Sustainable Sand Substitutes in the Construction Industry in the United States and Canada: Assessing Stakeholder Awareness
Abstract
:1. Introduction
- Identify promising materials that can be used as sand replacement in the construction industry;
- Determine the level of awareness of a variety of sand substitutes among key stakeholders in the construction industry in the United States and Canada;
- Determine how the role and involvement of key stakeholders in construction projects can affect their level of knowledge of available sand substitutes.
2. Theoretical Background
2.1. Stakeholders in Construction Sustainability Projects
2.2. Hypotheses
3. Methodology
3.1. Overview
3.2. Survey Instrument
3.3. Sample and Data Collection
3.4. Variables
4. Results
Descriptive Statistics
- 1.
- Hypothesis 1. There are no differences in familiarity between stakeholders who make decisions about purchasing sand-related materials and non-decision makers for:
- 1a. construction waste sand substitutes;
- 1b. industrial byproduct sand substitutes;
- 1c. natural byproduct sand substitutes;
- 1d. earth material sand substitutes;
- 1e. carbon-based sand substitutes.
- 2.
- Hypothesis 2. There are no differences in familiarity among stakeholders who hold different roles in the construction industry for:
- 2a. construction waste sand substitutes;
- 2b. industrial byproduct sand substitutes;
- 2c. natural byproduct sand substitutes;
- 2d. earth material sand substitutes;
- 2e. carbon-based sand substitutes.
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sand Substitute | Overall | Academic | Architect | Engineer | Management | Other | Decision Maker | Non Decision Maker |
---|---|---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |
Agro-waste | 2.06 (1.23) | 2.45 (1.31) | 2.03 (1.15) | 1.91 (1.15) | 2.01 (1.26) | 2.36 (1.07) | 2.29 (1.3) | 2 (1.21) |
Carbon cure | 2.7 (1.49) | 2.86 (1.61) | 2.94 (1.48) | 2.69 (1.45) | 2.54 (1.48) | 2.57 (1.05) | 2.75 (1.43) | 2.68 (1.51) |
Construction and demolition waste (e.g., concrete, wood, metals, and brick) | 3.65 (1.19) | 3.74 (1.18) | 3.5 (1.12) | 3.67 (1.16) | 3.68 (1.25) | 3.27 (0.96) | 3.52 (1.3) | 3.68 (1.16) |
Crushed fine aggregate from quarried stone | 3.72 (1.22) | 3.71 (1.23) | 3.41 (1.03) | 3.83 (1.21) | 3.77 (1.25) | 3.73 (1.14) | 3.73 (1.34) | 3.72 (1.18) |
Crushed spent fire bricks | 2.54 (1.25) | 2.9 (1.27) | 2.62 (1.16) | 2.55 (1.25) | 2.42 (1.25) | 1.91 (1) | 2.75 (1.29) | 2.49 (1.24) |
Cyanobacterial bricks | 1.7 (1.04) | 2.04 (1.22) | 1.79 (1.05) | 1.6 (0.94) | 1.62 (1) | 1.55 (0.99) | 1.91 (1.21) | 1.65 (0.99) |
Fly ash | 3.9 (1.21) | 3.72 (1.42) | 4.15 (0.84) | 3.97 (1.18) | 3.91 (1.19) | 3.5 (1.32) | 4.04 (1.07) | 3.86 (1.24) |
Foundry sand | 2.52 (1.39) | 2.28 (1.35) | 2.33 (1.2) | 2.33 (1.31) | 2.8 (1.45) | 2.91 (1.38) | 2.95 (1.42) | 2.42 (1.36) |
Granite dust | 2.57 (1.26) | 2.77 (1.32) | 2.44 (1.19) | 2.46 (1.22) | 2.62 (1.3) | 2.36 (0.98) | 2.77 (1.3) | 2.52 (1.25) |
Hempcrete/Hemp stone | 2.18 (1.34) | 2.35 (1.31) | 2.56 (1.35) | 2.04 (1.3) | 2.12 (1.39) | 2.27 (1.48) | 2.63 (1.49) | 2.06 (1.28) |
Iron ore tailing (with or without steel fiber) | 1.94 (1.17) | 2.48 (1.33) | 1.91 (1.07) | 1.72 (0.98) | 1.99 (1.26) | 2.14 (1.12) | 2.1 (1.36) | 1.9 (1.11) |
Metakaolin | 1.99 (1.34) | 2.41 (1.5) | 1.39 (0.6) | 2.13 (1.43) | 2.01 (1.37) | 1.88 (1.17) | 2.22 (1.38) | 1.93 (1.33) |
Nutshell (e.g., walnut shell, pecan shell) | 1.95 (1.14) | 2.21 (1.28) | 2.29 (1.04) | 1.72 (0.97) | 1.94 (1.19) | 1.55 (0.89) | 2.21 (1.21) | 1.89 (1.12) |
Oil palm shell | 1.64 (0.99) | 1.9 (1.2) | 1.68 (0.79) | 1.55 (0.91) | 1.6 (0.98) | 1.55 (0.78) | 1.88 (1.05) | 1.58 (0.96) |
Quarry dust | 2.51 (1.34) | 2.67 (1.44) | 2.38 (1.16) | 2.37 (1.29) | 2.58 (1.36) | 2.36 (1.3) | 2.57 (1.37) | 2.5 (1.33) |
Recycled concrete | 3.79 (1.26) | 3.38 (1.36) | 3.74 (1.15) | 3.7 (1.31) | 4.07 (1.15) | 3.91 (1.08) | 3.88 (1.13) | 3.76 (1.29) |
Recycled glass | 3.38 (1.37) | 3.23 (1.42) | 3.56 (1.17) | 3.45 (1.33) | 3.44 (1.43) | 2.6 (1.2) | 3.42 (1.33) | 3.37 (1.39) |
Recycled plastic | 2.84 (1.38) | 3.26 (1.54) | 2.5 (1.19) | 2.93 (1.29) | 2.75 (1.37) | 2.18 (1.11) | 2.68 (1.42) | 2.87 (1.37) |
Recycled tires/rubber | 2.91 (1.39) | 3.13 (1.47) | 2.79 (1.47) | 3.01 (1.29) | 2.8 (1.41) | 2.75 (0.92) | 2.67 (1.41) | 2.96 (1.38) |
Sheet glass powder | 2.18 (1.33) | 2.62 (1.43) | 2.09 (1.2) | 2.16 (1.25) | 2.08 (1.34) | 1.82 (1.03) | 2.27 (1.29) | 2.16 (1.34) |
Salt | 1.96 (1.24) | 3 (1.48) | 1.91 (1.16) | 1.69 (1.12) | 1.9 (1.18) | 1.86 (0.83) | 2.13 (1.23) | 1.91 (1.24) |
Sand from stone | 3.12 (1.41) | 3.37 (1.29) | 2.59 (1.24) | 3.05 (1.47) | 3.23 (1.44) | 3 (1.33) | 3.31 (1.44) | 3.07 (1.4) |
Silica fume | 2.83 (1.51) | 2.76 (1.54) | 2.5 (1.19) | 2.97 (1.41) | 2.88 (1.64) | 2.45 (1.44) | 2.91 (1.56) | 2.8 (1.49) |
Slag | 3.29 (1.39) | 3.34 (1.44) | 3.32 (1.23) | 3.39 (1.31) | 3.22 (1.49) | 3.08 (1.26) | 3.18 (1.45) | 3.32 (1.38) |
Tobacco waste | 1.48 (0.91) | 1.83 (1.28) | 1.44 (0.65) | 1.41 (0.85) | 1.41 (0.79) | 1.27 (0.62) | 1.59 (0.9) | 1.45 (0.92) |
Washed bottom ash | 2.01 (1.29) | 2.29 (1.55) | 1.76 (1.02) | 2.05 (1.28) | 1.94 (1.23) | 1.73 (1.05) | 2.25 (1.44) | 1.95 (1.25) |
Washed glass sand | 2.09 (1.29) | 2.37 (1.52) | 1.94 (1.03) | 2.12 (1.34) | 2.05 (1.23) | 1.55 (0.78) | 2.38 (1.42) | 2.02 (1.25) |
Other (please specify) | 2.42 (1.76) | 1.94 (1.48) | 1.33 (0.47) | 2.77 (1.93) | 2.81 (1.86) | 1.5 (0.87) | 3.67 (1.56) | 2.21 (1.71) |
Other (please specify) | 1.84 (1.48) | 1.64 (1.29) | 1 (0) | 1.43 (1.05) | 2.29 (1.77) | 1.5 (0.87) | 3.67 (1.37) | 1.54 (1.26) |
References
- Gursel, A.P. Life-Cycle Assessment of Concrete: Decision-Support Tool and Case Study Application; University of California: Berkeley, CA, USA, 2014. [Google Scholar]
- Scrivener, K.; Kirkpatrick, R.J. Innovation in use and research on cementitious material. Cem. Concr. Res. 2008, 38, 128–136. [Google Scholar] [CrossRef]
- Hewlett, P.; Liska, M. Lea’s Chemistry of Cement and Concrete; Butterworth-Heinemann: Oxford, UK, 2019. [Google Scholar]
- Cook, G.; Ponssard, J.-P. A proposal for the renewal of sectoral approaches building on the Cement Sustainability Initiative. Clim. Policy 2011, 11, 1246–1256. [Google Scholar] [CrossRef]
- Gartner, E.; Macphee, D.E. A physico-chemical basis for novel cementitious binders. Cem. Concr. Res. 2011, 41, 736–749. [Google Scholar] [CrossRef]
- Klee, H.; Hunziker, R.; Van Der Meer, R.; Westaway, R. Getting the numbers right: A database of energy performance and carbon dioxide emissions for the cement industry. Greenh. Gas Meas. Manag. 2011, 1, 109–118. [Google Scholar] [CrossRef]
- Rodrigues, F.A.; Joekes, I. Cement industry: Sustainability, challenges and perspectives. Environ. Chem. Lett. 2010, 9, 151–166. [Google Scholar] [CrossRef]
- Torres, A.; Brandt, J.; Lear, K.; Liu, J. A looming tragedy of the sand commons. Science 2017, 357, 970–971. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Sand and Sustainability: Finding New Solutions for Environmental Governance of Global Sand Resources; United Nations Environment Programme: Geneva, Switzerland, 2019. [Google Scholar]
- Koehnken, L.; Rintoul, M.S.; Goichot, M.; Tickner, D.; Loftus, A.-C.; Acreman, M.C. Impacts of Riverine Sand Mining on Freshwater Ecosystems: A Review of the Scientific Evidence and Guidance for Future Research. River Res. Appl. 2020, 36, 362–370. [Google Scholar] [CrossRef]
- Sverdrup, H.U.; Koca, D.; Schlyter, P. A Simple System Dynamics Model for the Global Production Rate of Sand, Gravel, Crushed Rock and Stone, Market Prices and Long-Term Supply Embedded into the WORLD6 Model. Biophys. Econ. Resour. Qual. 2017, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Lavender, M.D. The importance of silica to the modern world. Indoor Built Environ. 1999, 8, 89–93. [Google Scholar] [CrossRef]
- Beiser, V. He Who Controls the Sand: The Mining ‘Mafias’ Killing Each Other to Build Cities. The Guardian. 2017. Available online: https://www.theguardian.com/cities/2017/feb/28/sand-mafias-killing-each-other-build-cities (accessed on 10 May 2022).
- Wesley, D.T.A.; Puffer, S.M. The End of Sand: Confronting One of the Greatest Environmental Challenges of the New Millennium. In Reusable and Sustainable Building Materials in Modern Architecture; IGI Global: Hershey, PA, USA, 2018; pp. 1–27. [Google Scholar]
- Koigi, B. FairPlanet. Deadly and Destructive: Kenya Cartels Fan Sand Wars. 12 September 2017. Available online: https://www.fairplanet.org/story/deadly-and-destructive-kenya-cartels-fan-sand-wars/ (accessed on 5 May 2022).
- Wang, R.; Shi, Q.; Li, Y.; Cao, Z.; Si, Z. A critical review on the use of copper slag (CS) as a substitute constituent in concrete. Constr. Build. Mater. 2021, 292, 123371. [Google Scholar] [CrossRef]
- Miraldo, S.; Lopes, S.; Pacheco-Torgal, F.; Lopes, A. Advantages and shortcomings of the utilization of recycled wastes as aggregates in structural concretes. Constr. Build. Mater. 2021, 298, 123729. [Google Scholar] [CrossRef]
- Santhosh, K.G.; Subhani, S.M.; Bahurudeen, A. Cleaner production of concrete by using industrial by-products as fine aggregate: A sustainable solution to excessive river sand mining. J. Build. Eng. 2021, 42, 102415. [Google Scholar] [CrossRef]
- Collivignarelli, M.; Cillari, G.; Ricciardi, P.; Miino, M.; Torretta, V.; Rada, E.; Abbà, A. The Production of Sustainable Concrete with the Use of Alternative Aggregates: A Review. Sustainability 2020, 12, 7903. [Google Scholar] [CrossRef]
- Behera, M.; Bhattacharyya, S.; Minocha, A.; Deoliya, R.; Maiti, S. Recycled aggregate from C&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 2014, 68, 501–516. [Google Scholar] [CrossRef]
- Srivastava, A.; Singh, S.K. Utilization of alternative sand for preparation of sustainable mortar: A review. J. Clean. Prod. 2020, 253, 119706. [Google Scholar] [CrossRef]
- Davenport, W.G.; King, M.; Schlesinger, M.E.; Biswas, A.K. Extractive Metallurgy of Copper; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Shi, C.; Meyer, C.; Behnood, A. Utilization of copper slag in cement and concrete. Resour. Conserv. Recycl. 2008, 52, 1115–1120. [Google Scholar] [CrossRef]
- Marie, I.; Quiasrawi, H. Closed-loop recycling of recycled concrete aggregates. J. Clean. Prod. 2012, 37, 243–248. [Google Scholar] [CrossRef]
- Prusty, J.K.; Patro, S.K.; Basarkar, S. Concrete using agro-waste as fine aggregate for sustainable built environment—A review. Int. J. Sustain. Built Environ. 2016, 5, 312–333. [Google Scholar] [CrossRef] [Green Version]
- Celebrate the First Hemp House Built in America Today! NoCo Hemp Expo, 1 December 2017. Available online: https://www.nocohempexpo.com/celebrate-first-hemp-house-built-america-today/ (accessed on 10 May 2022).
- Heveran, C.M.; Williams, S.L.; Qiu, J.; Artier, J.; Hubler, M.; Cook, S.M.; Cameron, J.C.; Srubar, W.V. Biomineralization and Successive Regeneration of Engineered Living Building Materials. Matter 2020, 2, 481–494. [Google Scholar] [CrossRef] [Green Version]
- Corless, V. Scientists Create Living Concrete from Bacteria and Sand. Advanced Science News. 16 January 2020. Available online: https://www.advancedsciencenews.com/scientists-create-living-concrete-from-bacteria-and-sand/ (accessed on 11 April 2022).
- CarbonCure Technologies Inc. CarbonCure’s Sustainable Concrete Solution. Available online: https://www.carboncure.com/ (accessed on 11 April 2022).
- Sastry, K.K.; Ravitheja, A.; Reddy, C.S.R. Effect of Foundry Sand and Mineral Admixtures on Mechanical Properties of Concrete. Arch. Civ. Eng. 2018, 64, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Siddique, R.; Singh, G.; Singh, M. Recycle option for metallurgical by-product (Spent Foundry Sand) in green concrete for sustainable construction. J. Clean. Prod. 2017, 172, 1111–1120. [Google Scholar] [CrossRef]
- Prokopski, G.; Marchuk, V.; Huts, A. The effect of using granite dust as a component of concrete mixture. Case Stud. Constr. Mater. 2020, 13, e00349. [Google Scholar] [CrossRef]
- Hk, T.; Hossiney, N. A short review on environmental impacts and application of iron ore tailings in development of sustainable eco-friendly bricks. Mater. Today Proc. 2021, 61, 327–331. [Google Scholar] [CrossRef]
- Lv, Z.; Jiang, A.; Liang, B. Development of eco-efficiency concrete containing diatomite and iron ore tailings: Mechanical properties and strength prediction using deep learning. Constr. Build. Mater. 2022, 327, 126930. [Google Scholar] [CrossRef]
- Chakkor, O.; Altan, M.F. Evaluation of metabentonite and metazeolite performance based geopolymers with metakaolin river sand replacement. Case Stud. Constr. Mater. 2022, 16, e00924. [Google Scholar] [CrossRef]
- Cheah, C.B.; Lim, J.S.; Ramli, M.B. The mechanical strength and durability properties of ternary blended cementitious composites containing granite quarry dust (GQD) as natural sand replacement. Constr. Build. Mater. 2018, 197, 291–306. [Google Scholar] [CrossRef]
- Issa, C.; Salem, G. Utilization of recycled crumb rubber as fine aggregates in concrete mix design. Constr. Build. Mater. 2013, 42, 48–52. [Google Scholar] [CrossRef]
- Pungercar, V.; Musso, F. Salt as a Building Material: Current Status and Future Opportunities. Plan J. 2021, 6, 393–413. [Google Scholar] [CrossRef]
- Harrison, E.; Berenjian, A.; Seifan, M. Recycling of waste glass as aggregate in cement-based materials. Environ. Sci. Ecotechnol. 2020, 4, 100064. [Google Scholar] [CrossRef]
- Steyn, Z.; Babafemi, A.; Fataar, H.; Combrinck, R. Concrete containing waste recycled glass, plastic and rubber as sand replacement. Constr. Build. Mater. 2020, 269, 121242. [Google Scholar] [CrossRef]
- Ghafoori, N.; Diawara, H. Strength and Wear Resistance of Sand-Replaced Silica Fume Concrete. ACI Mater. J. 2007, 104, 206–214. [Google Scholar]
- Alwaeli, M. Application of granulated lead–zinc slag in concrete as an opportunity to save natural resources. Radiat. Phys. Chem. 2013, 83, 54–60. [Google Scholar] [CrossRef]
- Fares, A.I.; Sohel, K.; Al-Jabri, K.; Al-Mamun, A. Characteristics of ferrochrome slag aggregate and its uses as a green material in concrete—A review. Constr. Build. Mater. 2021, 294, 123552. [Google Scholar] [CrossRef]
- Lye, C.-Q.; Koh, S.-K.; Mangabhai, R.; Dhir, R.K. Use of copper slag and washed copper slag as sand in concrete: A state-of-the-art review. Mag. Concr. Res. 2015, 67, 665–679. [Google Scholar] [CrossRef]
- Sani, M.S.; Muftah, F.; Muda, Z. The Properties of Special Concrete Using Washed Bottom Ash (WBA) as Partial Sand Replacement. Int. J. Sustain. Constr. Eng. Technol. 2010, 1, 65–76. [Google Scholar]
- Limbachiya, M.C. Bulk engineering and durability properties of washed glass sand concrete. Constr. Build. Mater. 2009, 23, 1078–1083. [Google Scholar] [CrossRef]
- Freeman, R.E. My Own Book Review. Strategic Management: A Stakeholder Approach. Management 2022, 25, 66–68. [Google Scholar] [CrossRef]
- Project Management Institute, A guide to the Project Management Body of Knowledge (PMBOK guide), 6th ed.; Project Management Institute: Newtown Square, PA, USA, 2017.
- Olander, S. Stakeholder impact analysis in construction project management. Constr. Manag. Econ. 2007, 25, 277–287. [Google Scholar] [CrossRef]
- Phillips, R. Stakeholder Theory and Organizational Ethics; Berrett-Koehler Publishers: Oakland, CA, USA, 2003. [Google Scholar]
- Yang, J.; Shen, G.Q.; Ho, M.; Drew, D.S.; Chan, A.P. Exploring critical success factors for stakeholder management in construction projects. J. Civ. Eng. Manag. 2009, 15, 337–348. [Google Scholar] [CrossRef]
- Yang, J.; Shen, G.Q.; Drew, D.S.; Ho, M. Critical Success Factors for Stakeholder Management: Construction Practitioners’ Perspectives. J. Constr. Eng. Manag. 2010, 136, 778–786. [Google Scholar] [CrossRef]
- Yang, J.; Shen, G.Q.; Ho, M.; Drew, D.S.; Xue, X. Stakeholder management in construction: An empirical study to address research gaps in previous studies. Int. J. Proj. Manag. 2011, 29, 900–910. [Google Scholar] [CrossRef]
- Yang, R.J.; Shen, G.Q. Framework for stakeholder management in construction projects. J. Manag. Eng. 2015, 31, 04014064. [Google Scholar] [CrossRef] [Green Version]
- Olander, S.; Landin, A. A Comparative Study of Factors Affecting the External Stakeholder Management Process. Construct. Manag. Econ. 2008, 26, 553–561. [Google Scholar] [CrossRef]
- Persson, U.; Olander, S. Methods to estimate stakeholder views of sustainability for construction projects. In Proceedings of the 21th Conference on Passive and Low Energy Architecture, Eindhoven, The Netherlands, 9–22 September 2004; pp. 19–22. [Google Scholar]
- Bal, M.; Bryde, D.; Fearon, D.; Ochieng, E. Stakeholder Engagement: Achieving Sustainability in the Construction Sector. Sustainability 2013, 5, 695–710. [Google Scholar] [CrossRef] [Green Version]
- Bourne, L.; Walker, D.H. Visualising and mapping stakeholder influence. Manag. Decis. 2005, 43, 649–660. [Google Scholar] [CrossRef]
- Eskerod, P.; Huemann, M.; Savage, G. Project Stakeholder Management—Past and Present. Proj. Manag. J. 2015, 46, 6–14. [Google Scholar] [CrossRef]
- The Impact of Internal Stakeholders on Building Sustainability—IOPscience. Available online: https://iopscience.iop.org/article/10.1149/10701.13917ecst/meta (accessed on 3 June 2022).
- Lam, P.T.I.; Chan, E.H.W.; Poon, C.S.; Chau, C.K.; Chun, K.P. Factors affecting the implementation of green specifications in construction. J. Environ. Manag. 2010, 91, 654–661. [Google Scholar] [CrossRef] [PubMed]
- AlSanad, S. Awareness, Drivers, Actions, and Barriers of Sustainable Construction in Kuwait. Procedia Eng. 2015, 118, 969–983. [Google Scholar] [CrossRef] [Green Version]
- Juntunen, J.K.; Halme, M.; Korsunova, A.; Rajala, R. Strategies for Integrating Stakeholders into Sustainability Innovation: A Configurational Perspective. J. Prod. Innov. Manag. 2018, 36, 331–355. [Google Scholar] [CrossRef]
- Berardi, U. Sustainability Assessment in the Construction Sector: Rating Systems and Rated Buildings. Sustain. Dev. 2011, 20, 411–424. [Google Scholar] [CrossRef]
- Castro-Lacouture, D.; Sefair, J.A.; Flórez, L.; Medaglia, A. Optimization model for the selection of materials using a LEED-based green building rating system in Colombia. Build. Environ. 2009, 44, 1162–1170. [Google Scholar] [CrossRef]
- Wen, B.; Burley, J.B. Expert Opinion Dimensions of Rural Landscape Quality in Xiangxi, Hunan, China: Principal Component Analysis and Factor Analysis. Sustainability 2020, 12, 1316. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, J.; Cai, W. Passengers’ Demand Characteristics Experimental Analysis of EMU Trains with Sleeping Cars in Northwest China. Sustainability 2019, 11, 5338. [Google Scholar] [CrossRef] [Green Version]
- Boukary, A.G.; Diaw, A.; Wünscher, T. Factors Affecting Rural Households’ Resilience to Food Insecurity in Niger. Sustainability 2016, 8, 181. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- De Oliveira, L.K.; Bertoncini, B.V.; Nascimento, C.D.O.L.; Rocha, L.B.; Batista, L.A.M.D.L.; Cellin, L.V. Factors Affecting the Choice of Urban Freight Vehicles: Issues Related to Brazilian Companies. Sustainability 2019, 11, 7010. [Google Scholar] [CrossRef] [Green Version]
- Diamantopoulos, A.; Siguaw, J.A. Formative Versus Reflective Indicators in Organizational Measure Development: A Comparison and Empirical Illustration. Br. J. Manag. 2006, 17, 263–282. [Google Scholar] [CrossRef]
- Hopwood, C.J.; Donnellan, M.B. How Should the Internal Structure of Personality Inventories Be Evaluated? Pers. Soc. Psychol. Rev. 2010, 14, 332–346. [Google Scholar] [CrossRef]
- Guldemond, R.A.; Purdon, A.; Van Aarde, R.J. A systematic review of elephant impact across Africa. PLoS ONE 2017, 12, e0178935. [Google Scholar] [CrossRef]
- Richman, M.B. A cautionary note concerning a commonly applied eigenanalysis procedure. Tellus B 1988, 40, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Greene, W.H. Econometric Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Cameron, A.C.; Trivedi, P.K. Microeconometrics: Methods and Applications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Freedman, A.D. On the So-Called “Huber Sandwich Estimator” and “Robust Standard Errors”. Am. Stat. 2006, 60, 299–302. [Google Scholar] [CrossRef]
- Chatterjee, S.; Price, B. Regression Analysis by Example. Biom. J. 1992, 34, 734. [Google Scholar] [CrossRef]
- Hwang, B.-G.; Tan, J.S. Green building project management: Obstacles and solutions for sustainable development. Sustain. Dev. 2010, 20, 335–349. [Google Scholar] [CrossRef]
- Son, H.; Kim, C.; Chong, W.K.; Chou, J.-S. Implementing sustainable development in the construction industry: Constructors’ perspectives in the US and Korea. Sustain. Dev. 2011, 19, 337–347. [Google Scholar] [CrossRef]
- UNEP. Sand and Sustainability: 10 Strategic Recommendations to Avert a Crisis; GRID-Geneva, United Nations Environment Programme: Geneva, Switzerland, 2022. [Google Scholar]
- Fischer, D.; Lüdecke, G.; Godemann, J.; Michelsen, G.; Newig, J.; Rieckmann, M.; Schulz, D. Sustainability communication. In Sustainability Science; Springer: Berlin/Heidelberg, Germany, 2016; pp. 139–148. [Google Scholar]
- Wu, W.; Issa, R. Integrated process mapping for bim implemenation in green building project delivery. In Proceedings of the 13th International Conference on Construction Applications of Virtual Reality (CONVR 2013), London, UK, 30–31 October 2013. [Google Scholar]
- Keysar, E.; Pearce, A.R. Decision Support Tools for Green Building: Facilitating Selection Among New Adopters on Public Sector Projects. J. Green Build. 2007, 2, 153–171. [Google Scholar] [CrossRef]
- Ayarkwa, J.; Opoku, D.-G.J.; Antwi-Afari, P.; Li, R.Y.M. Sustainable building processes’ challenges and strategies: The relative important index approach. Clean. Eng. Technol. 2022, 7, 100455. [Google Scholar] [CrossRef]
- Stocker, F.; De Arruda, M.P.; De Mascena, K.M.C.; Boaventura, J.M.G. Stakeholder engagement in sustainability reporting: A classification model. Corp. Soc. Responsib. Environ. Manag. 2020, 27, 2071–2080. [Google Scholar] [CrossRef] [Green Version]
- Gibson, K. Stakeholders and Sustainability: An Evolving Theory. J. Bus. Ethic 2012, 109, 15–25. [Google Scholar] [CrossRef]
- Enshassi, A.; Saleh, N.; Mohamed, S. Barriers to the application of lean construction techniques concerning safety improvement in construction projects. Int. J. Constr. Manag. 2019, 21, 1044–1060. [Google Scholar] [CrossRef]
- Sodangi, M. Overcoming the constraints to the adoption of sustainable civil engineering practices. Int. J. Constr. Manag. 2019, 21, 490–507. [Google Scholar] [CrossRef]
- Wirahadikusumah, R.; Abduh, M.; Messah, Y.; Aulia, M. Introducing sustainability principles into the procurement of construction works—Case of Indonesian developers. Int. J. Constr. Manag. 2019, 21, 932–944. [Google Scholar] [CrossRef]
Sand Substitute | Description and Use | Reference |
---|---|---|
Agro-waste |
| [25] |
Carbon Cure |
| [29] |
Construction and demolition waste (e.g., concrete, asphalt, brick, and ceramic materials) |
| [17] |
Crushed fine aggregate from quarried stone/Sand from stone |
| [19] |
Cyanobacterial bricks |
| [27] |
Foundry sand |
| [30,31] |
Granite dust |
| [32] |
Hempcrete/Hemp stone |
| [28] |
Iron ore tailings |
| [33,34] |
Metakaolin |
| [35] |
Quarry dust |
| [36] |
Recycled tires/rubber |
| [37] |
Sea salt |
| [38] |
Sheet glass/glass powder |
| [39,40] |
Silica Fume |
| [41] |
Slag |
| [16,42,43,44] |
Washed bottom Ash |
| [45] |
Washed glass sand |
| [46] |
Dimension | Eigenvalue | Variance Contribution | Cumulative Variance Contribution |
---|---|---|---|
1 | 11.7976 | 0.4369 | 0.4369 |
2 | 2.1277 | 0.0788 | 0.5158 |
3 | 1.7172 | 0.0636 | 0.5794 |
4 | 1.3693 | 0.0507 | 0.6301 |
5 | 1.1469 | 0.0425 | 0.6725 |
6 | 0.9961 | 0.0369 | 0.7094 |
7 | 0.848 | 0.0314 | 0.7408 |
8 | 0.6764 | 0.0251 | 0.7659 |
9 | 0.6698 | 0.0248 | 0.7907 |
10 | 0.6055 | 0.0224 | 0.8131 |
11 | 0.5302 | 0.0196 | 0.8328 |
12 | 0.4705 | 0.0174 | 0.8502 |
13 | 0.449 | 0.0166 | 0.8668 |
14 | 0.4094 | 0.0152 | 0.882 |
15 | 0.3865 | 0.0143 | 0.8963 |
16 | 0.3655 | 0.0135 | 0.9098 |
17 | 0.3388 | 0.0125 | 0.9224 |
18 | 0.3032 | 0.0112 | 0.9336 |
19 | 0.2787 | 0.0103 | 0.9439 |
20 | 0.2592 | 0.0096 | 0.9535 |
21 | 0.2366 | 0.0088 | 0.9623 |
22 | 0.22 | 0.0081 | 0.9705 |
23 | 0.1988 | 0.0074 | 0.9778 |
24 | 0.1801 | 0.0067 | 0.9845 |
25 | 0.1533 | 0.0057 | 0.9902 |
Variable | NATURAL BYPRODUCT | EARTH MATERIAL | CONSTRUCTION WASTE | INDUSTRIAL BYPRODUCT | CARBON BASED |
---|---|---|---|---|---|
FAM_TOB_WASTE | 0.85 | −0.23 | 0.05 | 0.20 | −0.05 |
FAM_SALT | 0.71 | 0.08 | 0.19 | 0.07 | −0.18 |
FAM_OIL_PALM | 0.64 | 0.2 | −0.06 | −0.03 | 0.09 |
FAM_SHEET_GLASS | 0.57 | 0.09 | 0.27 | 0.17 | −0.04 |
FAM_AGRO | 0.56 | 0.06 | 0.07 | 0.09 | 0.26 |
FAM_NUTSHELL | 0.51 | 0.16 | 0.07 | −0.10 | 0.16 |
FAM_QUARRY_DUST | 0.05 | 0.92 | 0.05 | 0.01 | −0.25 |
FAM_GRANITE_DUST | 0.25 | 0.83 | 0.02 | −0.04 | −0.16 |
FAM_FIRE_BRICKS | 0.01 | 0.66 | −0.01 | −0.11 | 0.21 |
FAM_Q_STONE | −0.28 | 0.63 | 0.30 | 0.13 | 0.09 |
FAM_SAND_FROM_STONE | 0.08 | 0.57 | 0.01 | 0.40 | −0.15 |
FAM_R_TIRES_RUBBER | 0.28 | 0.10 | 0.89 | −0.21 | −0.17 |
FAM_R_PLASTIC | 0.43 | −0.14 | 0.84 | −0.18 | −0.03 |
FAM_R_GLASS | 0.15 | −0.02 | 0.63 | 0.08 | 0.19 |
FAM_CONSTR_WASTE | −0.14 | 0.32 | 0.61 | −0.08 | 0.19 |
FAM_METAKAOLIN | 0.11 | 0.08 | −0.36 | 0.83 | 0.12 |
FAM_SILICA_FUME | 0.08 | −0.05 | 0.02 | 0.73 | 0.18 |
FAM_WASHED_BOTTOM_ASH | 0.46 | −0.05 | −0.02 | 0.65 | −0.01 |
FAM_SLAG | −0.07 | −0.05 | 0.00 | 0.59 | 0.49 |
FAM_CARBON_CURE | 0.11 | −0.22 | −0.04 | 0.27 | 0.77 |
FAM_FLY_ASH | −0.23 | −0.21 | 0.21 | 0.25 | 0.74 |
FAM_CYANO_BRICKS | 0.34 | 0.22 | −0.28 | −0.13 | 0.64 |
FAM_FOUNDRY_SAND | 0.06 | 0.42 | −0.06 | 0.05 | 0.41 |
FAM_HEMP | 0.47 | −0.21 | 0.24 | −0.18 | 0.48 |
FAM_IRON_ORE | 0.48 | 0.33 | −0.03 | 0.08 | 0.11 |
FAM_R_CONCRETE | −0.23 | 0.31 | 0.45 | 0.25 | 0.07 |
FAM_WASHED_GLASS_SAND | 0.49 | 0.10 | 0.1 | 0.48 | −0.10 |
Variable | Mean | St. Dev. | Min | Pctl(25) | Median | Pctl(75) | Max |
---|---|---|---|---|---|---|---|
SIZE | 3.04 | 1.08 | 1 | 2 | 3 | 4 | 4 |
YEARS_WORKED | 2.76 | 1.69 | 0 | 1 | 3 | 4.2 | 5 |
AGE | 2.50 | 1.19 | 1 | 2 | 2 | 3 | 5 |
NATURAL_BYPRODUCTS | 0.00 | 1.00 | −1.419 | −0.7300 | −0.2265 | 0.5044 | 3.2498 |
EARTH_MATERIAL | 0.00 | 1.00 | −1.7933 | −0.7368 | −0.0717 | 0.6577 | 2.3355 |
CONSTRUCTION_WASTE | 0.00 | 1.00 | −2.3169 | −0.6554 | 0.0054 | 0.8058 | 2.1716 |
INDUSTRIAL_BYPRODUCTS | 0.00 | 1.00 | −1.5710 | −0.7999 | −0.1593 | 0.5948 | 3.1195 |
CARBON_BASED | 0.00 | 1.00 | −2.0059 | −0.7100 | −0.0787 | 0.7017 | 2.5209 |
Variable | Level | n | % | |
---|---|---|---|---|
1 | CERT | No | 81 | 51.9% |
2 | CERT | Yes | 75 | 48.07% |
3 | COUNTRY | Canada | 41 | 26.28% |
4 | COUNTRY | US | 115 | 73.71% |
5 | GENDER | Female | 49 | 31.41% |
6 | GENDER | Male | 105 | 67.30% |
7 | GENDER | Other/Non-Response | 2 | 1.28% |
8 | DECISION_MAKER | No | 134 | 85.89% |
9 | DECISION_MAKER | Yes | 22 | 14.10% |
10 | ROLE | Academic | 19 | 12.17% |
11 | ROLE | Architect | 28 | 17.94% |
12 | ROLE | Engineer | 52 | 33.33% |
13 | ROLE | Management | 52 | 33.33% |
14 | ROLE | Other | 5 | 3.20% |
CONSTRUCTION WASTE | INDUSTRIAL BYPRODUCT | NATURAL BYPRODUCT | EARTH MATERIAL | CARBON BASED | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Without Main Effects | With Main Effects | Without Main Effects | With Main Effects | Without Main Effects | With Main Effects | Without Main Effects | With Main Effects | Without Main Effects | With Main Effects | |
Constant | −0.13 | 0.06 | 0.11 | 0.35 | 0.54 | 1.23 ** | −0.88 ** | −0.65 | −0.63 * | −0.52 |
(0.38) | (0.42) | (0.37) | (0.41) | (0.45) | (0.52) | (0.34) | (0.41) | (0.35) | (0.39) | |
CERT1 | 0.22 | 0.28 | −0.53 *** | −0.40 ** | −0.12 | −0.10 | 0.03 | 0.12 | 0.32 ** | 0.28 |
(0.17) | (0.19) | (0.16) | (0.17) | (0.17) | (0.18) | (0.17) | (0.18) | (0.16) | (0.18) | |
SIZE | 0.05 | 0.04 | −0.01 | 0.002 | −0.14 * | −0.15 * | 0.03 | 0.03 | −0.02 | −0.02 |
(0.08) | (0.08) | (0.08) | (0.08) | (0.08) | (0.08) | (0.07) | (0.07) | (0.07) | (0.07) | |
COUNTRY1 | −0.22 | −0.27 | −0.15 | −0.16 | −0.31 | −0.30 | −0.06 | −0.04 | −0.01 | −0.03 |
(0.20) | (0.21) | (0.19) | (0.19) | (0.21) | (0.20) | (0.18) | (0.19) | (0.19) | (0.19) | |
YEARS WORKED | −0.15 ** | −0.12 * | 0.11 * | 0.14 ** | −0.06 | −0.04 | 0.01 | 0.03 | 0.004 | −0.0004 |
(0.06) | (0.07) | (0.06) | (0.06) | (0.05) | (0.06) | (0.06) | (0.06) | (0.06) | (0.06) | |
AGE | 0.13 | 0.14 | −0.07 | −0.07 | 0.11 | 0.11 | 0.18 ** | 0.18 ** | 0.18 ** | 0.18* |
(0.09) | (0.09) | (0.08) | (0.08) | (0.09) | (0.09) | (0.08) | (0.08) | (0.09) | (0.09) | |
GENDER2 | 0.20 | 0.24 | 0.26 | 0.27 | 0.09 | 0.12 | 0.50 *** | 0.47 ** | 0.14 | 0.16 |
(0.19) | (0.20) | (0.18) | (0.20) | (0.18) | (0.17) | (0.18) | (0.19) | (0.18) | (0.19) | |
GENDER4 | −1.43 * | −0.97 ** | −0.67 | −0.18 | 0.16 | 0.04 | −0.92 *** | −0.80 *** | −0.86 ** | −0.77 ** |
(0.75) | (0.49) | (0.48) | (0.33) | (0.22) | (0.40) | (0.24) | (0.29) | (0.38) | (0.39) | |
DECISION_MAKER1 | −0.35 | 0.15 | 0.28 | 0.12 | 0.18 | |||||
(0.25) | (0.23) | (0.28) | (0.23) | (0.24) | ||||||
ROLE2 | −0.30 | −0.73 ** | −0.71 * | −0.54 | 0.02 | |||||
(0.30) | (0.31) | (0.39) | (0.34) | (0.35) | ||||||
ROLE3 | −0.22 | −0.33 | −1.02 *** | −0.36 | −0.15 | |||||
(0.26) | (0.28) | (0.32) | (0.28) | (0.28) | ||||||
ROLE4 | −0.22 | −0.59 ** | −0.93 *** | −0.35 | −0.18 | |||||
(0.28) | (0.27) | (0.33) | (0.29) | (0.29) | ||||||
ROLE5 | −0.99 *** | −1.03 *** | −0.46 | −0.34 | −0.34 | |||||
(0.30) | (0.31) | (0.65) | (0.35) | (0.57) | ||||||
Observations | 156 | 156 | 156 | 156 | 156 | 156 | 156 | 156 | 156 | 156 |
R2 | 0.08 | 0.12 | 0.13 | 0.18 | 0.06 | 0.17 | 0.14 | 0.16 | 0.10 | 0.11 |
Adjusted R2 | 0.04 | 0.04 | 0.09 | 0.11 | 0.02 | 0.10 | 0.10 | 0.09 | 0.06 | 0.04 |
Residual Std. Error | 0.98 (df = 148) | 0.98 (df = 143) | 0.95 (df = 148) | 0.94 (df = 143) | 0.99 (df = 148) | 0.95 (df = 143) | 0.95 (df = 148) | 0.96 (df = 143) | 0.97 (df = 148) | 0.98 (df = 143) |
F Statistic | 1.94 * (df = 7; 148) | 1.57 (df = 12; 143) | 3.21 *** (df = 7; 148) | 2.65 *** (df = 12; 143) | 1.38 (df = 7; 148) | 2.48 *** (df = 12; 143) | 3.39 *** (df = 7; 148) | 2.22 ** (df = 12; 143) | 2.35 ** (df = 7; 148) | 1.48 (df = 12; 143) |
Hypothesis | Dependent Variable | Independent | Result |
---|---|---|---|
1a | CONSTRUCTION_WASTE | DECISION_MAKER | Supported |
2a | ROLE | Weakly Supported (“other” less familiar than academics) | |
1b | INDUSTRIAL_BYPRODUCT | DECISION_MAKER | Supported |
2b | ROLE | Weakly Supported (architects, managers, “other” less familiar than academics) | |
1c | NATURAL_BYPRODUCT | DECISION_MAKER | Supported |
2c | ROLE | Not Supported (engineers, managers less familiar than academics) | |
1d | EARTH_MATERIAL | DECISION_MAKER | Supported |
2d | ROLE | Supported | |
1e | CARBON_BASED | DECISION_MAKER | Supported |
2e | ROLE | Supported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zadeh, A.A.; Peng, Y.; Puffer, S.M.; Garvey, M.D. Sustainable Sand Substitutes in the Construction Industry in the United States and Canada: Assessing Stakeholder Awareness. Sustainability 2022, 14, 7674. https://doi.org/10.3390/su14137674
Zadeh AA, Peng Y, Puffer SM, Garvey MD. Sustainable Sand Substitutes in the Construction Industry in the United States and Canada: Assessing Stakeholder Awareness. Sustainability. 2022; 14(13):7674. https://doi.org/10.3390/su14137674
Chicago/Turabian StyleZadeh, Adel A., Yunxin Peng, Sheila M. Puffer, and Myles D. Garvey. 2022. "Sustainable Sand Substitutes in the Construction Industry in the United States and Canada: Assessing Stakeholder Awareness" Sustainability 14, no. 13: 7674. https://doi.org/10.3390/su14137674
APA StyleZadeh, A. A., Peng, Y., Puffer, S. M., & Garvey, M. D. (2022). Sustainable Sand Substitutes in the Construction Industry in the United States and Canada: Assessing Stakeholder Awareness. Sustainability, 14(13), 7674. https://doi.org/10.3390/su14137674