Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis
Abstract
:1. Introduction
2. Review of the Innovative Construction Technology
2.1. Automated Building Construction System (ABCS)
2.2. Aluminium Formwork Construction System (AFCS)
2.3. Off-Site Construction (OSC)
2.4. Automation in Construction—Robotics
3. Method
3.1. Multi-Criteria Analysis (MCA)
3.2. Results
4. Discussions
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Criteria | Assessor | Selected Important Level | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
Economic (E1) vs. Equity (E2) | 1 | 5 | 5 | 7 | 5 | 1 | 5 | 5 | 5 |
E1 vs. Environment (E3) | 5 | 9 | 5 | 1 | 5 | 5 | 5 | 5 | 5 |
E2 vs. E3 | 5 | 3 | 3 | 3 | 3 | 7 | 1 | 3 | 3 |
Time (B1) vs. Cost (B2) | 1 | 1 | 1 | 5 | 3 | 1 | 1 | 7 | 1 |
Time (B1) vs. Quality (B3) | 3 | 7 | 1 | 1 | 1 | 1 | 5 | 1 | 1 |
Time (B1) vs. Safety (B4) | 9 | 1 | 1 | 1 | 3 | 1 | 3 | 1 | 1 |
Time (B1) vs. Site characteristics (B5) | 1 | 3 | 3 | 1 | 1 | 3 | 3 | 3 | 3 |
Time (B1) vs. Waste/Pollution Generation (B6) | 5 | 3 | 3 | 3 | 1 | 5 | 3 | 3 | 3 |
Time (B1) vs. Energy Consumption (B7) | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 5 | 5 |
B2 vs. B3 | 3 | 3 | 3 | 3 | 7 | 3 | 5 | 7 | 3 |
B2 vs. B4 | 3 | 1 | 3 | 1 | 1 | 1 | 1 | 4 | 1 |
B2 vs. B5 | 5 | 5 | 5 | 7 | 5 | 7 | 5 | 5 | 5 |
B2 vs. B6 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 | 1 |
B2 vs. B7 | 5 | 9 | 7 | 9 | 9 | 9 | 9 | 9 | 9 |
B3 vs. B4 | 1 | 3 | 1 | 1 | 1 | 3 | 5 | 1 | 1 |
B3 vs. B5 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 5 | 1 |
B3 vs. B6 | 3 | 5 | 3 | 7 | 3 | 3 | 3 | 3 | 3 |
B3 vs. B7 | 9 | 7 | 7 | 5 | 5 | 7 | 7 | 7 | 7 |
B4 vs. B5 | 1 | 1 | 3 | 1 | 3 | 1 | 1 | 3 | 1 |
B4 vs. B6 | 3 | 3 | 1 | 1 | 5 | 3 | 3 | 3 | 3 |
B4 vs. B7 | 7 | 7 | 7 | 9 | 9 | 9 | 9 | 9 | 9 |
B5 vs. B6 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 3 | 1 |
B5 vs. B7 | 3 | 3 | 5 | 5 | 3 | 3 | 3 | 5 | 3 |
B6 vs. B7 | 9 | 9 | 5 | 5 | 5 | 5 | 5 | 7 | 5 |
References
- The Australian Government. Centre for Population 2021 Population Statement; The Australian Government: Canberra, Australia, 2021. [Google Scholar]
- Bunker, R.; Holloway, D.; Randolph, B. Building the Connection between Housing Needs and Metropolitan Planning in Sydney, Australia. Hous. Stud. 2005, 20, 771–794. [Google Scholar] [CrossRef]
- Shoory, M. The Growth of Apartment Construction in Australia; RBA Bulletin; Reserve Bank of Australia: Sydney, Australia, 2016; pp. 19–26. [Google Scholar]
- Bock, T. The future of construction automation: Technological disruption and the upcoming ubiquity of robotics. Autom. Constr. 2015, 59, 113–121. [Google Scholar] [CrossRef]
- Navaratnam, S.; Satheeskumar, A.; Zhang, G.; Nguyen, K.; Venkatesan, S.; Poologanathan, K. The challenges confronting the growth of sustainable prefabricated building construction in Australia: Construction industry views. J. Build. Eng. 2022, 48, 103935. [Google Scholar] [CrossRef]
- Watson, M. Concerns for Skills Shortages in the 21st Century: A Review into the Construction Industry, Australia. Constr. Econ. Build. 2007, 7, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Navaratnam, S.; Nguyen, K.; Selvaranjan, K.; Zhang, G.; Mendis, P.; Aye, L. Designing Post COVID-19 Buildings: Approaches for Achieving Healthy Buildings. Buildings 2022, 12, 74. [Google Scholar] [CrossRef]
- Saidi, K.S.; Bock, T.; Georgoulas, C. Robotics in Construction. In Springer Handbook of Robotics; Siciliano, B., Khatib, O., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1493–1520. [Google Scholar]
- Chen, Q.; de Soto, B.G.; Adey, B.T. Construction automation: Research areas, industry concerns and suggestions for advancement. Autom. Constr. 2018, 94, 22–38. [Google Scholar] [CrossRef]
- Hack, N.; Lauer, W.V. Mesh Mould: Robotically Fabricated Spatial Meshes as Reinforced Concrete Formwork. Archit. Design 2014, 84, 44–53. [Google Scholar] [CrossRef]
- Bock, T.; Linner, T.; Ikeda, W. Exoskeleton and Humanoid Robotic Technology in Construction and Built Environment; InTech: London, UK, 2012. [Google Scholar]
- Baduge, S.K.; Navaratnam, S.; Abu-Zidan, Y.; McCormack, T.; Nguyen, K.; Mendis, P.; Zhang, G.; Aye, L. Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods. Structures 2021, 29, 1597–1609. [Google Scholar] [CrossRef]
- Thamboo, J.; Zahra, T.; Navaratnam, S.; Asad, M.; Poologanathan, K. Prospects of Developing Prefabricated Masonry Walling Systems in Australia. Buildings 2021, 11, 294. [Google Scholar] [CrossRef]
- Opoku, D.-G.J.; Perera, S.; Osei-Kyei, R.; Rashidi, M. Digital twin application in the construction industry: A literature review. J. Build. Eng. 2021, 40, 102726. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C. Applications of multirotor drone technologies in construction management. Int. J. Constr. Manag. 2019, 19, 401–412. [Google Scholar] [CrossRef]
- Ferrada, X.; Serpell, A. Selection of Construction Methods for Construction Projects: A Knowledge Problem. J. Constr. Eng. Manag. 2014, 140, B4014002. [Google Scholar] [CrossRef]
- Pan, N.-F. Fuzzy AHP approach for selecting the suitable bridge construction method. Autom. Constr. 2008, 17, 958–965. [Google Scholar] [CrossRef]
- Kudoh, R. Implementation of an automated building construction system. In Proceedings of the 13th CIB Building Congress, Amsterdam, The Netherlands, 8–9 May 1995. [Google Scholar]
- Ikeda, Y.; Harada, T. Application of the Automated Building Construction System Using the Conventional Construction Method Together. In Proceedings of the 23rd ISARC, Tokyo, Japan, 3–5 October 2006; pp. 722–727. [Google Scholar] [CrossRef] [Green Version]
- Wakisaka, T.; Furuya, N.; Inoue, Y.; Shiokawa, T. Automated construction system for high-rise reinforced concrete buildings. Autom. Constr. 2000, 9, 229–250. [Google Scholar] [CrossRef]
- Smale, K. Mace Invests £9M in Radical New Jumping Factory. New Civil Engineer, 5 May 2017. Available online: https://www.newcivilengineer.com/archive/mace-invests-9m-in-radical-new-jumping-factory-05-05-2017/#:~:text=each%20floor%20level.-,Diagonal%20steel%20props%20are%20wedged%20between%20the%20steel%20columns%20and,from%20the%20factory%20to%20ground.&text=Mace%20has%20invested%20%C2%A39M,of%20one%20storey%20a%20week (accessed on 10 April 2021).
- Hamada, K.; Furuya, N.; Inoue, Y.; Wakisaka, T. Development of automated construction system for high-rise reinforced concrete buildings. In Proceedings of the IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), Leuven, Belgium, 20 May 1998; Volume 3, pp. 2428–2433. [Google Scholar] [CrossRef]
- Karke, S.M.; Kumathekar, M.B. Comparison of the use of traditional and modern formwork systems. Civ. Eng. Syst. Sustain. Innov. 2014, 4, 348–355. [Google Scholar]
- Hurrah, U.F.; Danish, M. Mivan formwork and construction equipments. Int. J. Technol. Res. Eng. 2018, 5, 4368–4371. [Google Scholar]
- Ganar, A.; Patil, S. Comparative analysis on cost and duration of MIVAN formwork building and Conventional Formwork building. Int. J. Recent Innov. Trends Comput. Commun. 2015, 3, 6472–6474. [Google Scholar]
- Ghangus, S. A Comparative Study of Aluminum Form Work (MIVAN Shuttering) with other Conventional Form Work. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 90–93. [Google Scholar] [CrossRef]
- Thiyagarajan, R.; Panneerselvam, V.; Nagamani, K. Aluminium formwork system using in highrise buildings construction. Int. J. Adv. Res. Eng. Technol. 2017, 8, 29–41. [Google Scholar]
- Wijesekara, D. Cost effective and speedy construction for high-rise buildings in Sri Lanka by using aluminium panel system formworks. In Proceedings of the International Symposium on Advances in Civil and Environment Engineering Practices for Sustainable Development, Galle, Sri Lanka, 19 March 2012; pp. 239–244. [Google Scholar]
- Waghmare, A.P.; Hangarge, R.S. Cost and time estimation for conventional, aluminium & tunnel formwork. Int. Res. J. Eng. Technol. 2017, 4, 1704–1707. [Google Scholar]
- Rubio-Romero, J.C.; Gámez, M.C.R.; Carrillo-Castrillo, J.A. Analysis of the safety conditions of scaffolding on construction sites. Saf. Sci. 2013, 55, 160–164. [Google Scholar] [CrossRef]
- Saha, S.; Zarika, Z.; Zekavat, P. Scaffold and Crane Work Health Safety Failure Incidents and Case Studies in Australia. In Proceedings of the 24th International Symposium on Advancement of Construction Management and Real Estate, Chongqing, China, 29 November–2 December 2019; Ye, G., Yuan, H., Zuo, J., Eds.; Springer: Singapore, 2021; pp. 2239–2252. [Google Scholar]
- Poon, C.S.; Yu, A.T.W.; Wong, S.W.; Cheung, E. Management of construction waste in public housing projects in Hong Kong. Constr. Manag. Econ. 2004, 22, 675–689. [Google Scholar] [CrossRef]
- Jayasinghe, R.S.; Fernando, N.G. Developing labour productivity norms for aluminium system formwork in Sri Lanka. Built Environ. Proj. Asset. Manag. 2017, 7, 199–211. [Google Scholar] [CrossRef]
- Khalfan, M.M.A.; Maqsood, T. Current State of Off-Site Manufacturing in Australian and Chinese Residential Construction. J. Constr. Eng. 2014, 2014, 164863. [Google Scholar] [CrossRef]
- Boyd, N.; Malik, M.A.K.; Maqsood, T. Off-Site Construction of Apartment Buildings. J. Archit. Eng. 2013, 19, 51–57. [Google Scholar] [CrossRef]
- Navaratnam, S.; Ngo, T.; Gunawardena, T.; Henderson, D. Performance Review of Prefabricated Building Systems and Future Research in Australia. Buildings 2019, 9, 38. [Google Scholar] [CrossRef] [Green Version]
- Gibb, A.G. Off-Site Fabrication: Prefabrication, Pre-Assembly and Modularisation; Whittles Publishing: Latheronwheel, UK, 1999. [Google Scholar]
- Pan, W.; Gibb, A.G.; Dainty, A.R. Leading UK housebuilders’ utilization of offsite construction methods. Build. Res. Inf. 2008, 36, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.; Sidwell, R. Demystifying the cost barriers to offsite construction in the UK. Constr. Manag. Econ. 2011, 29, 1081–1099. [Google Scholar] [CrossRef]
- Blismas, N.; Wakefield, R. Drivers, constraints and the future of offsite manufacture in Australia. Constr. Innov. 2009, 9, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Rogan, A.; Lawson, R.; Bates-Brkljac, N. Value and Benefits Assessment of Modular Construction; Steel Construction Institute: Berkshire, UK, 2000. [Google Scholar]
- Alazzaz, F.; Whyte, A. Uptake of Off-site Construction: Benefit and Future Application. J. Civ. Environ. Eng. 2014, 8, 1219–1223. [Google Scholar]
- Lawson, R.M.; Ogden, R.G.; Bergin, R. Application of Modular Construction in High-Rise Buildings. J. Arch. Eng. 2012, 18, 148–154. [Google Scholar] [CrossRef]
- Phillips, D.; Guaralda, M.; Sawang, S. Innovative housing adoption: Modular housing for the australian growing family. J. Green Build. 2016, 11, 147–170. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.; Gibb, A.G.F.; Dainty, A.R.J. Perspectives of UK housebuilders on the use of offsite modern methods of construction. Constr. Manag. Econ. 2007, 25, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Blismas, N.G.; Pendlebury, M.; Gibb, A.G.; Pasquire, C.L. Constraints to the Use of Off-site Production on Construction Projects. Arch. Eng. Des. Manag. 2005, 1, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Liska, R.W. Designers’ and General Contractors’ Perceptions of Offsite Construction Techniques in the United State Construction Industry. Int. J. Constr. Educ. Res. 2008, 4, 177–188. [Google Scholar] [CrossRef]
- Chiu, S.T.L. An Analysis on the Potential of Prefabricated Construction Industry. Ph.D. Thesis, The University of British Columbia, Vancouver, BC, Canada, 2012. [Google Scholar] [CrossRef]
- Goodier, C.; Gibb, A. Future opportunities for offsite in the UK. Constr. Manag. Econ. 2007, 25, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Hickory Group. Hickory Building Systems: Overview of Prefabricated Structural System, Hickory Building Innovation, Australia. 2021. Available online: https://www.hickory.com.au/wp-content/uploads/2021/11/hickory-building-systems-overview.pdf (accessed on 15 May 2021).
- Aye, L.; Ngo, T.; Crawford, R.H.; Gammampila, R.; Mendis, P. Life cycle greenhouse gas emissions and energy analysis of prefabricated reusable building modules. Energy Build. 2012, 47, 159–168. [Google Scholar] [CrossRef]
- Paya-Marin, M.A.; Lim, J.; Sengupta, B. Life-Cycle Energy Analysis of a Modular/Off-Site Building School. Am. J. Civ. Eng. Archit. 2013, 1, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Begum, R.A.; Satari, S.K.; Pereira, J.J. Waste Generation and Recycling: Comparison of Conventional and Industrialized Building Systems. Am. J. Environ. Sci. 2010, 6, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Giftthaler, M.; Sandy, T.; Dörfler, K.; Brooks, I.; Buckingham, M.; Rey, G.; Kohler, M.; Gramazio, F.; Buchli, J. Mobile robotic fabrication at 1:1 scale: The In situ Fabricator. Constr. Robot. 2017, 1, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Buchli, J.; Giftthaler, M.; Kumar, N.; Lussi, M.; Sandy, T.; Dörfler, K.; Hack, N. Digital in situ fabrication—Challenges and opportunities for robotic in situ fabrication in architecture, construction, and beyond. Cem. Concr. Res. 2018, 112, 66–75. [Google Scholar] [CrossRef]
- Anandan, T.M. Exoskeletons bring robotics, humans together: Safety takes a new form to support worker ergonomics, reduce injuries. Plant Eng. 2018, 72, 33. [Google Scholar]
- Alabdulkarim, S.; Kim, S.; Nussbaum, M.A. Effects of exoskeleton design and precision requirements on physical demands and quality in a simulated overhead drilling task. Appl. Ergon. 2019, 80, 136–145. [Google Scholar] [CrossRef] [PubMed]
- De Soto, B.G.; Agustí-Juan, I.; Hunhevicz, J.; Joss, S.; Graser, K.; Habert, G.; Adey, B.T. Productivity of digital fabrication in construction: Cost and time analysis of a robotically built wall. Autom. Constr. 2018, 92, 297–311. [Google Scholar] [CrossRef]
- Juan, I.A.; Müller, F.; Hack, N.; Wangler, T.; Habert, G. Potential benefits of digital fabrication for complex structures: Environmental assessment of a robotically fabricated concrete wall. J. Clean. Prod. 2017, 154, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Thomas, H.R.; William, F.M.; Horner, R.M.W.; Gary, R.S.; Vir, K.H.; Steve, R.S. Modeling Construction Labor Productivity. J. Constr. Eng. Manag. 1990, 116, 705–726. [Google Scholar] [CrossRef]
- McCaffer, R.; Williams, I.; Hassan, T. Developing best practice in European construction. In Proceedings of the 1st International Conference on Construction Development: Building the Future Together, Singapore, 9–11 December 1997; School of Building and Real Estate: Singapore, 1997. [Google Scholar]
- Ferrada, X.; Serpell, A. Construction Methods Selection: Lessons Learned from Chile. In Proceedings of the W102-Special Track 18th CIB World Building Congress, Salford, UK, 10–13 May 2010; CIB: Kanata, ON, USA, 2013; p. 144. [Google Scholar]
- Tam, C.M.; Deng, Z.; Zeng, S. Evaluation of construction methods and performance for high rise public housing construction in Hong Kong. Build. Environ. 2002, 37, 983–991. [Google Scholar] [CrossRef]
- Monghasemi, S.; Nikoo, M.R.; Fasaee, M.A.K.; Adamowski, J. A novel multi criteria decision making model for optimizing time–cost–quality trade-off problems in construction projects. Expert Syst. Appl. 2015, 42, 3089–3104. [Google Scholar] [CrossRef]
- Moghayedi, A.; Windapo, A. Key Performance Criteria Influencing the Selection of Construction Methods Used for the Fabrication of Building Components in the Middle East. In Sustainable Construction and Building Materials; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Okudan, G.E.; Riley, D.R. Sustainable performance criteria for construction method selection in concrete buildings. Autom. Constr. 2010, 19, 235–244. [Google Scholar] [CrossRef]
- Soetanto, R.; Glass, J.; Dainty, A.R.J.; Price, A.D.F. Structural frame selection: Case studies of hybrid concrete frames. Build. Res. Inf. 2007, 35, 206–219. [Google Scholar] [CrossRef]
- Mohamed, A.Y.; Chimay, J.A.; Thorpe, T. Intelligent Selection of Concrete Bridge Construction Methods in Egypt. Comput. Civ. Eng. 2005, 2005, 1–14. [Google Scholar]
- Ngacho, C.; Das, D. A performance evaluation framework of construction projects: Insights from literature. Int. J. Proj. Organ. Manag. 2015, 7, 151. [Google Scholar] [CrossRef]
- Udaipurwala, A.; Russell, A.D. Computer-assisted construction methods knowledge management and selection. Can. J. Civ. Eng. 2002, 29, 499–516. [Google Scholar] [CrossRef]
- Pan, N. Selecting an appropriate excavation construction method based on qualitative assessments. Expert Syst. Appl. 2009, 36, 5481–5490. [Google Scholar] [CrossRef]
- Russell, A.D.; Al-Hammad, I. A knowledge-based framework for construction methods selection. Can. J. Civ. Eng. 1993, 20, 236–246. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Prediction, Projection and Forecasting: Applications of the Analytic Hierarchy Process in Economics, Finance, Politics, Games and Sports; Springer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. The Seven Pillars of the Analytic Hierarchy Process. In Models, Methods, Concepts & Applications of the Analytic Hierarchy Process; Springer: Boston, MA, USA, 2012; pp. 23–40. [Google Scholar]
- Abudayyeh, O.; Saad, J.Z.; Yehia, S.; Randolph, D. Hybrid Prequalification-Based, Innovative Contracting Model Using AHP. J. Manag. Eng. 2007, 23, 88–96. [Google Scholar] [CrossRef]
- De Felice, F.; Petrillo, A.; Autorino, C. Development of a Framework for Sustainable Outsourcing: Analytic Balanced Scorecard Method (A-BSC). Sustainability 2015, 7, 8399–8419. [Google Scholar] [CrossRef] [Green Version]
- Dias, A.; Ioannou, P.G. Company and Project Evaluation Model for Privately Promoted Infrastructure Projects. J. Constr. Eng. Manag. 1996, 122, 71–82. [Google Scholar] [CrossRef]
- Doloi, H. Application of AHP in improving construction productivity from a management perspective. Constr. Manag. Econ. 2008, 26, 841–854. [Google Scholar] [CrossRef]
- Kil, S.-H.; Lee, D.K.; Kim, J.-H.; Li, M.-H.; Newman, G. Utilizing the Analytic Hierarchy Process to Establish Weighted Values for Evaluating the Stability of Slope Revegetation based on Hydroseeding Applications in South Korea. Sustainability 2016, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Peterson, D.L.; Silsbee, D.G.; Schmoldt, D.L. A case study of resources management planning with multiple objectives and projects. Environ. Manag. 1994, 18, 729–742. [Google Scholar] [CrossRef]
- Al-Harbi, K.M.A.-S. Application of the AHP in project management. Int. J. Proj. Manag. 2001, 19, 19–27. [Google Scholar] [CrossRef]
- Armacost, R.L.; Componation, P.J.; Mullens, M.A.; Swart, W.W. An ahp framework for prioritizing customer requirements in qfd: An industrialized housing application. IIE Trans. 1994, 26, 72–79. [Google Scholar] [CrossRef]
Criteria | References | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[67] | [68] | [16] | [65] | [69] | [70] | [62] | [71] | [17] | [72] | [66] | [63] | |
Time | X | X | X | X | X | X | X | X | X | X | X | |
Cost | X | X | X | X | X | X | X | X | X | X | X | X |
Quality | X | X | X | X | X | X | ||||||
Risk | X | |||||||||||
Resource availability | X | X | X | X | X | |||||||
Maintenance | X | |||||||||||
Production rate | X | X | X | X | ||||||||
Physical characteristics of the element to build | X | X | X | X | ||||||||
Construction method characteristics | X | X | X | X | X | X | X | |||||
Environment | X | X | ||||||||||
Site characteristics | X | X | ||||||||||
Safety | X | X | X | X | X | |||||||
Minimum site disrupts | X | X | ||||||||||
Workforce competences | X | |||||||||||
Stakeholder | X | X |
Criteria | Weighting Factor | ABCS | AFCS | Off-Site Construction | |||
---|---|---|---|---|---|---|---|
Score | Weighted Score | Score | Weighted Score | Score | Weighted Score | ||
Time | 0.194 | −3 | −0.581 | −3 | −0.581 | −4 | −0.775 |
Cost | 0.246 | −1 | −0.246 | −1 | −0.246 | −1 | −0.246 |
Quality | 0.157 | −3 | −0.472 | −2 | −0.315 | −2 | −0.315 |
Safety | 0.185 | −3 | −0.555 | 0 | 0.000 | −3 | −0.555 |
Site characteristics | 0.096 | −2 | −0.191 | −1 | −0.096 | −3 | −0.287 |
Waste/pollution generation | 0.097 | −1 | −0.097 | −2 | −0.195 | −3 | −0.292 |
Energy consumption | 0.025 | 2 | 0.050 | −2 | −0.050 | −2 | −0.050 |
TOTAL | −2.093 | −1.482 | −2.519 |
Criteria | Weighting Factor | Robotics | |||
---|---|---|---|---|---|
In Situ Fabricator | Wearable Robot | ||||
Score | Weighted Score | Score | Weighted Score | ||
Time | 0.194 | −3 | −0.581 | −2 | −0.387 |
Cost | 0.246 | −3 | −0.739 | −2 | −0.493 |
Quality | 0.157 | −2 | −0.315 | −2 | −0.315 |
Safety | 0.185 | 1 | 0.185 | −2 | −0.370 |
Site characteristics | 0.096 | 0 | 0.000 | 0 | 0.000 |
Waste/pollution generation | 0.097 | −1 | −0.097 | 0 | 0.000 |
Energy consumption | 0.025 | −1 | −0.025 | −2 | −0.050 |
TOTAL | −1.571 | −1.614 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navaratnam, S. Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis. Sustainability 2022, 14, 7435. https://doi.org/10.3390/su14127435
Navaratnam S. Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis. Sustainability. 2022; 14(12):7435. https://doi.org/10.3390/su14127435
Chicago/Turabian StyleNavaratnam, Satheeskumar. 2022. "Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis" Sustainability 14, no. 12: 7435. https://doi.org/10.3390/su14127435