] [CrossRef]
- Patton, J.M. Assessment and identification of African-American learners with gifts and talents. Except. Child. 1992, 59, 150–159. [Google Scholar] [CrossRef]
- Payne, N.F.; Bryant, F. Wildlife Habitat Management of Forestlands, Rangelands, and Farmlands; Krieger Publishing Company: Malabar, FL, USA, 1998. [Google Scholar]
- Nguyen-Phuc, H.; Berres, M.E. Genetic structure in Red Junglefowl (Gallus gallus) populations: Strong spatial patterns in the wild ancestors of domestic chickens in a core distribution range. Ecol. Evol. 2018, 8, 6575–6588. [Google Scholar] [CrossRef]
- Harte, J.; Zillio, T.; Conlisk, E.; Smith, A.B. Maximum entropy and the state-variable approach to macroecology. Ecology 2008, 89, 2700–2711. [Google Scholar] [CrossRef] [PubMed]
- Ertuğrul, E.T.; Ahmet, M.E.R.T.; Oğurlu, İ. Mapping habitat suitabilities of some wildlife species in Burdur Lake Basin. Turk. J. For. 2017, 18, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Cunze, S.; Tackenberg, O. Decomposition of the maximum entropy niche function–A step beyond modelling species distribution. Environ. Model. Softw. 2015, 72, 250–260. [Google Scholar] [CrossRef]
- Red Junglefowl Gallus gallus, eBird. Available online: https://ebird.org/species/redjun?siteLanguage=es_PA (accessed on 10 April 2022).
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Hofton, M. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- McSweeney, C.F.; Jones, R.G.; Lee, R.W.; Rowell, D.P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 2015, 44, 3237–3260. [Google Scholar] [CrossRef] [Green Version]
- Escobar, L.E.; Lira-Noriega, A.; Medina-Vogel, G.; Peterson, A.T. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: Use of Maxent and NicheA to assure strict model transference. Geospat. Health 2014, 9, 221–229. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Pearson, R.G.; Thuiller, W.; Araújo, M.B.; Martínez-Meyer, E.; Brotons, L.; McClean, C.; Miles, L.; Segurado, P.; Dawson, T.P.; Lees, D.C. Model-based uncertainty in species range prediction. J. Biogeogr. 2006, 33, 1704–1711. [Google Scholar] [CrossRef]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A.; NCEAS predicting species distributions working group. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- Fouquet, R. The slow search for solutions: Lessons from historical energy transitions by sector and service. Energy Policy 2010, 38, 6586–6596. [Google Scholar] [CrossRef] [Green Version]
- Araújo, M.B.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef]
- Marmion, M.; Parviainen, M.; Luoto, M.; Heikkinen, R.K.; Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 2009, 15, 59–69. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Nishida, T.; Rerkamnuaychoke, W.; Tung, D.G.; Saignaleus, S. Morphological identification and ecology of the red jungle fowl in Thailand, Laos and Vietnam. Nihon Chikusan Gakkaiho 2000, 71, 470–480. [Google Scholar] [CrossRef] [Green Version]
- Oka, T.; Amano, T.; Hayashi, Y.; Fumihito, A. Phylogocal studies on subspecific recognition and distribution of red junglefowl. J. Yamashina Inst. Ornithol. 2004, 35, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Supikamolseni, A.; Ngaoburanawit, N.; Sumontha, M.; Chanhome, L.; Suntrarachun, S.; Peyachoknagul, S.; Srikulnath, K. Molecular barcoding of venomous snakes and species-specific multiplex PCR assay to identify snake groups for which antivenom is available in Thailand. Genet. Mol. Res. 2015, 14, 13981–13997. [Google Scholar] [CrossRef] [PubMed]
- Nishibori, M.; Hayashi, T.; Tsudzuki, M.; Yamamoto, Y.; Yasue, H. Complete sequence of the Japanese quail (Coturnix japonica) mitochondrial genome and its genetic relationship with related species. Anim. Genet. 2001, 32, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Nei, M. Molecular Evolutionary Genetics; Columbia University Press: New York, NY, USA, 1987. [Google Scholar]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sanchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Clement, M.; Snell, Q.; Walker, P.; Posada, D.; Crandall, K. TCS: Estimating gene genealogies. In Proceedings of the 16th International Parallel and Distributed Processing Symposium, Lauderdale, FL, USA, 15–19 April 2002; Volume 3, p. 184. [Google Scholar]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, A.S. Kakusan4 and Aminosan: Two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Mol. Ecol. Resour. 2011, 11, 914–921. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Weir, B.S.; Cockerhamm, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992, 131, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization. Molecular genetic characterization of animal genetic resources. In FAO Animal Production and Health Guidelines No. 9; Food and Agriculture Organization: Rome, Italy, 2011. [Google Scholar]
- Jangtarwan, K.; Koomgun, T.; Prasongmaneerut, T.; Thongchum, R.; Singchat, W.; Tawichasri, P.; Fukayama, T.; Sillapaprayoon, S.; Kraichak, E.; Muangmai, N.; et al. Take one step backward to move forward: Assessment of genetic diversity and population structure of captive Asian woolly-necked storks (Ciconia episcopus). PLoS ONE 2019, 14, e0223726. [Google Scholar] [CrossRef] [PubMed]
- Jangtarwan, K.; Kamsongkram, P.; Subpayakom, N.; Sillapaprayoon, S.; Muangmai, N.; Kongphoemph, A.; Wongsodchuen, A.; Intapan, S.; Chamchumroon, W.; Safoowong, M. Predictive genetic plan for a captive population of the Chinese goral (Naemorhedus griseus) and prescriptive action for ex situ and in situ conservation management in Thailand. PLoS ONE 2020, 15, e0234064. [Google Scholar] [CrossRef] [PubMed]
- Ariyaraphong, N.; Laopichienpong, N.; Singchat, W.; Panthum, T.; Farhan Ahmad, S.; Jattawa, D.; Duengkae, P.; Muangmai, N.; Suwanasopee, T.; Koonawootrittriron, S.; et al. High-level gene flow restricts genetic differentiation in dairy cattle populations in Thailand: Insights from large-scale mt D-loop sequencing. Animals 2021, 11, 1680. [Google Scholar] [CrossRef]
- Thintip, J.; Singchat, W.; Ahmad, S.F.; Ariyaraphong, N.; Muangmai, N.; Chamchumroon, W.; Pitiwong, K.; Suksavate, W.; Duangjai, S.; Duengkae, P.; et al. Reduced genetic variability in a captive-bred population of the endangered Hume’s pheasant (Syrmaticus humiae, Hume 1881) revealed by microsatellite genotyping and D-loop sequencing. PLoS ONE 2021, 16, e0256573. [Google Scholar] [CrossRef]
- Wongtienchai, P.; Lapbenjakul, S.; Jangtarwan, K.; Areesirisuk, P.; Mahaprom, R.; Subpayakom, N.; Singchat, W.; Sillapaprayoon, S.; Muangmai, N.; Songchan, R.; et al. Genetic management of a water monitor lizard (Varanus salvator macromaculatus) population at Bang Kachao Peninsula as a consequence of urbanization with Varanus Farm Kamphaeng Saen as the first captive research establishment. J. Zool. Syst. Evol. Res. 2021, 59, 484–497. [Google Scholar] [CrossRef]
- Guo, S.W.; Thompson, E.A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 1992, 48, 361–372. [Google Scholar] [CrossRef]
- Raymond, M.; Rousset, F. An exact test for population differentiation. Evolution 1995, 1280–1283. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Welch, B.L. The generalization of student’s’ problem when several different population variances are involved. Biometrika 1947, 34, 28–35. [Google Scholar] [CrossRef]
- Goudet, J. FSTAT (version 1.2): A computer program to calculate F-statistics. J. Hered. 1995, 86, 485–486. [Google Scholar] [CrossRef]
- Van, O.C.; Hutchinson, W.F.; Wills, D.P.; Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Park, S.D.E. The Excel Microsatellite Toolkit (version 3.1); Animal Genomics Laboratory, University College: Dublin, Ireland, 2001. [Google Scholar]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research—An Update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, C.; Waples, R.S.; Peel, D.; Macbeth, G.M.; Tillett, B.J.; Ovenden, J.R. NeEstimator v2: Reimplementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 2014, 14, 209–214. [Google Scholar] [CrossRef]
- Lynch, M.; Ritland, K. Estimation of pairwise relatedness with molecular markers. Genetics 1999, 152, 1753–1766. [Google Scholar] [CrossRef]
- Wang, J. COANCESTRY: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 2011, 11, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Præstgaard, J.T. Permutation and bootstrap Kolmogorov-Smirnov tests for the equality of two distributions. Scand. J. Stat. 1995, 305–322. [Google Scholar]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Earl, D.A.; VonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Hinsley, S.A.; Hill, R.A.; Bellamy, P.; Broughton, R.K.; Harrison, N.M.; Mackenzie, J.A.; Speakman, J.R.; Ferns, P.N. Do highly modified landscapes favour generalists at the expense of specialists? An example using woodland birds. Landsc. Res. 2009, 34, 509–526. [Google Scholar] [CrossRef] [Green Version]
- Subhani, A.; Awan, M.S.; Anwar, M. Population status and distribution pattern of red jungle fowl (Gallus gallus murghi) in Deva Vatala National Park, Azad Jammu and Kashmir, Pakistan: A pioneer study. Pak. J. Zool. 2010, 42, 701–706. [Google Scholar]
- Collias, N.E.; Collias, E.C. A field study of the red jungle fowl in north-central India. Condor 1967, 69, 360–386. [Google Scholar] [CrossRef]
- Al-Atiyat, R.M.; Aljumaah, R.S.; Abudabos, A.M.; Alotybi, M.N.; Harron, R.M.; Algawaan, A.S.; Aljooan, H.S. Differentiation of free-ranging chicken using discriminant analysis of phenotypic traits. Rev. Bras. Zootec. 2017, 46, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Malomane, D.K.; Reimer, C.; Weigend, S.; Weigend, A.; Sharifi, A.R.; Simianer, H. Efficiency of different strategies to mitigate ascertainment bias when using SNP panels in diversity studies. BMC Genom. 2018, 19, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. Food security and food production systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 485–533. [Google Scholar]
- Carpenter, S.R.; Folke, C. Ecology for transformation. Trends Ecol. Evol. 2006, 21, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Rees, P.A. Is there a legal obligation to reintroduce animal species into their former habitats? Oryx 2001, 35, 216–223. [Google Scholar] [CrossRef]
- Swaisgood, R.R. Current status and future directions of applied behavioral research for animal welfare and conservation. Appl. Anim. Behav. Sci. 2007, 102, 139–162. [Google Scholar] [CrossRef]
- Mellor, D.J.; Beausoleil, N.J. Extending the ‘Five Domains’ model for animal welfare assessment to incorporate positive welfare states. Anim. Welf. 2015, 24, 241. [Google Scholar] [CrossRef]
- McPhee, M.E. Generations in captivity increases behavioral variance: Considerations for captive breeding and reintroduction programs. Biol. Conserv. 2004, 115, 71–77. [Google Scholar] [CrossRef]
- Javed, S.; Rahmani, A.R. Flocking and habitat use pattern of the red junglefowl Gallus gallus in Dudwa National Park, India. Trop. Ecol. 2000, 41, 11–16. [Google Scholar]
Population | n | Number of Haplotypes (H) | Theta (per Site) from S | Average Number of Nucleotide Differences (k) | Overall Haplotype | Nucleotide Diversity (π) |
---|---|---|---|---|---|---|
CMZ 1 | 7 | 6 | 0.011 | 8.095 | 0.952 ± 0.096 | 0.031 ± 0.018 |
SKZ1 2 | 12 | 7 | 0.010 | 7.545 | 0.909 ± 0.056 | 0.019 ± 0.010 |
SKZ2 3 | 4 | 3 | 0.010 | 7.333 | 0.833 ± 0.222 | 0.028 ± 0.019 |
KKZ 4 | 19 | 7 | 0.012 | 9.058 | 0.772 ± 0.075 | 0.014 ± 0.008 |
All population | 42 | 19 | 0.014 | 9.578 | 0.936 ± 0.020 | 0.023 ± 0.012 |
Population 1 | Population 2 | GST | ΦST | FST | Dxy | Da |
---|---|---|---|---|---|---|
KKZ 1 | CMZ 2 | 0.065 | 0.063 | 0.255 * | 0.013 | 0.001 |
KKZ | SKZ1 3 | 0.085 | 0.175 | 0.283 * | 0.016 | 0.004 |
KKZ | SKZ2 4 | 0.095 | 0.146 | 0.438 * | 0.017 | 0.005 |
CMZ | SKZ1 | 0.032 | 0.097 | 0.090 | 0.012 | 0.001 |
CMZ | SKZ2 | 0.058 | 0.160 | −0.418 | 0.013 | 0.002 |
SKZ1 | SKZ2 | 0.030 | 0.039 | 0.020 | 0.010 | −0.001 |
Population | n | Na | AR | Ne | I | Ho | He | PIC | F | |
---|---|---|---|---|---|---|---|---|---|---|
CMZ 1 | Mean | 7 | 5.107 | 5.107 | 3.710 | 1.388 | 0.671 | 0.692 | 0.631 | 0.029 |
S.E. | 0 | 0.323 | 0.323 | 0.254 | 0.071 | 0.040 | 0.024 | 0.140 | 0.044 | |
SKZ1 2 | Mean | 12 | 5.964 | 5.964 | 3.781 | 1.430 | 0.678 | 0.672 | 0.632 | −0.006 |
S.E. | 0 | 0.503 | 0.503 | 0.331 | 0.092 | 0.038 | 0.031 | 0.174 | 0.033 | |
SKZ2 3 | Mean | 4 | 4.321 | 4.321 | 3.526 | 1.279 | 0.756 | 0.666 | 0.617 | −0.145 |
S.E. | 0 | 0.282 | 0.282 | 0.289 | 0.075 | 0.040 | 0.026 | 0.153 | 0.051 | |
KKZ 4 | Mean | 19 | 6.214 | 6.214 | 3.790 | 1.439 | 0.401 | 0.682 | 0.665 | 0.403 |
S.E. | 0 | 0.555 | 0.555 | 0.327 | 0.093 | 0.061 | 0.032 | 0.133 | 0.090 | |
Total | Mean | 42 | 9.527 | 9.527 | 3.702 | 1.377 | 0.626 | 0.678 | 0.636 | 0.067 |
S.E. | 0 | 0.469 | 0.469 | 0.149 | 0.041 | 0.026 | 0.014 | 0.150 | 0.034 |
Population | n | FIS | Estimated Ne | 95% CIs for Ne | Ne/n |
---|---|---|---|---|---|
CMZ | 7 | −0.026 ± 0.029 | 22.300 | 12.500–63.700 | 3.186 |
SKZ1 | 12 | −0.042 ± 0.029 | 7.200 | 5.500–9.200 | 0.600 |
SKZ2 | 4 | −0.062 ± 0.024 | ∞ | ∞ | ∞ |
KKZ | 19 | 0.135 ± 0.097 | 43.300 | 29.000–79.200 | 2.279 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singchat, W.; Chaiyes, A.; Wongloet, W.; Ariyaraphong, N.; Jaisamut, K.; Panthum, T.; Ahmad, S.F.; Chaleekarn, W.; Suksavate, W.; Inpota, M.; et al. Red Junglefowl Resource Management Guide: Bioresource Reintroduction for Sustainable Food Security in Thailand. Sustainability 2022, 14, 7895. https://doi.org/10.3390/su14137895
Singchat W, Chaiyes A, Wongloet W, Ariyaraphong N, Jaisamut K, Panthum T, Ahmad SF, Chaleekarn W, Suksavate W, Inpota M, et al. Red Junglefowl Resource Management Guide: Bioresource Reintroduction for Sustainable Food Security in Thailand. Sustainability. 2022; 14(13):7895. https://doi.org/10.3390/su14137895
Chicago/Turabian StyleSingchat, Worapong, Aingorn Chaiyes, Wongsathit Wongloet, Nattakan Ariyaraphong, Kitipong Jaisamut, Thitipong Panthum, Syed Farhan Ahmad, Warut Chaleekarn, Warong Suksavate, Mitree Inpota, and et al. 2022. "Red Junglefowl Resource Management Guide: Bioresource Reintroduction for Sustainable Food Security in Thailand" Sustainability 14, no. 13: 7895. https://doi.org/10.3390/su14137895