Revealing the Coupling Relationship between the Gross Ecosystem Product and Economic Growth: A Case Study of Hubei Province
Abstract
:1. Introduction
2. Methods and Data Sources
2.1. GEP Model
2.2. Decoupling Analysis
2.3. Spatial Autocorrelation Analysis
2.4. Driving Factor Analysis
2.5. Data Sources
3. Results
3.1. Spatiotemporal Change Analysis of GEP in Hubei Province
3.2. Decoupling Analysis of GEP and Economic Growth
3.2.1. Overall Decoupling State Analysis
3.2.2. Spatial Autocorrelation Analysis of GEP and Economic Growth
3.3. Ecosystem Drivers in Terms of the Decoupling Index
4. Discussion
4.1. GEP Works in Parallel with GDP
4.2. The Coupling Relationship between GEP and Socioeconomic Development
4.3. Uncertainty Statement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.; Zeng, J.; Zhong, M.; Pan, S. Coupling Analysis of Ecosystem Services Value and Economic Development in the Yangtze River Economic Belt: A Case Study in Hunan Province, China. Remote Sens. 2021, 13, 1552. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, Q.; Wang, P.; Zhang, L.; Tian, Y.; Li, X. Spatio-Temporal Changes in Ecosystem Service Value and Its Coordinated Development with Economy: A Case Study in Hainan Province, China. Remote Sens. 2022, 14, 970. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X. Value of Ecosystem Services in China. Chin. Sci. Bull. 2000, 45, 870–876. [Google Scholar] [CrossRef]
- Jiang, W.; Lü, Y.; Liu, Y.; Gao, W. Ecosystem Service Value of the Qinghai-Tibet Plateau Significantly Increased during 25 Years. Ecosyst. Serv. 2020, 44, 101146. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, H.; Ling, H. Eco-Service Value Evaluation Based on Eco-Economic Functional Regionalization in a Typical Basin of Northwest Arid Area, China. Environ. Earth Sci. 2014, 71, 3715–3726. [Google Scholar] [CrossRef]
- Laurans, Y.; Rankovic, A.; Billé, R.; Pirard, R.; Mermet, L. Use of Ecosystem Services Economic Valuation for Decision Making: Questioning a Literature Blindspot. J. Environ. Manag. 2013, 119, 208–219. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zhu, C.; Yang, G.; Weihua, X.; Zheng, H.; Zhang, Y.; Xiao, Y. Gross Ecosystem Product Concept Accounting Framework and Case Study. Acta Ecol. Sin. 2013, 33, 6747–6761. [Google Scholar] [CrossRef]
- Ouyang, Z.; Song, C.; Zheng, H.; Polasky, S.; Xiao, Y.; Bateman, I.J.; Liu, J.; Ruckelshaus, M.; Shi, F.; Xiao, Y. Using Gross Ecosystem Product (GEP) to Value Nature in Decision Making. Proc. Natl. Acad. Sci. USA 2020, 117, 14593–14601. [Google Scholar] [CrossRef]
- Jiang, H.; Wu, W.; Wang, J.; Yang, W.; Gao, Y.; Duan, Y.; Ma, G.; Wu, C.; Shao, J. Mapping Global Value of Terrestrial Ecosystem Services by Countries. Ecosyst. Serv. 2021, 52, 101361. [Google Scholar]
- Qian, Y.; Cao, H.; Huang, S. Decoupling and Decomposition Analysis of Industrial Sulfur Dioxide Emissions from the Industrial Economy in 30 Chinese Provinces. J. Environ. Manag. 2020, 260, 110142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, M.; Yang, R.; Li, X.; Zhang, L.; Li, M. Decoupling Water Environment Pressures from Economic Growth in the Yangtze River Economic Belt, China. Ecol. Indic. 2021, 122, 107314. [Google Scholar] [CrossRef]
- Shuai, C.; Chen, X.; Wu, Y.; Zhang, Y.; Tan, Y. A Three-Step Strategy for Decoupling Economic Growth from Carbon Emission: Empirical Evidences from 133 Countries. Sci. Total Environ. 2019, 646, 524–543. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Fang, S.; Cai, B.; Zhou, Y.; Li, D.; Feng, K.; Hubacek, K. Chinese Cities Exhibit Varying Degrees of Decoupling of Economic Growth and CO2 Emissions between 2005 and 2015. One Earth 2021, 4, 124–134. [Google Scholar] [CrossRef]
- Liang, S.; Liu, Z.; Crawford-Brown, D.; Wang, Y.; Xu, M. Decoupling Analysis and Socioeconomic Drivers of Environmental Pressure in China. Environ. Sci. Technol. 2014, 48, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Wu, T.; Xiao, Y.; Song, C.; Wang, K.; Ouyang, Z. Valuing Natural Capital amidst Rapid Urbanization: Assessing the Gross Ecosystem Product (GEP) of China’s ‘Chang-Zhu-Tan’Megacity. Environ. Res. Lett. 2020, 15, 124019. [Google Scholar] [CrossRef]
- Liang, L.-N.; Siu, W.S.; Wang, M.-X.; Zhou, G.-J. Measuring Gross Ecosystem Product of Nine Cities within the Pearl River Delta of China. Environ. Chall. 2021, 4, 100105. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the Global Value of Ecosystem Services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Gao, X.; Shen, J.; He, W.; Zhao, X.; Li, Z.; Hu, W.; Wang, J.; Ren, Y.; Zhang, X. Spatial-Temporal Analysis of Ecosystem Services Value and Research on Ecological Compensation in Taihu Lake Basin of Jiangsu Province in China from 2005 to 2018. J. Clean. Prod. 2021, 317, 128241. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E. Improvements in Ecosystem Services from Investments in Natural Capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Dally, G.C.; Power, M. Nature’s Services: Societal Dependence on Natural Ecosystems. Nature 1997, 388, 529. [Google Scholar]
- Wang, X.; Wei, Y.; Shao, Q. Decomposing the Decoupling of CO2 Emissions and Economic Growth in China’s Iron and Steel Industry. Resour. Conserv. Recycl. 2020, 152, 104509. [Google Scholar] [CrossRef]
- Raza, M.Y.; Lin, B. Decoupling and Mitigation Potential Analysis of CO2 Emissions from Pakistan’s Transport Sector. Sci. Total Environ. 2020, 730, 139000. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Wang, Z.-L.; Ng, J.C.Y. Measurement Research on the Decoupling Effect of Industries’ Carbon Emissions—Based on the Equipment Manufacturing Industry in China. Energies 2016, 9, 921. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zhu, Y.; Zhang, J. Decoupling Economic Development from Municipal Solid Waste Generation in China’s Cities: Assessment and Prediction Based on Tapio Method and EKC Models. Waste Manag. 2021, 133, 37–48. [Google Scholar] [CrossRef]
- Dong, B.; Zhang, M.; Mu, H.; Su, X. Study on Decoupling Analysis between Energy Consumption and Economic Growth in Liaoning Province. Energy Policy 2016, 97, 414–420. [Google Scholar] [CrossRef]
- Ismail, S. Spatial Autocorrelation and Real Estate Studies: A Literature Review. Malays. J. Real Estate 2006, 1, 1–13. [Google Scholar]
- Fortin, M.-J.; Drapeau, P.; Legendre, P. Spatial Autocorrelation and Sampling Design in Plant Ecology. In Progress in Theoretical Vegetation Science; Springer: Berlin, Germany, 1990; pp. 209–222. [Google Scholar]
- Koenig, W.D. Spatial Autocorrelation in California Land Birds. Conserv. Biol. 1998, 12, 612–620. [Google Scholar] [CrossRef]
- Glick, B. The Spatial Autocorrelation of Cancer Mortality. Soc. Sci. Med. 1979, 13, 123–130. [Google Scholar] [CrossRef]
- Ang, B.W. LMDI Decomposition Approach: A Guide for Implementation. Energy Policy 2015, 86, 233–238. [Google Scholar] [CrossRef]
- Song, F.; Su, F.; Mi, C.; Sun, D. Analysis of Driving Forces on Wetland Ecosystem Services Value Change: A Case in Northeast China. Sci. Total Environ. 2021, 751, 141778. [Google Scholar] [CrossRef] [PubMed]
- Panayotou, T. Economic Growth and the Environment; Harvard University: Cambridge, MA, USA, 2000. [Google Scholar]
- Apergis, N.; Ozturk, I. Testing Environmental Kuznets Curve Hypothesis in Asian Countries. Ecol. Indic. 2015, 52, 16–22. [Google Scholar] [CrossRef]
- Yue, Q.; Chen, J. “Sustainable Growth” or “Growth with Pollution”—Research on Economic Growth Patterns of Industrial Enterprise Based on Industry Attributes. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 571, p. 012089. [Google Scholar]
- Yilanci, V.; Pata, U.K. Investigating the EKC Hypothesis for China: The Role of Economic Complexity on Ecological Footprint. Environ. Sci. Pollut. Res. 2020, 27, 32683–32694. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lv, D. Analysis of Agricultural CO2 Emissions in Henan Province, China, Based on EKC and Decoupling. Sustainability 2022, 14, 1931. [Google Scholar] [CrossRef]
- Ranis, G.; Stewart, F.; Ramirez, A. Economic Growth and Human Development. World Dev. 2000, 28, 197–219. [Google Scholar] [CrossRef] [Green Version]
- Costantini, V.; Monni, S. Environment, Human Development and Economic Growth. Ecol. Econ. 2008, 64, 867–880. [Google Scholar] [CrossRef] [Green Version]
- Suri, T.; Boozer, M.A.; Ranis, G.; Stewart, F. Paths to Success: The Relationship between Human Development and Economic Growth. World Dev. 2011, 39, 506–522. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Fang, C.; Wang, S. Exploring Spatiotemporal Changes in Ecosystem-Service Values and Hotspots in China. Sci. Total Environ. 2016, 545, 609–620. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic Changes in the Value of China’s Ecosystem Services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Baniya, B.; Tang, Q.; Pokhrel, Y.; Xu, X. Vegetation Dynamics and Ecosystem Service Values Changes at National and Provincial Scales in Nepal from 2000 to 2017. Environ. Dev. 2019, 32, 100464. [Google Scholar] [CrossRef]
- Al-Hilani, H. HDI as a Measure of Human Development: A Better Index than the Income Approach. J. Bus. Manag. 2012, 2, 24–28. [Google Scholar] [CrossRef]
Primary Indicators | Secondary Indicators | Monetary Value |
---|---|---|
EPV | Production of ecosystem goods | Market value method |
Water supplement | Market value method | |
ERV | Soil retention | Replacement cost method |
Nonpoint pollution control | Replacement cost method | |
Climate regulation | Replacement cost method | |
Carbon sequestration | Market value method | |
Oxygen release | Market value method | |
Flood mitigation | Replacement cost method | |
Water retention | Replacement cost method | |
Air purification | Abatement cost method | |
Water purification | Replacement cost method | |
Peat control | Market value method | |
ECV | Ecotourism | Travel cost method |
Types | Features | |
---|---|---|
Economic growth | Expansive negative decoupling | ∆GEP > 0, ∆GDP > 0, e > 1.2 |
Expansive connection | ∆GEP > 0, ∆GDP > 0, 0.8 ≤ e ≤ 1.2 | |
Weak decoupling | ∆GEP > 0, ∆GDP > 0, 0 ≤ e < 0.8 | |
Strong decoupling | ∆GEP < 0, ∆GDP > 0, e < 0 | |
Economic recession | Declining decoupling | ∆GEP < 0, ∆GDP < 0, e > 1.2 |
Declining connection | ∆GEP < 0, ∆GDP < 0, 0.8 ≤ e ≤ 1.2 | |
Weak negative decoupling | ∆GEP < 0, ∆GDP < 0, 0 ≤ e < 0.8 | |
Strong negative decoupling | ∆GEP > 0, ∆GDP < 0, e < 0 |
Administrative Region | 2010–2015 | 2015–2019 | 2010–2019 | |||
---|---|---|---|---|---|---|
e | Type | e | Type | e | Type | |
Wuhan | 0.148 | Weak decoupling | 0.025 | Weak decoupling | 0.077 | Weak decoupling |
Huangshi | 0.006 | Weak decoupling | −0.186 | Strong decoupling | −0.049 | Strong decoupling |
Shiyan | 0.104 | Weak decoupling | −0.007 | Strong decoupling | 0.043 | Weak decoupling |
Yichang | 0.068 | Weak decoupling | −0.094 | Strong decoupling | 0.011 | Weak decoupling |
Xiangyang | 0.058 | Weak decoupling | −0.160 | Strong decoupling | −0.010 | Strong decoupling |
Ezhou | −0.032 | Strong decoupling | −0.039 | Strong decoupling | −0.026 | Strong decoupling |
Jingmen | 0.054 | Weak decoupling | −0.069 | Strong decoupling | 0.007 | Weak decoupling |
Xiaogan | 0.075 | Weak decoupling | 0.249 | Weak decoupling | 0.109 | Weak decoupling |
Jingzhou | 0.048 | Weak decoupling | −0.202 | Strong decoupling | −0.028 | Strong decoupling |
Huanggang | 0.021 | Weak decoupling | −0.141 | Strong decoupling | −0.028 | Strong decoupling |
Xianning | 0.081 | Weak decoupling | −0.006 | Strong decoupling | 0.039 | Weak decoupling |
Suizhou | 0.029 | Weak decoupling | −0.021 | Strong decoupling | 0.009 | Weak decoupling |
Enshi | 0.073 | Weak decoupling | −0.065 | Strong decoupling | 0.023 | Weak decoupling |
Xiantao | 0.075 | Weak decoupling | 0.123 | Weak decoupling | 0.070 | Weak decoupling |
Qianjiang | 0.139 | Weak decoupling | 0.061 | Weak decoupling | 0.088 | Weak decoupling |
Tianmen | 0.144 | Weak decoupling | −0.041 | Strong decoupling | 0.061 | Weak decoupling |
Shennongjia | −0.019 | Strong decoupling | −0.451 | Strong decoupling | −0.160 | Strong decoupling |
Hubei | 0.067 | Weak decoupling | −0.067 | Strong decoupling | 0.014 | Weak decoupling |
Type | 2010–2015 | 2015–2019 | 2010–2019 |
---|---|---|---|
GEP | −0.009 (0.300) | 0.066 (0.155) | 0.041 (0.203) |
Administrative Region | 2010–2015 | 2015–2019 | 2010–2019 | |||
---|---|---|---|---|---|---|
e | Type | e | Type | e | Type | |
Wuhan | 0.940 | Expansive connection | 0.156 | Weak decoupling | 0.618 | Weak decoupling |
Huangshi | 0.028 | Weak decoupling | −0.866 | Strong decoupling | −0.266 | Strong decoupling |
Shiyan | 0.556 | Weak decoupling | −0.066 | Strong decoupling | 0.353 | Weak decoupling |
Yichang | 0.308 | Weak decoupling | −0.600 | Strong decoupling | 0.071 | Weak decoupling |
Xiangyang | 0.331 | Weak decoupling | −1.246 | Strong decoupling | −0.080 | Strong decoupling |
Ezhou | −0.175 | Strong decoupling | −0.963 | Strong decoupling | −0.267 | Strong decoupling |
Jingmen | 0.281 | Weak decoupling | −0.298 | Strong decoupling | 0.043 | Weak decoupling |
Xiaogan | 0.347 | Weak decoupling | 1.571 | Expansive negative decoupling | 0.689 | Weak decoupling |
Jingzhou | 0.237 | Weak decoupling | −0.776 | Strong decoupling | −0.157 | Strong decoupling |
Huanggang | 0.071 | Weak decoupling | −0.707 | Strong decoupling | −0.130 | Strong decoupling |
Xianning | 0.212 | Weak decoupling | −0.031 | Strong decoupling | 0.149 | Weak decoupling |
Suizhou | 0.081 | Weak decoupling | −0.115 | Strong decoupling | 0.038 | Weak decoupling |
Enshi | 0.190 | Weak decoupling | −0.294 | Strong decoupling | 0.083 | Weak decoupling |
Xiantao | 0.152 | Weak decoupling | 0.205 | Weak decoupling | 0.149 | Weak decoupling |
Qianjiang | 0.814 | Expansive connection | 0.377 | Weak decoupling | 0.657 | Weak decoupling |
Tianmen | 0.240 | Weak decoupling | −0.878 | Strong decoupling | 0.190 | Weak decoupling |
Shennongjia | −0.051 | Strong decoupling | −5.352 | Strong decoupling | −0.817 | Strong decoupling |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, S.; Liao, Q.; Wu, W.; Yi, C.; Gao, Y. Revealing the Coupling Relationship between the Gross Ecosystem Product and Economic Growth: A Case Study of Hubei Province. Sustainability 2022, 14, 7546. https://doi.org/10.3390/su14137546
Guan S, Liao Q, Wu W, Yi C, Gao Y. Revealing the Coupling Relationship between the Gross Ecosystem Product and Economic Growth: A Case Study of Hubei Province. Sustainability. 2022; 14(13):7546. https://doi.org/10.3390/su14137546
Chicago/Turabian StyleGuan, Shuai, Qi Liao, Wenjun Wu, Chuan Yi, and Yueming Gao. 2022. "Revealing the Coupling Relationship between the Gross Ecosystem Product and Economic Growth: A Case Study of Hubei Province" Sustainability 14, no. 13: 7546. https://doi.org/10.3390/su14137546