# Application of Clustering Algorithms in the Location of Electric Taxi Charging Stations

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Problem Statement and Data Processing

#### 2.1. Problem Statement

#### 2.2. Data Processing

#### 2.3. Charging Demand

## 3. Methodology

#### 3.1. Calculation of Euclidean Distance

_{i}and ypos

_{i}denote the x-coordinate and y-coordinate of the i-th grid position expressed in terms of GPS longitude and latitude, respectively. $N$ is the set of grid numbers in this category.

_{k}and zy

_{k}represent the x-coordinate and y-coordinate of the k-th cluster center, respectively.

#### 3.2. Multiple Same-Type Clustering and Multiple Multi-Type Clustering Algorithms

## 4. Results

#### 4.1. Location Results of Multiple Same-Type Clustering Algorithms

#### 4.2. Location Results of Multiple Multi-Type Clustering Algorithms

#### 4.3. Results Analysis

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Suganya, S.; Raja, S.C.; Venkatesh, P. Simultaneous coordination of distinct plug-in Hybrid Electric Vehicle charging stations: A modified Particle Swarm Optimization approach. Energy
**2017**, 138, 92–102. [Google Scholar] [CrossRef] - Apostolaki-Iosifidou, E.; Codani, P.; Kempton, W. Measurement of power loss during electric vehicle charging and discharging. Energy
**2017**, 127, 730–742. [Google Scholar] [CrossRef] - Franke, T.; Krems, J.F. Understanding charging behaviour of electric vehicle users. Transp. Res. Part F Traffic Psychol. Behav.
**2013**, 21, 75–89. [Google Scholar] [CrossRef] - Xu, M.; Meng, Q.; Mannering, F. Optimal deployment of charging stations considering path deviation and nonlinear elastic demand. Transp. Res. Part B Methodol.
**2020**, 135, 120–142. [Google Scholar] [CrossRef] - He, J.; Yang, H.; Tang, T.Q.; Huang, H.J. An optimal charging station location model with the consideration of electric vehicle’s driving range. Transp. Res. Part C Emerg. Technol.
**2018**, 86, 641–654. [Google Scholar] [CrossRef] - Xu, M.; Yang, H.; Wang, S.A. Mitigate the range anxiety: Siting battery charging stations for electric vehicle drivers. Transp. Res. Part C Emerg. Technol.
**2020**, 114, 164–188. [Google Scholar] [CrossRef] - Li, S.Y.; Huang, Y.X.; Mason, S.J. A multi-period optimization model for the deployment of public electric vehicle charging stations on network. Transp. Res. Part C
**2016**, 65, 128–143. [Google Scholar] [CrossRef] - Riemann, R.; Wang, D.Z.W.; Busch, F. Optimal location of wireless charging facilities for electric vehicles: Flow-capturing location model with stochastic user equilibrium. Transp. Res. Part C
**2015**, 58, 1–12. [Google Scholar] [CrossRef] - Pan, L.; Yao, E.J.; Yang, Y.; Zhang, R. A location model for electric vehicle (EV) public charging stations based on drivers’ existing activities. Sustain. Cities Soc.
**2020**, 59, 102192. [Google Scholar] [CrossRef] - Chen, T.D.; Kockelman, K.M.; Khan, M. Locating electric vehicle charging stations: Parking-based assignment method for Seattle, Washington. Transp. Res. Rec.
**2013**, 2385, 28–36. [Google Scholar] [CrossRef] - Liu, Q.; Liu, J.H.; Le, W.W.; Guo, Z.X.; He, Z.G. Data-driven intelligent location of public charging stations for electric vehicles. J. Clean. Prod.
**2019**, 232, 531–541. [Google Scholar] [CrossRef] - Yang, J.; Dong, J.; Hu, L. A data-driven optimization-based approach for siting and sizing of electric taxi charging stations. Transp. Res. Part C
**2017**, 77, 462–477. [Google Scholar] [CrossRef] [Green Version] - Shi, R.F.; Liu, J.H.; Liao, Z.H.; Niu, L.; Ibrahim, E.; Fu, F. An electric taxi charging station planning scheme based on an improved destination choice method. Energies
**2019**, 12, 3781. [Google Scholar] [CrossRef] [Green Version] - Lin, Y.P.; Zhang, K.; Shen, Z.J.M.; Ye, B.; Miao, L.X. Multistage large-scale charging station planning for electric buses considering transportation network and power grid. Transp. Res. Part C Emerg. Technol.
**2019**, 107, 423–443. [Google Scholar] [CrossRef] - Tao, Y.; Huang, M.H.; Yang, L. Data-driven optimized layout of battery electric vehicle charging infrastructure. Energy
**2018**, 150, 735–744. [Google Scholar] [CrossRef] - Guo, J. Research on Euclidean Distance Weighted Coefficient of K-means Clustering Algorithm. Netw. Secur. Technol. Appl.
**2016**, 10, 74–75. [Google Scholar] - Reddy, C.K.; Vinzamuri, B. A Survey of Partitional and Hierarchical Clustering Algorithms. In Data Clustering Algorithms and Applications; Routledge: London, UK, 2013; Volume 87. [Google Scholar]
- Sun, Z.Y.; Hu, Y.J.; Li, W.; Feng, S.W.; Pei, L.L. Prediction model for short-term traffic flow based on a K-means-gated recurrent unit combination. IET Intell. Transp. Syst.
**2022**, 16, 675–690. [Google Scholar] [CrossRef] - Yazdani, M.; Chatterjee, P.; Pamucar, D.; Chakraborty, S. Development of an integrated decision making model for location selection of logistics centers in the Spanish autonomous communities. Expert Syst. Appl.
**2020**, 148, 113208. [Google Scholar] [CrossRef] - Liu, J.L.; Ong, G.P.; Chen, X.Q. GraphSAGE-based traffic speed forecasting for segment network with sparse data. IEEE Trans. Intell. Transp. Syst.
**2022**, 23, 1755–1766. [Google Scholar] [CrossRef] - Kim, G.S.; Chun, J.; Kim, Y.; Kim, C. Coastal Tourism Spatial Planning at the Regional Unit: Identifying Coastal Tourism Hotspots Based on Social Media Data. ISPRS Int. J. Geo-Inf.
**2021**, 10, 167. [Google Scholar] [CrossRef] - Zhang, S.; Wang, H.; Zhang, Y.F.; Li, Y.Z. A novel two-stage location model of charging station considering dynamic distribution of electric taxis. Sustain. Cities Soc.
**2019**, 51, 101752. [Google Scholar] [CrossRef] - Straka, M.; Buzna, L. Clustering algorithms applied to usage related segments of electric vehicle charging stations. Transp. Res. Procedia
**2019**, 40, 1576–1582. [Google Scholar] [CrossRef] - Liu, J.Y.; Peper, J.; Lin, G.; Zhou, Y.; Awasthi, S.; Li, Y.; Rehtanz, C. A planning strategy considering multiple factors for electric vehicle charging stations along German motorways. Int. J. Electr. Power Energy Syst.
**2021**, 124, 106379. [Google Scholar] [CrossRef] - Gilanifar, M.; Parvania, M. Clustered multi-node learning of electric vehicle charging flexibility. Appl. Energy
**2021**, 282, 116125. [Google Scholar] [CrossRef] - Zhang, Y.H.; Xu, J.; Li, Q.Y.; Zhou, J.L.; Wang, L.L.; Zhu, Z.H.; Li, Y.; Wang, S.R. The Location and Capacity Method of Electric Vehicle Charging Station Based on Density Peak Clustering. Power Syst. Prot. Control.
**2021**, 49, 132–139. [Google Scholar] - Sánchez, D.G.; Tabares, A.; Faria, L.T.; Rivera, J.C.; Franco, J.F. A Clustering Approach for the Optimal Siting of Recharging Stations in the Electric Vehicle Routing Problem with Time Windows. Energies
**2022**, 15, 2372. [Google Scholar] [CrossRef]

**Figure 1.**Five main municipal districts of Qingdao. Note: The map data used in this article comes from Gaode Map, the same below.

**Figure 8.**Tree diagram of hierarchical clustering algorithm. (

**a**) Hierarchical clustering diagram for category 1. (

**b**) Hierarchical clustering diagram for category 2. (

**c**) Hierarchical clustering diagram for category 3. (

**d**) Hierarchical clustering diagram for category 4.

Vehicle ID | Time | Longitude | Latitude | Speed | Passenger Status |
---|---|---|---|---|---|

30 | 18:52:44 | 120.300572 | 36.059037 | 7.4 | 0 |

600 | 18:48:08 | 120.299342 | 36.05908 | 22.4 | 0 |

850 | 18:52:47 | 120.338533 | 36.05844 | 40.8 | 1 |

Grid Number | Longitude | Latitude | Number of Dwell Events |
---|---|---|---|

22 | 120.2984848 | 36.056797 | 4 |

282 | 120.3634796 | 36.0967979 | 16 |

434 | 120.3484802 | 36.1117973 | 14 |

3752 | 120.3984833 | 36.2917976 | 7 |

Number of Clusters K | Degree of Distortion (SSE) |
---|---|

1 | 0.554661 |

2 | 0.231372 |

3 | 0.121694 |

4 | 0.065528 |

5 | 0.041640 |

6 | 0.028624 |

7 | 0.021175 |

8 | 0.016797 |

9 | 0.012739 |

Number | Longitude | Latitude | Intra-Class Weighted Euclidean Distance Sum |
---|---|---|---|

Cluster Center 1 | 120.35636442 | 36.08921391 | 9.314467822 |

Cluster Center 2 | 120.48848397 | 36.14346568 | 1.946304218 |

Cluster Center 3 | 120.40593398 | 36.14640666 | 8.401443127 |

Cluster Center 4 | 120.40746448 | 36.29133549 | 4.439257816 |

Category | Cluster Center | Longitude | Latitude | Intra-Class Weighted Euclidean Distance Sum |
---|---|---|---|---|

Category 1 | Cluster Center 1 | 120.34409294 | 36.07009134 | 3.469152132 |

Cluster Center 2 | 120.36123313 | 36.08829833 | 1.945626697 | |

Cluster Center 3 | 120.36469908 | 36.11139359 | 1.501172971 | |

Category 2 | Cluster Center 1 | 120.48463792 | 36.11949128 | 0.839284857 |

Cluster Center 2 | 120.49473381 | 36.18242406 | 0.606927985 | |

Category 3 | Cluster Center 1 | 120.41098308 | 36.11398672 | 1.574992016 |

Cluster Center 2 | 120.39828278 | 36.13879853 | 1.09009133 | |

Cluster Center 3 | 120.41973210 | 36.16148613 | 1.234712563 | |

Cluster Center 4 | 120.39934566 | 36.18041940 | 0.714346782 | |

Category 4 | Cluster Center 1 | 120.42181778 | 36.23846498 | 0.30493468 |

Cluster Center 2 | 120.39823263 | 36.28304862 | 1.135222951 | |

Cluster Center 3 | 120.41098295 | 36.30858407 | 1.712925032 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Li, Q.; Li, X.; Liu, Z.; Qi, Y.
Application of Clustering Algorithms in the Location of Electric Taxi Charging Stations. *Sustainability* **2022**, *14*, 7566.
https://doi.org/10.3390/su14137566

**AMA Style**

Li Q, Li X, Liu Z, Qi Y.
Application of Clustering Algorithms in the Location of Electric Taxi Charging Stations. *Sustainability*. 2022; 14(13):7566.
https://doi.org/10.3390/su14137566

**Chicago/Turabian Style**

Li, Qing, Xue Li, Zuyu Liu, and Yaping Qi.
2022. "Application of Clustering Algorithms in the Location of Electric Taxi Charging Stations" *Sustainability* 14, no. 13: 7566.
https://doi.org/10.3390/su14137566