The Impact of Climate Change as Well as Land-Use and Land-Cover Changes on Water Yield Services in Haraz Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Methodology Description
2.2.1. Input Data for CA-Markov Model
2.2.2. Input Data for the Simulation of Water Yield
- -
- Precipitation and Reference Evapotranspiration (ET0): The Hargreaves equation was used to measure the annual ET0, and proved to produce better results than the Penman–Monteith method, notably when the latter is not able to be parameterized entirely [56]. Hargreaves et al. [57] used the temperature range of monthly mean (TD), the temperature of the monthly mean (Tmean), and radiation of extraterrestrial (RA, the radiation that exists on the atmosphere top) to measure ET0, as follows:
- -
- Land use/Land cover: LULC maps are explained in Section 2.2.1.
- -
- Plant Available Water Content (PAWC) and the depth of soil: The soil depth gridding map (mm) and the texture of the soil were created based on the database of the Second Soil Survey, which was obtained from the soil grids (Table 2). PAWC was calculated using SPAW software and soil texture information. The difference between the capacity of the field and the point of wilting indicates PAWC.
- -
2.2.3. The climate and Land Use/Land Cover Contributions to the Water-Yield Mean
3. Results
3.1. Climate Change and Land Use/Land Cover Spatio-Temporal Patterns
3.2. Spatio-Temporal Patterns of Water Yield
3.3. Water Yield under LULC and Climate Change Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of land use and climate change on water-related ecosystem services in Kentucky. USA Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W.J.; Du, H.B.; Wu, Z.F.; Shen, X.J.; Ma, S. Decreasing precipitation occurs in daily extreme precipitation intervals across China in observations and model simulations. Clim. Dyn. 2020, 54, 2597–2612. [Google Scholar] [CrossRef]
- Declaration, B. The Brisbane Declaration: Environmental flows are essential for freshwater ecosystem health and human well-being. In Proceedings of the 10th International River Symposium, Brisbane, Australia, 3–6 September 2007. [Google Scholar] [CrossRef]
- Fang, D.; Hao, L.; Cao, Z.; Huang, X.; Qin, M.; Hu, J.; Sun, G. Combined effects of urbanization and climate change on watershed evapotranspiration at multiple spatial scales. J. Hydrol. 2020, 587, 124869. [Google Scholar] [CrossRef]
- Chang, X.; Zhao, W.; Liu, B.; Liu, H.; He, Z.; Du, J. Can forest water yields be increased with increased precipitation in a Qinghai spruce forest in arid northwestern China? Agric. For. Meteorol. 2017, 247, 139–150. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Sun, G.; McNulty, S.G.; Lu, J.; Amatya, D.M.; Liang, Y.; Kolka, R.K. Regional annual water yield from forest lands and its response to potential deforestation across the southeastern United States. Hydrology 2005, 308, 258–268. [Google Scholar] [CrossRef]
- Sun, G.; Zhou, G.; Zhang, Z.; Wei, X.; McNulty, S.G.; Vose, J.M. Potential water yield reduction due to forestation across China. Hydrology 2006, 328, 548–558. [Google Scholar] [CrossRef]
- Dwarakish, G.S.; Ganasri, B.P. Impact of land use change on hydrological systems: A review of current modeling approaches. Cogent Geosci. 2015, 1, 1115691. [Google Scholar] [CrossRef]
- Parry, M.L.; Canziani, O.; Palutikof, J.; Van der Linden, P.; Hanson, C. (Eds.) Climate Change 2007-Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Dang, H.; Gillett, N.P.; Weaver, A.J.; Zwiers, F.W. Climate change detection over different land surface vegetation classes. Int. J. Climatol. 2007, 27, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Wilske, B.; Ni, J.; John, R.; Chen, J. Climate change in Inner Mongolia from 1955 to 2005—Trends at regional, biome and local scales. Environ. Res. Lett. 2009, 4, 045006. [Google Scholar] [CrossRef] [Green Version]
- Tahiru, A.A.; Doke, D.A.; Baatuuwie, B.N. Effect of land use and land cover changes on water quality in the Nawuni Catchment of the White Volta Basin, Northern Region, Ghana. Appl. Water Sci. 2020, 10, 198. [Google Scholar] [CrossRef]
- Torabi Haghighi, A.; Darabi, H.; Shahedi, K.; Solaimani, K.; Kløve, B. A scenario-based approach for assessing the hydrological impacts of land use and climate change in the Marboreh Watershed, Iran. Environ. Modeling Assess. 2020, 25, 41–57. [Google Scholar] [CrossRef] [Green Version]
- Afzal, M.; Ragab, R. Impact of the future climate and land use changes on the hydrology and water resources in South East England, UK. Am. J. Water Resour. 2020, 20, 218–231. [Google Scholar] [CrossRef]
- Asl-Rousta, B.; Mousavi, S.J.; Ehtiat, M.; Ahmadi, M. SWAT-based hydrological modelling using model selection criteria. Water Resour. Manag. 2018, 32, 2181–2197. [Google Scholar] [CrossRef]
- Dosdogru, F.; Kalin, L.; Wang, R.; Yen, H. Potential impacts of land use/cover and climate changes on ecologically relevant flows. J. Hydrol. 2020, 584, 124654. [Google Scholar] [CrossRef]
- Gomes, L.C.; Bianchi, F.J.J.A.; Cardoso, I.M.; Schulte, R.P.O.; Fernandes, R.B.A.; Fernandes-Filho, E.I. Disentangling the historic and future impacts of land use changes and climate variability on the hydrology of a mountain region in Brazil. J. Hydrol. 2020, 594, 125650. [Google Scholar] [CrossRef]
- Feng, X.Y.; Luo, G.P.; Li, C.F.; Dai, L.; Lu, L. Dynamics of ecosystem service value caused by land use changes in Manas River of Xinjiang, China. Int. J. Environ. Res. 2012, 6, 499–508. [Google Scholar] [CrossRef]
- Ellis, E.C.; Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 2008, 6, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Samie, A.; Abbas, A.; Azeem, M.M.; Hamid, S.; Iqbal, M.A.; Hasan, S.S.; Deng, X. Examining the impacts of future land use/land cover changes on climate in Punjab province, Pakistan: Implications for environmental sustainability and economic growth. Environ. Sci. Pollut. Res. 2020, 27, 25415–25433. [Google Scholar] [CrossRef]
- Ghoraba, S. Hydrological modeling of the Simly Dam watershed (Pakistan) using GIS and SWAT model. Alex. Eng. J. 2015, 54, 583–594. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Ningsheng, C.; Mahmud, G.I.; Islam, M.M.; Pourghasemi, H.R.; Ahmad, H.; Habumugisha, J.M.; Washakh, R.M.A.; Alam, M.; Liu, E.; et al. Flooding and its relationship with land cover change, population growth, and road density. Geosci. Front. 2021, 12, 101224. [Google Scholar] [CrossRef]
- Belihu, M.; Tekleab, S.; Abate, B.; Bewket, W. Hydrologic response to land use land cover change in the Upper Gidabo Watershed, Rift Valley Lakes Basin, Ethiopia. Hydrol. Res. 2020, 3, 85–94. [Google Scholar] [CrossRef]
- Bessah, E.; Raji, A.O.; Taiwo, O.J.; Agodzo, S.K.; Ololade, O.O.; Strapasson, A. Hydrological responses to climate and land use changes: The paradox of regional and local climate effect in the Pra River Basin of Ghana. J. Hydrol. Reg. Stud. 2020, 27, 100654. [Google Scholar] [CrossRef]
- Chanapathi, T.; Thatikonda, S. Investigating the impact of climate and land-use land cover changes on hydrological predictions over the Krishna river basin under present and future scenarios. Sci. Total Environ. 2020, 721, 137736. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Cai, Y.; Li, C.; Wang, X.; Liu, Q. Hydrological responses to climate and land use changes in a watershed of the Loess Plateau, China. Sustainability 2019, 11, 1443. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Cheng, L.; Chiew, F.; Fu, B.J. Understanding the impacts of climate and land use change on water yield. Curr. Opin. Environ. Sustain. 2018, 33, 167–174. [Google Scholar] [CrossRef]
- Zhang, Y.; Guan, D.; Jin, C.; Wang, A.; Wu, J.; Yuan, F. Analysis of impacts of climate variability and human activity on streamflow for a river basin in northeast China. J. Hydrol. 2011, 410, 239–247. [Google Scholar] [CrossRef]
- Nyatuame, M.; Amekudzi, L.K.; Agodzo, S.K. Assessing the land use/land cover and climate change impact on water balance on Tordzie watershed. Remote Sens. Appl. Soc. Environ. 2020, 20, 100381. [Google Scholar] [CrossRef]
- Modaresi, F.; Araghinejad, S.; Ebrahimi, K.; Kholghi, M. Assessment of climate change effects on the annual water yield of rivers: A case study of Gorganroud river, Iran. Water Soil 2012, 25, 1365–1377. [Google Scholar]
- Gholami, A.; Shahedi, K.; Habibnejad Rooshan, M.; Vafakhah, M.; Soleimani, K. Assessment About Efficiency of SWAT Semi-Distribution Model for Simulation of Streamflow (Case Study in Talar Watershed, Mazandaran Province). Iran. J. Soil Water Res. 2017, 48, 463–476. [Google Scholar] [CrossRef]
- Gholami, A.; Habibnejad Roshan, M.; Shahedi, K.; Vafakhah, M.; Solaymani, K. Hydrological stream flow modeling in the Talar catchment (central section of the Alborz Mountains, north of Iran): Parameterization and uncertainty analysis using SWAT-CUP. J. Water Land Dev. 2016, 39, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Kavianpoor, A.; Barani, H.; Sepehri, A.; Bahremand, A. Evaluating the impacts of climate change on pastoralists activities (Case study: Rangelands of Haraz river basin). Rangeland 2019, 13, 26–38. [Google Scholar]
- Sharifi, F.; Samadi, S.Z.; Wilson, C.A. Causes and consequences of recent floods in the Golestan catchments and Caspian Sea regions of Iran. Nat. Hazards 2012, 61, 533–550. [Google Scholar] [CrossRef]
- Ahmadi-Sani, N.; Razaghnia, L.; Pukkala, T. Effect of Land-Use Change on Runoff in Hyrcania. Land 2022, 11, 220. [Google Scholar] [CrossRef]
- Mohammadi, M.; Khaledi Darvishan, A.K.; Spalevic, V.; Dudic, B.; Billi, P. Analysis of the impact of land use changes on soil erosion intensity and sediment yield using the intErO model in the talar watershed of Iran. Water 2021, 13, 881. [Google Scholar] [CrossRef]
- Moradi, A.; Nakafinejad, A.; Ownagh, M.; Komaki, C.B.; Foladi Mansouri, M. Landuse changes detection and evaluation of their effects on simulated discharge and sediment yield using SWAT model (Case Study: Galikesh Watershed, Golestan Province). J. Range Watershed Manag. 2018, 71, 489–504. [Google Scholar] [CrossRef]
- Kavian, A.; Mohammadi, M.; Gholami, L.; Rodrigo-Comino, J. Assessment of the spatiotemporal effects of land use changes on runoff and nitrate loads in the Talar River. Water 2018, 10, 445. [Google Scholar] [CrossRef] [Green Version]
- Pirnia, A.; Darabi, H.; Choubin, B.; Omidvar, E.; Onyutha, C.; Haghighi, A.T. Contribution of climatic variability and human activities to stream flow changes in the Haraz River basin, northern Iran. J. Hydrol. Environ. Res. 2019, 25, 12–24. [Google Scholar] [CrossRef]
- Pirnia, A.; Solaimani, K.; Habibnejad Roshan, M.; Besalatpour, A.A. Investigating the contribution of climate variability and land use change in water quality changes of Haraz River (Mazandaran Province). Iran. J. Ecohydrol. 2017, 4, 1151–1163. [Google Scholar] [CrossRef]
- Silakhori, E.; Dahmardeh Ghaleno, M.R.; Meshram, S.G.; Alvandi, E. To assess the impacts of climate change on runoff in Golestan Province, Iran. Nat. Hazards 2022, 112, 281–300. [Google Scholar] [CrossRef]
- Joorabian Shooshtari, S.; Shayesteh, K.; Gholamalifard, M.; Azari, M.; Serrano-Notivoli, R.; López-Moreno, J.I. Impacts of future land cover and climate change on the water balance in northern Iran. Hydrol. Sci. J. 2017, 62, 2655–2673. [Google Scholar] [CrossRef]
- Panahi, D.M.; Kalantari, Z.; Ghajarnia, N.; Seifollahi-Aghmiuni, S.; Destouni, G. Variability and change in the hydro-climate and water resources of Iran over a recent 30-year period. Sci. Rep. 2020, 10, 7450. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, A.N.; Rahimian, F.P.; Loron, M.S. Impacts of Climate on Genesis of Vernacular Architecture of Different Parts of Iran: Case Study of Cold and Dry Azerbaijan–Iran. ALAM CIPTA Int. J. Sustain. Trop. Des. Res. Pract. 2013, 6, 69–82. [Google Scholar]
- Siadati, S.; Moradi, H.; Attar, F.; Etemad, V.; Hamzeh’ee, B.; Naqinezhad, A. Botanical diversity of Hyrcanian forests; a case study of a transect in the Kheyrud protected lowland mountain forests in northern Iran. Phytotaxa 2010, 7, 1–18. [Google Scholar] [CrossRef]
- FAO. FAO Rice Market Monitor (RMM). 2019. Available online: https://www.fao.org/markets-and-trade/commodities/rice/rmm/en/ (accessed on 1 April 2019).
- Kazemi, H.; Kamkar, B.; Lakzaei, S.; Badsar, M.; Shahbyki, M. Energy flow analysis for rice production in different geographical regions of Iran. Energy 2015, 84, 390–396. [Google Scholar] [CrossRef]
- Yousefian, M.; Soltani, A.; Dastan, S.; Ajamnoroozi, H. Documenting production process and the ranking factors causing yield gap in rice fields in Sari, Iran. Iran Agric. Res. 2019, 38, 101–109. [Google Scholar] [CrossRef]
- Regmi, R.; Saha, S.; Balla, M. Geospatial analysis of land use land cover change predictive modeling at Phewa Lake Watershed of Nepal. Int. J. Curr. Eng. Technol. 2014, 4, 2617–2627. [Google Scholar]
- Budyko, M.I. The heat balance of the earth’s surface. Sov. Geogr. 1961, 2, 3–13. [Google Scholar] [CrossRef]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.; et al. InVEST 3.9.0. User’s Guide; The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund: Stanford, CA, USA, 2020. [Google Scholar]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.E.; VanZyl, D. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 2007, 68, 271–297. [Google Scholar] [CrossRef]
- Nikpour, A.; Malekshahi, G.; Mehralitabar, A.; Hasanalizadeh, M. Changes in the urban system in Mazandaran province with emphasis on small towns. Geogr. Hum. Relatsh. 2018, 1, 151–166. [Google Scholar]
- Hargreaves, G.H.; Allen, R.G. History and evaluation of Hargreaves evapotranspiration equation. J. Irrig. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Hargreaves, G.H. Defining and using reference evapotranspiration. J. Irrig. Drain. Eng. 1994, 120, 1132–1139. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 1998; Volume 300. [Google Scholar]
- Murphy, S.R. Tropical Perennial Grasses–Root Depths, Growth and Water Use Efficiency; NSW Department Primary Industries Primefacts: New South Wales, Australia, 2010; Volume 1027. [Google Scholar]
- Nippert, J.B.; Holdo, R.M. Challenging the maximum rooting depth paradigm in grasslands and savannas. Funct. Ecol. 2015, 29, 739–745. [Google Scholar] [CrossRef]
- Pan, T.; Wu, S.; Liu, Y. Relative contributions of land use and climate change to water supply variations over yellow river source area in Tibetan plateau during the past three decades. PLoS ONE 2015, 10, e0123793. [Google Scholar] [CrossRef]
- Battaglin, W.A.; Smalling, K.L.; Anderson, C.; Calhoun, D.; Chestnut, T.; Muths, E. Potential interactions among disease, pesticides, water quality and adjacent land cover in amphibian habitats in the United States. Sci. Total Environ. 2016, 566, 320–332. [Google Scholar] [CrossRef]
- Jiang, C.; Li, D.; Wang, D.; Zhang, L. Quantification and assessment of changes in ecosystem service in the Three-River Headwaters Region, China as a result of climate variability and land cover change. Ecol. Indic. 2016, 66, 199–211. [Google Scholar] [CrossRef]
- Rajib, M.A.; Ahiablame, L.; Paul, M. Modeling the effects of future land use change on water quality under multiple scenarios: A case study of low-input agriculture with hay/pasture production. Sustain. Water Qual. Ecol. 2016, 8, 50–66. [Google Scholar] [CrossRef] [Green Version]
- Sample, J.E.; Baber, I.; Badger, R. A spatially distributed risk screening tool to assess climate and land use change impacts on water-related ecosystem services. Environ. Model. Softw. 2016, 83, 12–26. [Google Scholar] [CrossRef]
- Scaroni, A.E.; Wallover, C.G. Watershed-Based Planning to Protect and Improve Surface Water Quality. Clemson Extension: Clemson, SC, USA. 2020. Available online: http://lgpress.clemson.edu/publication/watershed-based-planning-to-protect-and-improve-surface-water-quality/ (accessed on 8 October 2020).
- Zhao, G.; Gao, H.; Naz, B.S.; Kao, S.C.; Voisin, N. Integrating a reservoir regulation scheme into a spatially distributed hydrological model. Adv. Water Resour. 2016, 98, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, M.; Ashraf, M.A. Application of the SWAT Model for Water Components Separation in Iran; Springer: Tokyo, Japan, 2015; pp. 63–77. [Google Scholar] [CrossRef]
- Wohlfart, C.; Mack, B.; Liu, G.; Kuenzer, C. Multi-faceted land cover and land use change analyses in the Yellow River Basin based on dense Landsat time series: Exemplary analysis in mining, agriculture, forest, and urban areas. Appl. Geogr. 2017, 85, 73–88. [Google Scholar] [CrossRef]
- Zabihi, M.; Moradi, H.R.; Gholamalifard, M.; Khaledi Darvishan, A. Effects of Land Use/Land Cover Change Scenarios on Landscape Metrics on the Talar Watershed. Watershed Manag. Res. J. 2019, 32, 84–99. [Google Scholar] [CrossRef]
- Ghanghermeh, A.; Roshan, G. Application of TOPSIS Index in Monitoring of Droughts and Wet for Golestan providence. J. Earth Space Phys. 2015, 41, 547–563. [Google Scholar] [CrossRef]
- Arab Ameri, A.; Pourghasemi, H.R.; Shirani, K. Flood susceptibility zonation using new ensemble Bayesian-AHP methods (Case study: Neka Watershed, Mazandaran Province). Iran. J. Ecohydrol. 2017, 4, 447–462. [Google Scholar] [CrossRef]
- Alibakhshi, H.; Dourandish, A.; Sabuhi Sabuni, M. Investigating the Effects of Climate Change on the Agricultural Market. Agric. Econ. 2020, 13, 55–86. [Google Scholar] [CrossRef]
- Brown, P.M.; Wienk, C.L.; Symstad, A.J. Fire and forest history at Mount Rushmore. Ecol. Appl. 2008, 18, 1984–1999. [Google Scholar] [CrossRef]
- Jones, B.T.B.; Mosimane, A. Promoting Integrated Community-Based Natural Resource Management as a Means to Combat Desertification: The ‘Living in a Finite Environment’ (LIFE) Project and the Khoadi; Hoas Nyae Nyae Conservancy Namibia, International Resources Group (IRG): Washington, DC, USA, 2007. [Google Scholar]
- Khoshravesh, M.; Abedi-Koupai, J.; Nikzad-Tehrani, E. Detection of trends in hydro-climatological variables using parametric and non-parametric tests in Neka basin. J. Water Soil Sci. 2016, 19, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zarandian, A.; Baral, H.; Yavari, A.R.; Jafari, H.R.; Stork, N.E.; Ling, M.A.; Amirnejad, H. Anthropogenic decline of ecosystem services threatens the integrity of the unique Hyrcanian (Caspian) forests in Northern Iran. Forests 2016, 7, 51. [Google Scholar] [CrossRef]
- Aghsaei, H.; Dinan, N.M.; Moridi, A.; Asadolahi, Z.; Delavar, M.; Fohrer, N.; Wagner, P.D. Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Sci. Total Environ. 2020, 712, 136449. [Google Scholar] [CrossRef]
Classes | Description |
---|---|
Agriculture | Rainfed cropland, Irrigated cropland, Mosaic cropland/Land used for farming, cropland |
Forest | Tree cover, broadleaved, evergreen, needle-leaved, deciduous |
Sparse vegetation | tree, shrub, herbaceous cover, Lichens, and mosses |
Shrubland | Shrubland |
Bare areas | Bare areas/Sand, landfill sites, rocks, active excavation area, and Bare soil, |
Water | Natural water bodies, lakes, reservoirs, and oceans |
Grassland | Mosaic herbaceous cover, Grassland |
Wetland | flooded, fresh-saline, or brackish water |
Settlement | Urban |
Data | Data Description | Data Source | Spatial Resolution |
---|---|---|---|
Climate data | Monthly precipitation data Monthly mean temperature Monthly maximum temperature Monthly minimum temperature | www.worldclim.org (accessed on 15 May 2017) | 500 m |
Soil data | Soil depth | https://www.isric.org/explore/soilgrids (accessed on 10 May 2020) | 250 m |
Land use/Land cover | Land use/cover in 1992–2016 | http://maps.elie.ucl.ac.be/CCI/viewer/ (accessed on 13 March 2014) | 300 m |
PAWC | Soil texture (%sand, %clay, %organic carbon, %silt) | http://www.fao.org (accessed on 5 March 2012) | 500 m |
LULC | LULC_Veg | Root_Depth | Kc |
---|---|---|---|
Agriculture | 1 | 1500 | 0.65 |
Forest | 1 | 3500 | 1 |
Shrubland | 1 | 2500 | 0.39 |
Sparse Vegetation | 1 | 2700 | 0.55 |
Grassland | 1 | 800 | 0.65 |
Wetland | 0 | 1 | 1.2 |
Bareland | 0 | 1 | 0.5 |
Urban | 0 | 1 | 0.3 |
Water | 0 | 1 | 1.05 |
Scenario Group | Scenario | LULC | Climate |
---|---|---|---|
SnG1 | Sn1 | □ | □ |
Sn2 | □ | ■ | |
Sn3 | ■ | □ | |
Sn4 | ■ | ■ | |
SnG2 | Sn1 | □ | □ |
Sn2 | □ | ■ | |
Sn3 | ■ | □ | |
Sn4 | ■ | ■ | |
SnG3 | Sn1 | □ | □ |
Sn2 | □ | ■ | |
Sn3 | ■ | □ | |
Sn4 | ■ | ■ | |
SnG4 | Sn1 | □ | □ |
Sn2 | □ | ■ | |
Sn3 | ■ | □ | |
Sn4 | ■ | ■ |
Sub-Basin | Total Water Yield (106 m3) | |||
---|---|---|---|---|
1992 | 2007 | 2016 | 2026 | |
1 | 150.44 | 92.49 | 70.13 | 93.87 |
2 | 43.68 | 14.74 | 11.56 | 22.48 |
3 | 39.05 | 26.74 | 35.08 | 38.94 |
4 | 1.76 | 0.23 | 0.33 | 0.44 |
5 | 50.33 | 24.76 | 18.07 | 25.16 |
6 | 36.80 | 20.78 | 17.43 | 23.99 |
7 | 74.75 | 43.13 | 39.91 | 46.79 |
8 | 27.32 | 12.54 | 12.23 | 15.6 |
9 | 19.78 | 6.08 | 6.01 | 6.63 |
10 | 8.18 | 2.21 | 2.37 | 2.61 |
11 | 6.83 | 2.23 | 2.81 | 2.75 |
12 | 0.69 | 0.005 | 0.04 | 0.03 |
13 | 1.24 | 0.13 | 0.19 | 0.27 |
14 | 1.18 | 0.08 | 0.12 | 0.19 |
15 | 1.40 | 0.21 | 0.24 | 0.42 |
16 | 0.91 | 0.04 | 0.07 | 0.12 |
17 | 0.55 | 0.05 | 0.06 | 0.12 |
18 | 1.67 | 0.08 | 0.12 | 0.19 |
19 | 1.65 | 0.24 | 0.22 | 0.38 |
20 | 1.92 | 0.33 | 0.26 | 0.41 |
21 | 4.67 | 0.04 | 0.16 | 0.22 |
22 | 3.53 | 0.03 | 0.12 | 0.17 |
23 | 2.94 | 0.01 | 0.08 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emlaei, Z.; Pourebrahim, S.; Heidari, H.; Lee, K.E. The Impact of Climate Change as Well as Land-Use and Land-Cover Changes on Water Yield Services in Haraz Basin. Sustainability 2022, 14, 7578. https://doi.org/10.3390/su14137578
Emlaei Z, Pourebrahim S, Heidari H, Lee KE. The Impact of Climate Change as Well as Land-Use and Land-Cover Changes on Water Yield Services in Haraz Basin. Sustainability. 2022; 14(13):7578. https://doi.org/10.3390/su14137578
Chicago/Turabian StyleEmlaei, Zahra, Sharareh Pourebrahim, Hamidreza Heidari, and Khai Ern Lee. 2022. "The Impact of Climate Change as Well as Land-Use and Land-Cover Changes on Water Yield Services in Haraz Basin" Sustainability 14, no. 13: 7578. https://doi.org/10.3390/su14137578
APA StyleEmlaei, Z., Pourebrahim, S., Heidari, H., & Lee, K. E. (2022). The Impact of Climate Change as Well as Land-Use and Land-Cover Changes on Water Yield Services in Haraz Basin. Sustainability, 14(13), 7578. https://doi.org/10.3390/su14137578